(Created page with " == Abstract == Multi-Protocol Label Switching (MPLS) provides ways to control the Label Switched Paths (LSPs) followed by traffic trunks in a network and thereby to better t...") |
m (Scipediacontent moved page Draft Content 144386153 to Leduc et al 2003a) |
(No difference)
|
Multi-Protocol Label Switching (MPLS) provides ways to control the Label Switched Paths (LSPs) followed by traffic trunks in a network and thereby to better traffic engineer it. In this context, we look at the problem of organizing the mapping of LSPs in an optimal way throughout the network on the basis of a given objective function. This problem is highly combinatorial and makes dynamic and real-time features a difficult issue for any LSP routing scheme. For this reason, we propose a computationally efficient, though approximate, on-line scheme adapted to an incremental optimization of the network state. It is then applied to a seldom mentioned traffic engineering problem: the compromise between load-balancing and traffic minimization. It is expected that clever routing strategies to balance the network load will sometimes favor longer paths in order to avoid congestion, leading to an increase of the overall network utilization. This reasoning is confirmed by our study, and we show that an improvement in network management can be made by appropriately tuning this compromise. Peer reviewed
The different versions of the original document can be found in:
Published on 01/01/2003
Volume 2003, 2003
DOI: 10.1016/s1388-3437(03)80190-7
Licence: CC BY-NC-SA license
Are you one of the authors of this document?