You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
==A fractional numerical study on a plant disease model with replanting and preventive treatment==
3
4
'''
5
6
Zuhur americanAlqahtani<math>^{1}</math>,  Ahmed Hagagamerican<math>^{2,*}</math>
7
8
american<math>^{1}</math>Department of Mathematical Science, College of Science, Princess Nourah Bint Abdulrahman University,
9
10
americanP.O. Box 84428, Riyadh 11671, Saudi Arabia
11
12
american<math>^{2}</math>Department of Basic Science, Faculty of Engineering, Sinai University, Ismailia, Egypt
13
14
american<math>^{2,*}</math>E-mail:ahmed.shehata@su.edu.eg'''
15
-->
16
==Abstract==
17
18
Food security has become a significant issue due to the growing human population. In this case, a significant role is played by agriculture. The essential foods are obtained mainly from plants. Plant diseases can, however, decrease both food production and its quality. Therefore, it is substantial to comprehend the dynamics of plant diseases as they can provide insightful information about the dispersal of plant diseases. In order to investigate the dynamics of plant disease and analyze the effects of strategies of disease control, a mathematical model can be applied. We show that this model provides the non-negative solutions that population dynamics requires. The model was investigated by using the Atangana-Baleanu in Caputo sense (ABC) operator which is symmetrical to the Caputo-Fabrizio (CF) operator with a different function. Whereas the ABC operator uses the generalized Mittag-Leffler function while the CF operator employs the exponential kernel. For the proposed model, we have displayed the local and global stability of a nonendemic and an endemic equilibrium, existence and uniqueness theorems. By applying the fractional Adams-Bashforth-Moulton method, we have implemented numerical solutions to illustrate the theoretical analysis.
19
20
'''Keywords''': Adams-Bashforth-Moulton method, local and global asymptotic equilibrium stability, sensitivity analysis, existence theorems, uniqueness theorems, plant diseases model, numerical simulations
21
22
==1. Introduction==
23
24
Plants are an incredibly valuable component of our world. The earth, due to the presence of plants, is known as a green planet. They are perhaps the most important component of the life of all the earth's living beings. Some of the plant's essential functions are food, reducing the level of pollution, supplying fresh oxygen, medications, furniture and refuge. Plant disease, however, triggers a decline in food production and efficiency, which can lead to numerous health and social issues. Moreover, it can cause considerable economic ramifications.
25
26
Plant disease epidemiology studies the evolution of populations of plant diseases in time and space. Usually, the execution of the techniques is accomplished by roguing and then replanting, which offers two possible advantages. Initially, infected plants could be removed and could inoculum sources could be reduced, possibly slowing the dispersal of pathogens. Then, the infected plant may die or suffer a reduction in yield. Consequently, substituting diseased plants with healthful plants can indemnity crop casualties. The exposed plant can also be able to spread disease in some cases [1-3]. Since the exposed plant is capable of spreading disease, the propagation of plant disease can be more rapid. It is therefore important to realize the impact of plants uncovered on the dynamics of plant disease contamination. Their simulation revealed that the application of fungicides is efficient in minimizing population infection [4-6].
27
28
Mathematical modeling is useful in explaining how diseases dispersal and different factors involved in the dispersal of the disease have been specified [7-11]. The defensive and curative fungicide model was introduced in Anggriani et al. [12], where it has been split into three ingredients: Infectious, protected and susceptible. Their simulation revealed that the implementation of fungicides is active in minimizing population infection. Model plant diseases with replanting, roguing and preventive care have been introduced in Anggriani et al. [13] without consideration to curative therapy. In 2017, Anggriani et al. [14] created a plant disease mathematical model that includes five ingredients: Susceptible, Protected, Infectious, Exposed and Post-Infectious with protective curative therapies. They observed that by using curative and preventative care, the transmission of plant disease can be minimized. However, where only one therapy is offered, preventive therapy is favored over curative therapy.
29
30
In actuality, there are various meanings of fractional derivatives which in general do not necessarily correspond. One of these definitions which is often utilized in different implementations of fractional differential equations is Caputo fractional derivative [15-18]. There is also a novel fractional derivative definition, named the Caputo-Fabrizio fractional operator, which centered on the exponential function [19-21]. And in the same context, there is a novel fractional derivative definition, named the Atangana-Baleanu fractional operator, which centered on the Mittag-Leffler function [22-27]. Many authors have successfully attempted to model actual processes utilizing this fractional derivative operator [28-29].
31
32
We consider a plant disease spread model within fractional calculus, where a susceptible person crosses an exposed stage prior to becoming an infectious person and diseases may also be passed on by exposed plants. The major purpose for this protraction is that the plant diseases of the classical case [12-14] do not load any acquaintance about the memory and learning techniques that impact the propagation of a disease [25]. Now, we regard the plant diseases model with fractional order as follows:
33
34
<span id="eq-1"></span>
35
{| class="formulaSCP" style="width: 100%; text-align: left;" 
36
|-
37
| 
38
{| style="text-align: left; margin:auto;width: 100%;" 
39
|-
40
| style="text-align: center;" | <math>\begin{align} ^{ABC}D_{*}^{\upsilon }S_{1}\left(t\right) & =  r(M-N)-\gamma S_{1}\left(t\right)-\frac{a_{1}}{M}S_{1}\left(t\right)I_{1}\left(t\right)-\alpha S_{1}\left(t\right)+\beta P_{1}\left(t\right),\\
41
^{ABC}D_{*}^{\upsilon }P_{1}\left(t\right) & =  \alpha S_{1}\left(t\right)+\beta P_{1}\left(t\right)-\gamma P_{1}\left(t\right),\\
42
^{ABC}D_{*}^{\upsilon }E_{1}\left(t\right) & =\frac{a_{1}}{M}S_{1}\left(t\right)I_{1}\left(t\right) -\left(\gamma + a_{2}+b_{1}\right) E_{1}\left(t\right),\\
43
^{ABC}D_{*}^{\upsilon }I_{1}\left(t\right) & =  a_{2}E_{1}\left(t\right)-\left(\gamma{+}a_{3}+b_{2}+\eta \right)I_{1}\left(t\right),\\
44
^{ABC}D_{*}^{\upsilon }R_{1}\left(t\right) &=  a_{3}I_{1}\left(t\right)-\left(\gamma{+}b_{3}\right)R_{1}\left(t\right). \end{align}</math>
45
|}
46
| style="width: 5px;text-align: right;white-space: nowrap;" |(1)
47
|}
48
49
With initial conditions <math>\left(S_{1}\right)_{0}\left(0\right)>0</math>, <math>\left(P_{1}\right)_{0}\left(0\right)\geq{0}</math>, <math>\left(E_{1}\right)_{0}\left(0\right)\geq{0}</math>, <math>\left(I_{1}\right)_{0}\left(0\right)\geq{0}</math> and <math>\left(R_{1}\right)_{0}\left(0\right)\geq{0}</math>, where <math>N</math> indicate to the overall population of the actual plant, <math>S_{1}\left(t\right)</math> is representing the Susceptible population, <math>P_{1}\left(t\right)</math> is representing the Protected population, <math>E_{1}\left(t\right)</math> is representing the Exposed population, <math>I_{1}\left(t\right)</math> is representing the Infectious/Removed population, <math>R_{1}\left(t\right)</math> is representing the Recovered population, and <math>N=S_{1}\left(t\right)+P_{1}\left(t\right)+E_{1}\left(t\right)+I_{1}\left(t\right)+R_{1}\left(t\right)</math>, this suggests that the size of population is not steady. (i.e. size of the population is variable). The actual meaning of each of the model's parameters, all of which have positive values, is as follows:
50
51
* <math display="inline">r</math>: rate of replanting.
52
* <math display="inline">a_{1}</math>:  disease progression diversion rate for latent compartment.
53
* <math display="inline">a_{2}</math>: disease progression diversion rate for infected compartment.
54
* <math display="inline">a_{3}</math>: disease progression diversion rate for removed compartment.
55
* <math display="inline">M</math>: overall maximum plant population (agronomy).
56
* <math display="inline">b_{1}</math>: influence accumulative death rate for latent compartment.
57
* <math display="inline">b_{2}</math>: influence accumulative death rate for infected compartment.
58
* <math display="inline">b_{3}</math>: influence accumulative death rate for latent removed compartment.
59
* <math display="inline">\alpha </math>: efficacy preventive therapy.
60
* <math display="inline">\beta </math>: preventive therapy rate.
61
* <math display="inline">\gamma </math>: rate of natural death.
62
* <math display="inline">\eta </math>: rate of roguing.
63
64
65
Some assumptions have been made to facilitate understanding this model [american14]:
66
67
* There is no closure of the plant population due to replanting and natural death.
68
* The infected plant compartment comprises of two compartments, called, latent <math display="inline">E(t)</math> and infected <math display="inline">I(t)</math>.
69
* The infected plant is lifted if it shows comprehensive symptoms.
70
* The insect vector and environment factor are neglected.
71
* The Preventive therapy (insecticide) be presented to susceptible compartments.
72
* The Protected compartment <math display="inline">P_{1}(t)</math> contains the Susceptible plants <math display="inline">S_{1}(t)</math> that have received protective therapy.
73
* Protected plants have defensive or prevention impact, but are not immune to disease, therefore it is permitting re-entry into the susceptible compartment.
74
75
76
This article is structured to have some significant preliminaries in Section 2. Section 3 transacts with studying the local and global asymptotic equilibrium stability (the disease-free case and the endemic case) and the sensibility analysis of reproduction number (<math display="inline">\mathrm{\mathcal{R}}_{0}</math>) without control of our model ([[#eq-1|1]]). Section 4 transacts with studying the existence and uniqueness theorems of our model ([[#eq-1|1]]). Then, computational technique (Adams-Bashforth-Moulton method) are graphically represented and covered in Sections 5 and 6. Finally, conclusions are drawn.
77
78
==2. Preliminaries==
79
80
Recently, many fractional calculus concepts and definitions have been developed [31-32].
81
82
===Definition 1===
83
84
The fractional derivative of the Atangana-Baleanu in Caputo sense (ABC) is denoted as
85
86
{| class="formulaSCP" style="width: 100%; text-align: left;" 
87
|-
88
| 
89
{| style="text-align: left; margin:auto;width: 100%;" 
90
|-
91
| style="text-align: center;" | <math>_{0}^{ABC}D_{\varrho }^{\upsilon }\varphi \left(\varrho \right)=\frac{\chi \left(\upsilon \right)}{1-\upsilon }\stackrel=0\varphi ^{\prime }\left(\tau \right)E_{\upsilon }\left[\frac{-\upsilon }{1-\upsilon }\left(\varrho{-\tau}\right)^{\upsilon }\right]d\tau , </math>
92
|}
93
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
94
|}
95
96
where <math display="inline">\chi \left(\upsilon \right)</math> is a normalized function with <math display="inline">\chi (0)=\chi (1)=1</math> which are symmetrical to the Caputo-Fabrizio (CF) case, <math display="inline">\varphi \left(\varrho \right)\in \mathcal{H}^{1}(a,b)</math>, <math display="inline">b>a</math>, <math display="inline">\upsilon \in (0,1]</math>, where <math display="inline">\mathcal{H}^{1}(a,b)</math> is the Sobolev space <math display="inline">(\mathcal{H})</math> of order 1 in <math display="inline">(a,b)</math> and <math display="inline">E_{\upsilon }</math> indicate to a Mittag-Leffler function expressed as
97
98
{| class="formulaSCP" style="width: 100%; text-align: left;" 
99
|-
100
| 
101
{| style="text-align: left; margin:auto;width: 100%;" 
102
|-
103
| style="text-align: center;" | <math>E_{\upsilon }\left(-\varrho ^{\upsilon }\right) =  \stackrel={\scriptscriptstyle i=0}\frac{\left(-\varrho \right)^{i\upsilon }}{\Gamma \left(i\upsilon{+1}\right)}. </math>
104
|}
105
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
106
|}
107
108
===Definition 2===
109
110
The related fractional integral to the AB Caputo operator is denoted as
111
112
{| class="formulaSCP" style="width: 100%; text-align: left;" 
113
|-
114
| 
115
{| style="text-align: left; margin:auto;width: 100%;" 
116
|-
117
| style="text-align: center;" | <math>\begin{align} _{0}^{AB}J_{\varrho }^{\upsilon }\varphi \left(\varrho \right) & =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\varphi \left(\varrho \right)+\frac{\upsilon }{\chi \left(\upsilon \right)\Gamma \left(\upsilon \right)}\stackrel=0\varphi \left(\tau \right)\left(\varrho{-\tau}\right)^{\upsilon{-1}}d\tau ,\\
118
& =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\varphi \left(\varrho \right)+\frac{\upsilon }{\chi \left(\upsilon \right)\Gamma \left(\upsilon \right)}\left(I^{\upsilon }\varphi \left(\varrho \right)\right).\end{align} </math>
119
|}
120
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
121
|}
122
123
==3. Analysis of plant disease model==
124
125
===3.1 The local asymptotic equilibrium stability===
126
127
Since <math display="inline">^{ABC}D^{\upsilon }S_{1}\left(t\right)=0</math>, <math display="inline">^{ABC}D^{\upsilon }P_{1}\left(t\right)=0</math>, <math display="inline">^{ABC}D^{\upsilon }E_{1}\left(t\right)=0</math>, <math display="inline">^{ABC}D^{\upsilon }I_{1}\left(t\right)=0</math> and <math display="inline">^{ABC}D^{\upsilon }R_{1}\left(t\right)=0</math> when <math display="inline">t\rightarrow \infty </math>, we can use them to find two equilibrium points of the fractional system (Eq.[[#eq-1|(1)]]), by solving the above equations we get
128
129
====3.1.1 Non endemic equilibrium (NEE) point====
130
131
The NEE solution of the system ([[#eq-1|1]]) is
132
133
{| class="formulaSCP" style="width: 100%; text-align: left;" 
134
|-
135
| 
136
{| style="text-align: left; margin:auto;width: 100%;" 
137
|-
138
| style="text-align: center;" | <math>\mathcal{E}_{0}=\left(\left(S_{1}\right)_{eq},\left(P_{1}\right)_{eq},\left(E_{1}\right)_{eq},\left(I_{1}\right)_{eq},\left(R_{1}\right)_{eq}\right)</math><math> =\left(\frac{\gamma A_{3}Mr}{(\gamma{+}r)(\alpha \beta{+}A_{3}(\alpha{+\gamma}))},-\frac{\alpha \gamma Mr}{(\gamma{+}r)(\alpha \beta{+}A_{3}(\alpha{+\gamma}))},0,0,0\right), </math>
139
|}
140
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
141
|}
142
143
with <math display="inline">N_{E_{1}q}=\frac{rM}{\gamma{+}r}</math> where <math display="inline">A_{1}=a_{2}+b_{1}+\gamma </math>, <math display="inline">A_{2}=\gamma{+}a_{3}+b_{2}+\eta </math>, <math display="inline">A_{3}=\beta{-\gamma}</math>. The basic reproduction number <math display="inline">\mathrm{\mathcal{R}}_{0}</math> that is calculated utilizing the generation operator method [28,29] can be found in [14] as follows:
144
145
{| class="formulaSCP" style="width: 100%; text-align: left;" 
146
|-
147
| 
148
{| style="text-align: left; margin:auto;width: 100%;" 
149
|-
150
| style="text-align: center;" | <math>\mathrm{\mathcal{R}}_{0}  =  \frac{ra_{1}a_{2}(\beta{+\gamma})}{A_{1}A_{2}(\gamma{+}r)\left(\alpha{+\beta}+\gamma \right)}. </math>
151
|}
152
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
153
|}
154
155
It is known as the number of secondary contagions induced by a single primary contagion in a completely susceptible population [35] and is generally expressed using model (Eq.[[#eq-1|(1)]]). The rate of the basic reproduction number counts on the replanting rate value. This is the justification that we should replant the plant if we want to control plant disease.
156
157
====3.1.2 Endemic equilibrium (EE) point====
158
159
The endemic equilibrium solution of the system (1) is
160
161
{| class="formulaSCP" style="width: 100%; text-align: left;" 
162
|-
163
| 
164
{| style="text-align: left; margin:auto;width: 100%;" 
165
|-
166
| style="text-align: center;" |<math>\mathcal{E}^{*}=\left(S_{1}^{*},P_{1}^{*},E_{1}^{*},I_{1}^{*},R_{1}^{*}\right),</math>
167
|}
168
|}
169
170
where
171
172
{| class="formulaSCP" style="width: 100%; text-align: left;" 
173
|-
174
| 
175
{| style="text-align: left; margin:auto;width: 100%;" 
176
|-
177
| style="text-align: center;" | <math>\begin{cases}S_{1}^{*}= & \displaystyle\frac{A_{1}A_{2}M}{a_{1}a_{2}},\\ P_{1}^{*}= & -\displaystyle\frac{\alpha A_{1}A_{2}M}{a_{1}a_{2}A_{3}},\\ E_{1}^{*}= & \displaystyle\frac{A_{2}M\left(b_{3}+\gamma \right)\left(A_{1}A_{2}(\gamma{+}r)(\alpha \beta{+}A_{3}(\alpha{+\gamma}))-a_{1}a_{2}\gamma A_{3}r\right)}{a_{1}a_{2}A_{3}\left(a_{2}r\left(b_{3}\left(a_{3}+b_{2}+\eta \right)+\gamma \left(b_{2}+\eta \right)\right)-A_{2}\left(b_{3}+\gamma \right)\left(A_{1}(\gamma{+}r)-b_{1}r\right)\right)},\\ I_{1}^{*}= & -\displaystyle\frac{M\left(b_{3}+\gamma \right)\left(A_{1}A_{2}(\gamma{+}r)(\alpha \beta{+}A_{3}(\alpha{+\gamma}))-a_{1}a_{2}\gamma A_{3}r\right)}{a_{1}A_{3}\left(A_{2}\left(b_{3}+\gamma \right)\left(A_{1}(\gamma{+}r)-b_{1}r\right)-a_{2}r\left(b_{3}\left(a_{3}+b_{2}+\eta \right)+\gamma \left(b_{2}+\eta \right)\right)\right)},\\ R_{1}^{*}= & -\displaystyle\frac{a_{3}M\left(A_{1}A_{2}(\gamma{+}r)(\alpha \beta{+}A_{3}(\alpha{+\gamma}))-a_{1}a_{2}\gamma A_{3}r\right)}{a_{1}A_{3}\left(A_{2}\left(b_{3}+\gamma \right)\left(A_{1}(\gamma{+}r)-b_{1}r\right)-a_{2}r\left(b_{3}\left(a_{3}+b_{2}+\eta \right)+\gamma \left(b_{2}+\eta \right)\right)\right)}. \end{cases} </math>
178
|}
179
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
180
|}
181
182
with <math display="inline">N^{*}=\displaystyle\frac{rM-b_{1}E_{1}^{*}-\left(b_{2}+\eta \right)I_{1}^{*}-b_{3}R_{1}^{*}}{\gamma{+}r}</math>. Conclusion of the outcomes of the system's equilibrium points ([[#eq-1|1]]) with prepared to research analytically the stability of the equilibrium points.
183
184
'''Theorem 3.1.2.1'''. The NEE point <math display="inline">\mathcal{E}_{0}</math> of model (Eq.[[#eq-1|(1)]]) is locally asymptotically stable if <math display="inline">\mathrm{\mathcal{R}}_{0}<1</math> and unstable if <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math>.
185
186
'''Proof'''. The system's Jacobian matrix (Eq.[[#eq-1|(1)]]) at <math>\mathcal{E}_{0}</math> is
187
188
{| class="formulaSCP" style="width: 100%; text-align: left;" 
189
|-
190
| 
191
{| style="text-align: left; margin:auto;width: 100%;" 
192
|-
193
| style="text-align: center;" | <math>J_{\mathcal{E}_{0}}=\left(\begin{array}{ccccc}-\left(\alpha{+\gamma}\right)& \beta & 0 & \displaystyle\frac{ra_{1}\left(\beta{+\gamma}\right)}{\left(\gamma{+}r\right)\left(\alpha{+\beta}+\gamma \right)} & 0\\ \alpha & -\left(\beta{+\gamma}\right)& 0 & 0 & 0\\ 0 & 0 & -A_{1} & \displaystyle\frac{ra_{1}\left(\beta{+\gamma}\right)}{\left(\gamma{+}r\right)\left(\alpha{+\beta}+\gamma \right)} & 0\\ 0 & 0 & a_{2} & -A_{2} & 0\\ 0 & 0 & 0 & a_{3} & -\left(\gamma{+}b_{3}\right) \end{array}\right). </math>
194
|}
195
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
196
|}
197
198
The eigenvalues of <math display="inline">J_{\mathcal{E}_{0}}</math>are given as <math display="inline">\lambda _{1}=-\gamma{<0},\quad \lambda _{2}=-\alpha{-\beta}-\gamma{<0},\quad \lambda _{3}=-b_{3}-\gamma{<0}</math> and the following quadratic equation gives <math display="inline">\lambda _{4}</math> and <math display="inline">\lambda _{5}</math> as
199
200
<span id="eq-9"></span>
201
{| class="formulaSCP" style="width: 100%; text-align: left;" 
202
|-
203
| 
204
{| style="text-align: left; margin:auto;width: 100%;" 
205
|-
206
| style="text-align: center;" | <math>\psi ^{2}+\left(A_{1}+A_{2}\right)\psi{+}A_{1}A_{2}\left(1-\mathrm{\mathcal{R}}_{0}\right) =  0. </math>
207
|}
208
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
209
|}
210
211
From Eq.([[#eq-9|9]]), we can notice that if <math display="inline">\mathrm{\mathcal{R}}_{0}\leq{1}</math>, then <math display="inline">\mathcal{E}_{0}</math> is locally asymptotically stable. This suggests that all polynomial coefficients ([[#eq-9|9]]) have the same signal, then the eigenvalues (roots) have negative real part. But if <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math>, the NEE is unstable and this would lead to a stable endemic equilibrium being present of <math display="inline">\mathcal{E}^{*}</math>. Now by proving the theorem of local stability of <math display="inline">\mathcal{E}^{*}</math> , we conclude this section.
212
213
'''Theorem 3.1.2.2'''. If <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math>, the endemic equilibrium <math>\mathcal{E}^{*}</math> of model ([[#eq-1|1]]) is locally asymptotically stable.
214
215
'''Proof'''. The system's Jacobian matrix (Eq.[[#eq-1|(1)]]) at <math display="inline">\mathcal{E}^{*}</math> is
216
217
{| class="formulaSCP" style="width: 100%; text-align: left;" 
218
|-
219
| 
220
{| style="text-align: left; margin:auto;width: 100%;" 
221
|-
222
| style="text-align: center;" | <math>J_{\mathcal{E}^{*}}=\left(\begin{array}{ccccc}-\left(\beta{+\gamma}\right)-\displaystyle\frac{\gamma \left(\mathrm{\mathcal{R}}_{0}-1\right)\left(\alpha{+\beta}+\gamma \right)}{\left(\beta{+\gamma}\right)} & \beta & 0 & \displaystyle\frac{ra_{1}\left(\beta{+\gamma}\right)}{\mathrm{\mathcal{R}}_{0}\left(\gamma{+}r\right)\left(\alpha{+\beta}+\gamma \right)} & 0\\ \alpha & -\left(\beta{+\gamma}\right)& 0 & 0 & 0\\ \displaystyle\frac{\gamma \left(\mathrm{\mathcal{R}}_{0}-1\right)\left(\alpha{+\beta}+\gamma \right)}{\left(\beta{+\gamma}\right)} & 0 & -A_{1} & \displaystyle\frac{ra_{1}\left(\beta{+\gamma}\right)}{\mathrm{\mathcal{R}}_{0}\left(\gamma{+}r\right)\left(\alpha{+\beta}+\gamma \right)} & 0\\ 0 & 0 & a_{2} & -A_{2} & 0\\ 0 & 0 & 0 & a_{3} & -\left(\gamma{+}b_{3}\right) \end{array}\right), </math>
223
|}
224
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
225
|}
226
227
and its polynomial characteristic written as
228
229
{| class="formulaSCP" style="width: 100%; text-align: left;" 
230
|-
231
| 
232
{| style="text-align: left; margin:auto;width: 100%;" 
233
|-
234
| style="text-align: center;" | <math>C_{J_{\mathcal{E}^{*}}}  =  \frac{\varphi{+\gamma}+b_{3}}{\mathrm{\mathcal{R}}_{0}\left(\gamma{+}r\right)\left(\alpha{+\beta}+\gamma \right)\left(\beta{+\gamma}\right)}\left(c_{0}\varphi ^{4}+c_{1}\varphi ^{3}+c_{2}\varphi ^{2}+c_{3}\varphi{+}c_{4}\right). </math>
235
|}
236
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
237
|}
238
239
The eigenvalues of <math display="inline">C_{J_{\mathcal{E}^{*}}}</math> are <math display="inline">-\left(\gamma{+}b_{3}\right)</math> and the roots of the polynomial <math display="inline">c_{0}\varphi ^{4}+c_{1}\varphi ^{3}+c_{2}\varphi ^{2}+c_{3}\varphi{+}c_{4}</math>. By applying the Routh-Hortwitz criterian [31] we find that <math display="inline">c_{4},c_{3},c_{2},c_{1},c_{0}>0</math>, <math display="inline">c_{2}c_{3}-c_{1}c_{4}>0</math> and <math display="inline">c_{1}c_{2}c_{3}-c_{1}^{2}c_{4}-c_{0}c_{3}^{2}>0</math>. Therefore every the polynomial roots <math display="inline">C_{J_{\mathcal{E}^{*}}}</math> have a negative real part when <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math> [32,33]. This implies that <math display="inline">\mathcal{E}^{*}=\left(S_{1}^{*},P_{1}^{*},E_{1}^{*},I_{1}^{*},R_{1}^{*}\right)</math> is locally asymptotically stable when <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math> [30].
240
241
===3.2 The global asymptotic equilibrium stability===
242
243
'''Theorem 3.2.1'''. The disease-free equilibrium of the plant disease model is globally asymptotically stable in the suitable range if <math display="inline">\mathrm{\mathcal{R}}_{0}<1</math> and unstable if <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math> .
244
245
'''Proof'''. We are applying the Lyapunov function [33], which is defined by
246
247
{| class="formulaSCP" style="width: 100%; text-align: left;" 
248
|-
249
| 
250
{| style="text-align: left; margin:auto;width: 100%;" 
251
|-
252
| style="text-align: center;" | <math>\mathcal{L}  =  \frac{1}{\ell _{1}}S_{1}+\frac{1}{\ell _{2}}P_{1}+\frac{1}{\ell _{3}}E_{1}+\frac{1}{\ell _{4}}I_{1}+\frac{1}{\ell _{5}}R_{1}, </math>
253
|}
254
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
255
|}
256
257
where
258
259
{| class="formulaSCP" style="width: 100%; text-align: left;" 
260
|-
261
| 
262
{| style="text-align: left; margin:auto;width: 100%;" 
263
|-
264
| style="text-align: center;" | <math>\ell _{1}=\alpha{+\gamma},\quad \ell _{2}=\gamma{-\beta},\quad \ell _{3}=\gamma{+}a_{2}+b_{1},\quad \ell _{4}=\gamma{+}a_{3}+b_{2}+\eta ,\quad \ell _{5}=\gamma{+}b_{3}. </math>
265
|}
266
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
267
|}
268
269
englishConsequently, its derivative along the plant disease model's solutions
270
271
{| class="formulaSCP" style="width: 100%; text-align: left;" 
272
|-
273
| 
274
{| style="text-align: left; margin:auto;width: 100%;" 
275
|-
276
| style="text-align: center;" | <math>^{ABC}D_{*}^{\upsilon }\mathcal{L}  =  \frac{1}{\ell _{1}}{}^{ABC}D_{*}^{\upsilon }S_{1}+\frac{1}{\ell _{2}}{}^{ABC}D_{*}^{\upsilon }P_{1}+\frac{1}{\ell _{3}}{}^{ABC}D_{*}^{\upsilon }E_{1}</math> <math>+\frac{1}{\ell _{4}}{}^{ABC}D_{*}^{\upsilon }I_{1}+\frac{1}{\ell _{5}}{}^{ABC}D_{*}^{\upsilon }R_{1}. </math>
277
|}
278
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
279
|}
280
281
{| class="formulaSCP" style="width: 100%; text-align: left;" 
282
|-
283
| 
284
{| style="text-align: left; margin:auto;width: 100%;" 
285
|-
286
| style="text-align: center;" | <math>\begin{align} ^{ABC}D_{*}^{\upsilon }\mathcal{L}  & =  \frac{1}{\ell _{1}}\left[r(M-N)-\frac{a_{1}}{M}S_{1}I_{1}+\beta P_{1}-\left(\alpha{+\gamma}\right)S_{1}\right]\\
287
& \quad +\frac{1}{\ell _{2}}\left[\alpha S_{1}-\left(\gamma{-\beta}\right)P_{1}\right]\\
288
& \quad +\frac{1}{\ell_{3}}\left[\frac{a_{1}}{M}S_{1}I_{1}-\left(\gamma{+}a_{2}+b_{1}\right)E_{1}\right]\\
289
& \quad +\frac{1}{\ell _{4}}\left[a_{2}E_{1}-\left(\gamma{+}a_{3}+b_{2}+\eta \right)I_{1}\right]\\
290
& \quad +\frac{1}{\ell _{5}}\left[a_{3}I_{1}-\left(\gamma{+}b_{3}\right)R_{1}\right], \end{align}</math>
291
|}
292
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
293
|}
294
295
{| class="formulaSCP" style="width: 100%; text-align: left;" 
296
|-
297
| 
298
{| style="text-align: left; margin:auto;width: 100%;" 
299
|-
300
| style="text-align: center;" | <math>\begin{align} ^{ABC}D_{*}^{\upsilon }\mathcal{L}  &  = \,  \frac{1}{\ell _{1}}\left[r(M-N)-\frac{a_{1}}{M}S_{1}I_{1}+\beta P_{1}-\ell _{1}S_{1}\right]+\frac{1}{\ell _{2}}\left[\alpha S_{1}-\ell _{2}P_{1}\right]+\frac{1}{\ell _{3}}\left[\frac{a_{1}}{M}S_{1}I_{1}-\ell _{3}E_{1}\right]\\
301
& \quad +  \frac{1}{\ell _{4}}\left[a_{2}E_{1}-\ell _{4}I_{1}\right]+\frac{1}{\ell _{5}}\left[a_{3}I_{1}-\ell _{5}R_{1}\right]\\
302
 & = \,  \left\{\frac{1}{\ell _{1}}\left(r(M-N)-\frac{a_{1}}{M}S_{1}I_{1}+\beta P_{1}\right)+\frac{\alpha }{\ell _{2}}S_{1}+\frac{1}{\ell _{3}}\frac{a_{1}}{M}S_{1}I_{1}+\frac{a_{2}}{\ell _{4}}E_{1}+\frac{a_{3}}{\ell _{5}}I_{1}\right\}\\
303
&\quad -   \left(S_{1}+P_{1}+E_{1}+I_{1}+R_{1}\right)\\
304
  & =\,  \Bigg[\left\{\frac{1}{\ell _{1}}\left(r(M-N)-\frac{a_{1}}{M}S_{1}I_{1}+\beta P_{1}\right)+\frac{\alpha }{\ell _{2}}S_{1}+\frac{1}{\ell _{3}}\frac{a_{1}}{M}S_{1}I_{1}+\frac{a_{2}}{\ell _{4}}E_{1}+\frac{a_{3}}{\ell _{5}}I_{1}\right\} \\
305
  & \quad\frac{1}{\left(S_{1}+P_{1}+E_{1}+I_{1}+R_{1}\right)}-1\Bigg]\left(S_{1}+P_{1}+E_{1}+I_{1}+R_{1}\right). \end{align}</math>
306
|}
307
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
308
|}
309
310
Now we divide by S to get
311
312
{| class="formulaSCP" style="width: 100%; text-align: left;" 
313
|-
314
| 
315
{| style="text-align: left; margin:auto;width: 100%;" 
316
|-
317
| style="text-align: center;" | <math>^{ABC}D_{*}^{\upsilon }\mathcal{L}  =  \Bigg[\left\{\frac{1}{\ell _{1}}\left(\frac{r(M-N)}{S_{1}}-\frac{a_{1}}{M}I_{1}+\beta \frac{P_{1}}{S_{1}}\right)+\frac{\alpha }{\ell _{2}}+\frac{1}{\ell _{3}}\frac{a_{1}}{M}I_{1}+\frac{a_{2}}{\ell _{4}}\frac{E_{1}}{S_{1}}+\frac{a_{3}}{\ell _{5}}\frac{I_{1}}{S_{1}}\right\}</math>
318
|-
319
| style="text-align: center;" |<math>\frac{1}{\left(S_{1}+P_{1}+E_{1}+I_{1}+R_{1}\right)}-1\Bigg]\left(S_{1}+P_{1}+E_{1}+I_{1}+R_{1}\right). </math>
320
|}
321
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
322
|}
323
324
Since <math>S</math> is major than <math>P,\, E,\, I</math> and <math>R</math> categories, so
325
326
{| class="formulaSCP" style="width: 100%; text-align: left;" 
327
|-
328
| 
329
{| style="text-align: left; margin:auto;width: 100%;" 
330
|-
331
| style="text-align: center;" | <math>\begin{align}^{ABC}D_{*}^{\upsilon }\mathcal{L}  & \leq  \left[\frac{ra_{1}a_{2}(\beta{+\gamma})}{\left(a_{2}+b_{1}+\gamma \right)\left(\gamma{+}a_{3}+b_{2}+\eta \right)(\gamma{+}r)\left(\alpha{+\beta}+\gamma \right)}-1\right]\left(S_{1}+P_{1}+E_{1}+I_{1}+R_{1}\right)\\
332
&\leq  \left[\mathrm{\mathcal{R}}_{0}-1\right]\left(S_{1}+P_{1}+E_{1}+I_{1}+R_{1}\right)\leq{0.} \end{align}</math>
333
|}
334
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
335
|}
336
337
Since <math display="inline">S_{1}+P_{1}+E_{1}+I_{1}+R_{1}>0,\forall t</math>. According to the proposed model, plant disease model would therefore be eliminated if and only if <math display="inline">\mathrm{\mathcal{R}}_{0}<1</math>. In general, because all parameters are positive in the plant disease model, Lyapunov function <math display="inline">\left(^{ABC}D_{*}^{\upsilon }\mathcal{L}\right)</math> therefore decreases if <math display="inline">\mathrm{\mathcal{R}}_{0}<1</math> and increases if <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math>, eventually <math display="inline">\mathcal{L}=0</math> if <math display="inline">S_{1}=P_{1}=E_{1}=I_{1}=R_{1}=0</math>. <math display="inline">\mathcal{L}</math> is therefore the function of Lyapunov within the practicable biological interval and the greater compact invariant set in <math display="inline">\left\{S_{1},P_{1},E_{1},I_{1},R_{1}\in \Theta :{}^{ABC}D_{*}^{\upsilon }\mathcal{L}\leq{0}\right\}</math> is the point <math display="inline">\mathcal{E_{1}}_{0}</math>. Every solution of the plant disease model proposed in this study with an initial term in <math display="inline">\Theta </math> tends to <math display="inline">\mathcal{E_{1}}_{0}</math> when <math display="inline">t\rightarrow \infty </math> if and only if <math display="inline">\mathrm{\mathcal{R}}_{0}\leq{1}</math> through the well-known Lasalles invariance principle [38]. In conclusion, the plant disease model's disease-free equilibrium <math display="inline">\mathcal{E_{1}}_{0}</math> presented here is globally asymptotically stable.
338
339
'''Theorem 3.2.2'''. The endemic equilibrium point <math display="inline">\mathcal{E_{1}}^{*}</math> of the plant disease system is globally asymptotically stable if <math>\mathrm{\mathcal{R}}_{0}\leq{1}</math>.
340
341
'''Proof'''. We use the Lyapunov function [38] to prove this
342
343
{| class="formulaSCP" style="width: 100%; text-align: left;" 
344
|-
345
| 
346
{| style="text-align: left; margin:auto;width: 100%;" 
347
|-
348
| style="text-align: center;" | <math>\begin{align}\mathcal{L}\left(S_{1}^{*},P_{1}^{*},E_{1}^{*},I_{1}^{*},R_{1}^{*}\right)  &= \,   \left(S_{1}-S_{1}^{*}-S_{1}^{*}\log \frac{S_{1}^{*}}{S_{1}}\right)+\left(P_{1}-P_{1}^{*}-P_{1}^{*}\log \frac{P_{1}^{*}}{P_{1}}\right)+\left(E_{1}-E_{1}^{*}-E_{1}^{*}\log \frac{E_{1}^{*}}{E_{1}}\right)\\
349
&\quad +  \left(I_{1}-I_{1}^{*}-I_{1}^{*}\log \frac{I_{1}^{*}}{I_{1}}\right)+\left(R_{1}-R_{1}^{*}-R_{1}^{*}\log \frac{R_{1}^{*}}{R_{1}}\right). \end{align}</math>
350
|}
351
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
352
|}
353
354
Consequently, applying the derivative to both sides gives
355
356
{| class="formulaSCP" style="width: 100%; text-align: left;" 
357
|-
358
| 
359
{| style="text-align: left; margin:auto;width: 100%;" 
360
|-
361
| style="text-align: center;" | <math>\begin{align} ^{ABC}D_{*}^{\upsilon }\mathcal{L} & =  \left(\frac{S_{1}-S_{1}^{*}}{S_{1}}\right){}^{ABC}D_{*}^{\upsilon }S_{1}+\left(\frac{P_{1}-P_{1}^{*}}{P_{1}}\right){}^{ABC}D_{*}^{\upsilon }P_{1}+\left(\frac{E_{1}-E_{1}^{*}}{E_{1}}\right){}^{ABC}D_{*}^{\upsilon }E_{1}\\
362
  &\quad +  \left(\frac{I_{1}-I_{1}^{*}}{I_{1}}\right){}^{ABC}D_{*}^{\upsilon }I_{1}+\left(\frac{R_{1}-R_{1}^{*}}{R_{1}}\right){}^{ABC}D_{*}^{\upsilon }R_{1}, \end{align}</math>
363
|}
364
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
365
|}
366
367
replacing <math display="inline">^{ABC}D_{*}^{\upsilon }S_{1}</math>, <math display="inline">^{ABC}D_{*}^{\upsilon }P_{1}</math>, <math display="inline">^{ABC}D_{*}^{\upsilon }E_{1}</math>, <math display="inline">^{ABC}D_{*}^{\upsilon }I_{1}</math> and <math display="inline">^{ABC}D_{*}^{\upsilon }R_{1}</math> by their values, we obtain
368
369
{| class="formulaSCP" style="width: 100%; text-align: left;" 
370
|-
371
| 
372
{| style="text-align: left; margin:auto;width: 100%;" 
373
|-
374
| style="text-align: center;" | <math>\begin{align} ^{ABC}D_{*}^{\upsilon }\mathcal{L} & =  \left(\frac{S_{1}-S_{1}^{*}}{S_{1}}\right)\left(r(M-N)-\frac{a_{1}}{M}S_{1}I_{1}+\beta P_{1}-\ell _{1}S_{1}\right)\\
375
&\quad +\left(\frac{P_{1}-P_{1}^{*}}{P_{1}}\right)\left(\alpha S_{1}-\ell _{2}P_{1}\right)  +\left(\frac{E_{1}-E_{1}^{*}}{E_{1}}\right)\left(\frac{a_{1}}{M}S_{1}I_{1}-\ell _{3}E_{1}\right)\\
376
&\quad +\left(\frac{I_{1}-I_{1}^{*}}{I_{1}}\right)\left(a_{2}E_{1}-\ell _{4}I_{1}\right)+\left(\frac{R_{1}-R_{1}^{*}}{R_{1}}\right)\left(a_{3}I_{1}-\ell _{5}R_{1}\right).\end{align} </math>
377
|}
378
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
379
|}
380
381
Then we have
382
383
{| class="formulaSCP" style="width: 100%; text-align: left;" 
384
|-
385
| 
386
{| style="text-align: left; margin:auto;width: 100%;" 
387
|-
388
| style="text-align: center;" | <math>\begin{align} ^{ABC}D_{*}^{\upsilon }\mathcal{L} & =  \left(\frac{S_{1}-S_{1}^{*}}{S_{1}}\right)\left[r(M-N)-\frac{a_{1}}{M}\left(S_{1}-S_{1}^{*}\right)\left(I_{1}-I_{1}^{*}\right)+\beta \left(P_{1}-P_{1}^{*}\right)-\ell _{1}\left(S_{1}-S_{1}^{*}\right)\right]\\
389
&\quad +\left(\frac{P_{1}-P_{1}^{*}}{P_{1}}\right)\left[\alpha \left(S_{1}-S_{1}^{*}\right)-\ell _{2}\left(P_{1}-P_{1}^{*}\right)\right]\\
390
&\quad   +\left(\frac{E_{1}-E_{1}^{*}}{E_{1}}\right)\left[\frac{a_{1}}{M}\left(S_{1}-S_{1}^{*}\right)\left(I_{1}-I_{1}^{*}\right)-\ell _{3}\left(E_{1}-E_{1}^{*}\right)\right]\\
391
&\quad +\left(\frac{I_{1}-I_{1}^{*}}{I_{1}}\right)\left[a_{2}\left(E_{1}-E_{1}^{*}\right)-\ell _{4}\left(I_{1}-I_{1}^{*}\right)\right]\\
392
&\quad +\left(\frac{R_{1}-R_{1}^{*}}{R_{1}}\right)\left[a_{3}\left(I_{1}-I_{1}^{*}\right)-\ell _{5}\left(R_{1}-R_{1}^{*}\right)\right].\qquad  \end{align} </math>
393
|}
394
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
395
|}
396
397
They can be separated in two part as follows
398
399
{| class="formulaSCP" style="width: 100%; text-align: left;" 
400
|-
401
| 
402
{| style="text-align: left; margin:auto;width: 100%;" 
403
|-
404
| style="text-align: center;" | <math>\begin{align}  ^{ABC}D_{*}^{\upsilon }\mathcal{L} &  =  r(M-N)\left(\frac{S_{1}-S_{1}^{*}}{S_{1}}\right)-\left(\frac{\left(S_{1}-S_{1}^{*}\right)^{2}}{S_{1}}\right)\left(\frac{a_{1}}{M}\left(I_{1}-I_{1}^{*}\right)+\ell _{1}\right)\\
405
&\quad +\beta \left(P_{1}-P_{1}^{*}\right)\left(\frac{S_{1}-S_{1}^{*}}{S_{1}}\right)+\alpha \left(S_{1}-S_{1}^{*}\right)\left(\frac{P_{1}-P_{1}^{*}}{P_{1}}\right)\\
406
&\quad -\ell _{2}\left(\frac{\left(P_{1}-P_{1}^{*}\right)^{2}}{P_{1}}\right)+\frac{a_{1}}{M}\left(S_{1}-S_{1}^{*}\right)\left(I_{1}-I_{1}^{*}\right)\left(\frac{E_{1}-E_{1}^{*}}{E_{1}}\right)\\
407
&\quad -\ell_{3}\left(\frac{\left(E_{1}-E_{1}^{*}\right)^{2}}{E_{1}}\right)+a_{2}\left(E_{1}-E_{1}^{*}\right) \left(\frac{I_{1}-I_{1}^{*}}{I_{1}}\right)\\
408
&\quad -\ell _{4}\left(\frac{\left(I_{1}-I_{1}^{*}\right)^{2}}{I_{1}}\right) + a_{3}\left(I_{1}-I_{1}^{*}\right)\left(\frac{R_{1}-R_{1}^{*}}{R_{1}}\right)\\
409
&\quad -\ell _{5}\left(\frac{\left(R_{1}-R_{1}^{*}\right)^{2}}{R_{1}}\right),\end{align} </math>
410
|}
411
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
412
|}
413
414
{| class="formulaSCP" style="width: 100%; text-align: left;" 
415
|-
416
| 
417
{| style="text-align: left; margin:auto;width: 100%;" 
418
|-
419
| style="text-align: center;" | <math>\begin{align} ^{ABC}D_{*}^{\upsilon }\mathcal{L}  & =  r(M-N)-r(M-N)\frac{S_{1}^{*}}{S_{1}}-\frac{a_{1}}{M}I_{1}\left(\frac{\left(S_{1}-S_{1}^{*}\right)^{2}}{S_{1}}\right)+\frac{a_{1}}{M}I_{1}^{*}\left(\frac{\left(S_{1}-S_{1}^{*}\right)^{2}}{S_{1}}\right)\\
420
&\quad -\ell _{1}\left(\frac{\left(S_{1}-S_{1}^{*}\right)^{2}}{S_{1}}\right)+\beta P_{1}-\beta P_{1}^{*}-\beta P_{1}\frac{S_{1}^{*}}{S_{1}}+\beta P_{1}^{*}\frac{S_{1}^{*}}{S_{1}} +\alpha S_{1}-\alpha S_{1}^{*}-\alpha S_{1}\frac{P_{1}^{*}}{P_{1}}\\
421
&\quad +\alpha S_{1}^{*}\frac{P_{1}^{*}}{P_{1}}-\ell _{2}\left(\frac{\left(P_{1}-P_{1}^{*}\right)^{2}}{P_{1}}\right)+\frac{a_{1}}{M}S_{1}I_{1}-\frac{a_{1}}{M}S_{1}I_{1}^{*}-\frac{a_{1}}{M}S_{1}I_{1}\frac{E_{1}^{*}}{E_{1}}\\
422
&\quad +\frac{a_{1}}{M}S_{1}I_{1}^{*}\frac{E_{1}^{*}}{E_{1}}-\frac{a_{1}}{M}S_{1}^{*}I_{1}+\frac{a_{1}}{M}S_{1}^{*}I_{1}^{*}+\frac{a_{1}}{M}S_{1}^{*}I_{1}\frac{E_{1}^{*}}{E_{1}}-\frac{a_{1}}{M}S_{1}^{*}I_{1}^{*}\frac{E_{1}^{*}}{E_{1}}\\
423
&\quad -\ell _{3}\left(\frac{\left(E_{1}-E_{1}^{*}\right)^{2}}{E_{1}}\right)+a_{2}E_{1}-a_{2}E_{1}^{*}-a_{2}E_{1}\frac{I_{1}^{*}}{I_{1}}+a_{2}E_{1}^{*}\frac{I_{1}^{*}}{I_{1}}-\ell _{4}\left(\frac{\left(I_{1}-I_{1}^{*}\right)^{2}}{I_{1}}\right)\\
424
&\quad +a_{3}I_{1}-a_{3}I_{1}^{*}-a_{3}I_{1}\frac{R_{1}^{*}}{R_{1}}+a_{3}I_{1}^{*}\frac{R_{1}^{*}}{R_{1}}-\ell _{5}\left(\frac{\left(R_{1}-R_{1}^{*}\right)^{2}}{R_{1}}\right).\end{align} </math>
425
|}
426
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
427
|}
428
429
This can be simplified as
430
431
{| class="formulaSCP" style="width: 100%; text-align: left;" 
432
|-
433
| 
434
{| style="text-align: left; margin:auto;width: 100%;" 
435
|-
436
| style="text-align: center;" | <math>^{ABC}D_{*}^{\upsilon }\mathcal{L}  =  \mathcal{L}_{1}-\mathcal{L}_{2}, </math>
437
|}
438
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
439
|}
440
441
where
442
443
{| class="formulaSCP" style="width: 100%; text-align: left;" 
444
|-
445
| 
446
{| style="text-align: left; margin:auto;width: 100%;" 
447
|-
448
| style="text-align: center;" | <math>\begin{align}\mathcal{L}_{1}  & =  r(M-N)+\frac{a_{1}}{M}I_{1}^{*}\left(\frac{\left(S_{1}-S_{1}^{*}\right)^{2}}{S_{1}}\right)+\beta P_{1}+\beta P_{1}^{*}\frac{S_{1}^{*}}{S_{1}}+\alpha S_{1}\\ 
449
&\quad +\alpha S_{1}^{*}\frac{P_{1}^{*}}{P_{1}}+\frac{a_{1}}{M}S_{1}I_{1}+\frac{a_{1}}{M}S_{1}I_{1}^{*}\frac{E_{1}^{*}}{E_{1}} +\frac{a_{1}}{M}S_{1}^{*}I_{1}^{*}\\
450
&\quad +\frac{a_{1}}{M}S_{1}^{*}I_{1}\frac{E_{1}^{*}}{E_{1}}+a_{2}E_{1}+a_{2}E_{1}^{*}\frac{I_{1}^{*}}{I_{1}}+a_{3}I_{1}+a_{3}I_{1}^{*}\frac{R_{1}^{*}}{R_{1}}, \end{align}</math>
451
|}
452
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
453
|}
454
455
and
456
457
{| class="formulaSCP" style="width: 100%; text-align: left;" 
458
|-
459
| 
460
{| style="text-align: left; margin:auto;width: 100%;" 
461
|-
462
| style="text-align: center;" | <math>\begin{align} \mathcal{L}_{2} &  =  r(M-N)\frac{S_{1}^{*}}{S_{1}}+\frac{a_{1}}{M}I_{1}\left(\frac{\left(S_{1}-S_{1}^{*}\right)^{2}}{S_{1}}\right)+\ell _{1}\left(\frac{\left(S_{1}-S_{1}^{*}\right)^{2}}{S_{1}}\right)+\beta P_{1}^{*}+\beta P_{1}\frac{S_{1}^{*}}{S_{1}}\\
463
&\quad +\alpha S_{1}^{*}+\alpha S_{1}\frac{P_{1}^{*}}{P_{1}}+\ell _{2}\left(\frac{\left(P_{1}-P_{1}^{*}\right)^{2}}{P_{1}}\right)+\frac{a_{1}}{M}S_{1}I_{1}^{*}+\frac{a_{1}}{M}S_{1}I_{1}\frac{E_{1}^{*}}{E_{1}}\\
464
&\quad +\frac{a_{1}}{M}S_{1}^{*}I_{1}+\frac{a_{1}}{M}S_{1}^{*}I_{1}^{*}\frac{E_{1}^{*}}{E_{1}}+\ell _{3}\left(\frac{\left(E_{1}-E_{1}^{*}\right)^{2}}{E_{1}}\right)+a_{2}E_{1}^{*}+a_{2}E_{1}\frac{I_{1}^{*}}{I_{1}}\\
465
&\quad +\ell _{4}\left(\frac{\left(I_{1}-I_{1}^{*}\right)^{2}}{I_{1}}\right)+a_{3}I_{1}^{*}+a_{3}I_{1}\frac{R_{1}^{*}}{R_{1}}+\ell _{5}\left(\frac{\left(R_{1}-R_{1}^{*}\right)^{2}}{R_{1}}\right),\end{align} </math>
466
|}
467
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
468
|}
469
470
this implies <math display="inline">^{ABC}D_{*}^{\upsilon }\mathcal{L}>0</math> if <math display="inline">\mathcal{L}_{1}>\mathcal{L}_{2}</math>, <math display="inline">^{ABC}D_{*}^{\upsilon }\mathcal{L}<0</math> if <math display="inline">\mathcal{L}_{2}>\mathcal{L}_{1}</math> and <math display="inline">^{ABC}D_{*}^{\upsilon }\mathcal{L}=0</math> if <math display="inline">\mathcal{L}_{1}=\mathcal{L}_{2}</math>, this implies <math display="inline">S_{1}=S_{1}^{*}</math>, <math display="inline">P_{1}=P_{1}^{*}</math>, <math display="inline">E_{1}=E_{1}^{*}</math>, <math display="inline">I_{1}-I_{1}^{*}</math> and <math display="inline">R_{1}=R_{1}^{*}</math>.
471
472
We can now conclude that the largest compact invariant set for the plant diseases model in <math display="inline">\left\{S_{1}^{*},P_{1}^{*},E_{1}^{*},I_{1}^{*},R_{1}^{*}\in \Theta :{}^{ABC}D_{*}^{\upsilon }\mathcal{L}=0\right\}</math> is the point <math display="inline">\mathcal{E}^{*}</math> the endemic equilibrium of the plant diseases model.
473
474
===3.3 <span id='lb-3.3'></span>Sensibility analysis of reproduction number (\mathcalR₀ ) without control===
475
476
Since the parameters of the epizootic system are either predestined or equipped, this raises some doubt as to their values used to draw a conclusion about the underlying epidemic. Therefore, it's critical to identify the specific effects of each element on the dynamics of the pestilence and group the variables that have the most impact to limit or spread the outbreak. Within this section, a sensitivity analysis is conducted for the disease parameters identified with the suggested SPEIR model via the sensitivity indicator. Quantifying the most sensitive aspects of the basal reproductive number <math display="inline">\mathrm{\mathcal{R}}_{0}</math> can be done with the help of the Sensitivity Indicator strategy. The following equations give the standardized sensitivity indicator <math display="inline">\Psi _{*}^{\mathrm{\mathcal{R}}_{0}}</math> of <math display="inline">\mathrm{\mathcal{R}}_{0}</math> for all the parameters <math display="inline">\left(r,a_{1},a_{2},a_{3},b_{1},b_{2},\alpha ,\beta ,\gamma ,\eta \right)</math> used within the SPEIR model in Table [[#table-1|1]] where <math display="inline">\Psi _{*}^{\mathrm{\mathcal{R}}_{0}}=\frac{\partial \mathrm{\mathcal{R}}_{0}}{\partial }\times \frac{*}{\left|\mathrm{\mathcal{R}}_{0}\right|}</math>
477
478
{| class="formulaSCP" style="width: 100%; text-align: left;" 
479
|-
480
| 
481
{| style="text-align: left; margin:auto;width: 100%;" 
482
|-
483
| style="text-align: center;" | <math> \Psi _{r}^{\mathrm{\mathcal{R}}_{0}}=\frac{a_{1}a_{2}\gamma (\beta{+\gamma})}{A_{1}A_{2}(\gamma{+}r)^{2}(\alpha{+\beta}+\gamma )}=0.266667>0, </math>
484
|}
485
|}
486
487
{| class="formulaSCP" style="width: 100%; text-align: left;" 
488
|-
489
| 
490
{| style="text-align: left; margin:auto;width: 100%;" 
491
|-
492
| style="text-align: center;" | <math> \Psi _{a_{1}}^{\mathrm{\mathcal{R}}_{0}}=\frac{a_{2}r(\beta{+\gamma})}{A_{1}A_{2}(\gamma{+}r)(\alpha{+\beta}+\gamma )}=1>0, </math>
493
|}
494
|}
495
496
{| class="formulaSCP" style="width: 100%; text-align: left;" 
497
|-
498
| 
499
{| style="text-align: left; margin:auto;width: 100%;" 
500
|-
501
| style="text-align: center;" | <math> \Psi _{a_{2}}^{\mathrm{\mathcal{R}}_{0}}=\frac{a_{1}r(\beta{+\gamma})\left(b_{1}+\gamma \right)}{A_{1}^{2}A_{2}(\gamma{+}r)(\alpha{+\beta}+\gamma )}=0.0229885>0, </math>
502
|}
503
|}
504
505
{| class="formulaSCP" style="width: 100%; text-align: left;" 
506
|-
507
| 
508
{| style="text-align: left; margin:auto;width: 100%;" 
509
|-
510
| style="text-align: center;" | <math> \Psi _{a_{3}}^{\mathrm{\mathcal{R}}_{0}}=-\frac{a_{1}a_{2}r(\beta{+\gamma})}{A_{1}A_{2}^{2}(\gamma{+}r)(\alpha{+\beta}+\gamma )}=-0.300752<0, </math>
511
|}
512
|}
513
514
{| class="formulaSCP" style="width: 100%; text-align: left;" 
515
|-
516
| 
517
{| style="text-align: left; margin:auto;width: 100%;" 
518
|-
519
| style="text-align: center;" | <math> \Psi _{b_{1}}^{\mathrm{\mathcal{R}}_{0}}=-\frac{a_{1}a_{2}r(\beta{+\gamma})}{A_{1}^{2}A_{2}(\gamma{+}r)(\alpha{+\beta}+\gamma )}=0, </math>
520
|}
521
|}
522
523
{| class="formulaSCP" style="width: 100%; text-align: left;" 
524
|-
525
| 
526
{| style="text-align: left; margin:auto;width: 100%;" 
527
|-
528
| style="text-align: center;" | <math> \Psi _{b_{2}}^{\mathrm{\mathcal{R}}_{0}}=-\frac{a_{1}a_{2}r(\beta{+\gamma})}{A_{1}A_{2}^{2}(\gamma{+}r)(\alpha{+\beta}+\gamma )}=0, </math>
529
|}
530
|}
531
532
<span id="eq-28"></span>
533
{| class="formulaSCP" style="width: 100%; text-align: left;" 
534
|-
535
| 
536
{| style="text-align: left; margin:auto;width: 100%;" 
537
|-
538
| style="text-align: center;" | <math>\Psi _{\alpha }^{\mathrm{\mathcal{R}}_{0}}=-\frac{a_{1}a_{2}r(\beta{+\gamma})}{A_{1}A_{2}(\gamma{+}r)(\alpha{+\beta}+\gamma )^{2}}=-0.0909091<0, </math>
539
|}
540
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
541
|}
542
543
{| class="formulaSCP" style="width: 100%; text-align: left;" 
544
|-
545
| 
546
{| style="text-align: left; margin:auto;width: 100%;" 
547
|-
548
| style="text-align: center;" | <math> \Psi _{\beta }^{\mathrm{\mathcal{R}}_{0}}=\frac{\alpha a_{1}a_{2}r}{A_{1}A_{2}(\gamma{+}r)(\alpha{+\beta}+\gamma )^{2}}=0.0839161>0, </math>
549
|}
550
|}
551
552
{| class="formulaSCP" style="width: 100%; text-align: left;" 
553
|-
554
| 
555
{| style="text-align: left; margin:auto;width: 100%;" 
556
|-
557
| style="text-align: center;" | <math> \Psi _{\eta }^{\mathrm{\mathcal{R}}_{0}}=-\frac{a_{1}a_{2}r(\beta{+\gamma})}{A_{1}A_{2}^{2}(\gamma{+}r)(\alpha{+\beta}+\gamma )}=-0.669173<0, </math>
558
|}
559
|}
560
561
{| class="formulaSCP" style="width: 100%; text-align: left;" 
562
|-
563
| 
564
{| style="text-align: left; margin:auto;width: 100%;" 
565
|-
566
| style="text-align: center;" | <math> \Psi _{\gamma }^{\mathrm{\mathcal{R}}_{0}}=\frac{a_{1}a_{2}r\left(-\alpha \beta{-}(\beta{+\gamma})^{2}+\alpha r\right)}{A_{1}A_{2}(\gamma{+}r)^{2}(\alpha{+\beta}+\gamma )^{2}}-\frac{a_{1}a_{2}r(\beta{+\gamma})}{A_{1}^{2}A_{2}(\gamma{+}r)(\alpha{+\beta}+\gamma )}-\frac{a_{1}a_{2}r(\beta{+\gamma})}{A_{1}A_{2}^{2}(\gamma{+}r)(\alpha{+\beta}+\gamma )}=-0.312737<0, </math>
567
|}
568
|}
569
570
As shown in the previous calculations, some component of the sensitivity indicator are positive, like <math>r</math>, <math>a_{1}</math>, <math>a_{2}</math> and <math>\beta </math>, while others, like <math>a_{3}</math>, <math>\alpha </math>, <math>\gamma </math> and <math>\eta </math> are negative. Furthermore, the most important feature of these indicators is the functionality of the SPEIR model parameters. This means that getting a small amendment in one of the parameters will amendment the epidemic dynamics. The value <math>\Psi _{a_{3}}^{\mathrm{\mathcal{R}}_{0}}=-0.300752</math> displays that decreasing (increasing) <math>a_{3}</math> for example by 70% increases (decreases) the basic reproductive number <math>\mathrm{\mathcal{R}}_{0}</math> by about 70% A small change in a parameter can head to comparatively enormous quantitative changes, requiring these sensitive parameters to be understood. It can be shown from previous calculations that parameters <math>a_{1}</math> (disease progression diversion rate for Latent Compartmentenglish) and <math>\eta </math> (rate of roguingenglish), respectively, are the maximum and minimum sensitivity epidemical parameters <math>\mathrm{\mathcal{R}}_{0}</math>.
571
572
==4 Achieve existence and uniqueness==
573
574
In this section, we will prove that model 4 has a unique solution, that the kernel satisfies Lipschitz's condition and that the functions in this model is bounded.
575
576
Now, we will analyze the fractional model ([[#eq-1|1]]). Usage of an integral fractional operator on Eq. ([[#eq-1|1]]), we are gaining
577
578
<span id="eq-29"></span>
579
{| class="formulaSCP" style="width: 100%; text-align: left;" 
580
|-
581
| 
582
{| style="text-align: left; margin:auto;width: 100%;" 
583
|-
584
| style="text-align: center;" | <math>S_{1}\left(t\right)-S_{1}\left(0\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\varrho _{1}\left(t,S_{1}\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\varrho _{1}\left(\theta ,S_{1}\right)d\theta ,</math>
585
|-
586
| style="text-align: center;" | <math> P_{1}\left(t\right)-P_{1}\left(0\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\varrho _{2}\left(t,P_{1}\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\varrho _{2}\left(\theta ,P_{1}\right)d\theta ,</math>
587
|-
588
| style="text-align: center;" | <math> E_{1}\left(t\right)-E_{1}\left(0\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\varrho _{3}\left(t,E_{1}\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\varrho _{3}\left(\theta ,E_{1}\right)d\theta ,</math>
589
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
590
|-
591
| style="text-align: center;" | <math> I_{1}\left(t\right)-I_{1}\left(0\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\varrho _{4}\left(t,I_{1}\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\varrho _{4}\left(\theta ,I_{1}\right)d\theta ,</math>
592
|-
593
| style="text-align: center;" | <math> R_{1}\left(t\right)-R_{1}\left(0\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\varrho _{5}\left(t,R_{1}\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\varrho _{5}\left(\theta ,R_{1}\right)d\theta , </math>
594
|}
595
|}
596
597
where
598
599
{| class="formulaSCP" style="width: 100%; text-align: left;" 
600
|-
601
| 
602
{| style="text-align: left; margin:auto;width: 100%;" 
603
|-
604
| style="text-align: center;" | <math>\begin{cases}\varrho _{1}\left(t,S_{1}\right)=r(M-N)-\gamma S_{1}\left(t\right)-\frac{a_{1}}{M}S_{1}\left(t\right)I_{1}\left(t\right)-\alpha S_{1}\left(t\right)+\beta P_{1}\left(t\right),\\ \varrho _{2}\left(t,P_{1}\right)=\alpha S_{1}\left(t\right)+\beta P_{1}\left(t\right)-\gamma P_{1}\left(t\right),\\ \varrho _{3}\left(t,E_{1}\right)=\frac{a_{1}}{M}S_{1}\left(t\right)I_{1}\left(t\right)-\left(\gamma{+}a_{2}+b_{1}\right)E_{1}\left(t\right),\\ \varrho _{4}\left(t,I_{1}\right)=a_{2}E_{1}\left(t\right)-\left(\gamma{+}a_{3}+b_{2}+\eta \right)I_{1}\left(t\right),\\ \varrho _{5}\left(t,R_{1}\right)=a_{3}I_{1}\left(t\right)-\left(\gamma{+}b_{3}\right)R_{1}\left(t\right). \end{cases} </math>
605
|}
606
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
607
|}
608
609
When <math>S_{1}\left(t\right)</math> has an upper limit, the Lipschitz condition for the <math>\varrho _{1}\left(t,S_{1}\right)</math> will be fulfilled. So, if <math>S_{1}\left(t\right)</math> has an upper limit, we find that
610
611
{| class="formulaSCP" style="width: 100%; text-align: left;" 
612
|-
613
| 
614
{| style="text-align: left; margin:auto;width: 100%;" 
615
|-
616
| style="text-align: center;" | <math>\begin{array}{l} \left\Vert \varrho _{1}\left(t,S_{1}\right)-\varrho _{1}\left(t,\tilde{S_{1}}\right)\right\Vert  & = & \left\Vert -\gamma \left(S_{1}-\tilde{S_{1}}\right)-\frac{a_{1}I_{1}}{M}\left(S_{1}-\tilde{S_{1}}\right)-\alpha \left(S_{1}-\tilde{S_{1}}\right)\right\Vert \\  & \leq & \gamma \left\Vert S_{1}-\tilde{S_{1}}\right\Vert +\frac{a_{1}\phi }{M}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert +\alpha \left\Vert S_{1}-\tilde{S_{1}}\right\Vert \\  & \leq & \left\{\gamma +\frac{a_{1}\phi }{M}+\alpha \right\}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert , \end{array}</math>
617
|}
618
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
619
|}
620
621
that is <math>\left\Vert S_{1}\right\Vert \le c_{1}</math> and <math>\left\Vert \tilde{S_{1}}\right\Vert \le c_{2}</math>, where <math>S_{1}</math> and <math>\tilde{S_{1}}</math> are bounded functions and <math>\phi =max\left\Vert I_{1}\right\Vert </math>. We have that,
622
623
{| class="formulaSCP" style="width: 100%; text-align: left;" 
624
|-
625
| 
626
{| style="text-align: left; margin:auto;width: 100%;" 
627
|-
628
| style="text-align: center;" | <math> \left\Vert \varrho _{1}\left(t,S_{1}\right)-\varrho _{1}\left(t,\tilde{S_{1}}\right)\right\Vert   \leq  X_{S_{1}}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert , </math>
629
|}
630
|}
631
632
similarly, we obtain the other kernels as following
633
634
{| class="formulaSCP" style="width: 100%; text-align: left;" 
635
|-
636
| 
637
{| style="text-align: left; margin:auto;width: 100%;" 
638
|-
639
| style="text-align: center;" | <math>\left\Vert \varrho _{2}\left(t,P_{1}\right)-\varrho _{2}\left(t,\tilde{P_{1}}\right)\right\Vert   \leq  X_{P_{1}}\left\Vert P_{1}-\tilde{P_{1}}\right\Vert ,</math>
640
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
641
|-
642
| style="text-align: center;" | <math> \left\Vert \varrho _{3}\left(t,E_{1}\right)-\varrho _{3}\left(t,\tilde{E_{1}}\right)\right\Vert   \leq  X_{E_{1}}\left\Vert E_{1}-\tilde{E_{1}}\right\Vert ,</math>
643
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
644
|-
645
| style="text-align: center;" | <math> \left\Vert \varrho _{4}\left(t,I_{1}\right)-\varrho _{4}\left(t,\tilde{I_{1}}\right)\right\Vert   \leq  X_{I_{1}}\left\Vert I_{1}-\tilde{I_{1}}\right\Vert ,</math>
646
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
647
|-
648
| style="text-align: center;" | <math> \left\Vert \varrho _{5}\left(t,R_{1}\right)-\varrho _{5}\left(t,\tilde{R_{1}}\right)\right\Vert   \leq  X_{R_{1}}\left\Vert R_{1}-\tilde{R_{1}}\right\Vert , </math>
649
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
650
|}
651
|}
652
653
where
654
655
{| class="formulaSCP" style="width: 100%; text-align: left;" 
656
|-
657
| 
658
{| style="text-align: left; margin:auto;width: 100%;" 
659
|-
660
| style="text-align: center;" | <math>X_{S_{1}}=\gamma +\frac{a_{1}\phi }{M}+\alpha ,\quad X_{P_{1}}=\beta{+\gamma},\quad X_{E_{1}}=\gamma{+}a_{2}+b_{1},\quad X_{I_{1}}=\gamma{+}a_{3}+b_{2}+\eta ,\quad X_{R_{1}}=\gamma{+}b_{3}, </math>
661
|}
662
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
663
|}
664
665
and <math>\left\Vert P_{1}\right\Vert \le c_{3}</math>, <math>\left\Vert \tilde{P_{1}}\right\Vert \le c_{4}</math>, <math>\left\Vert E_{1}\right\Vert \le c_{5}</math>, <math>\left\Vert \tilde{E_{1}}\right\Vert \le c_{6}</math>, <math>\left\Vert I_{1}\right\Vert \le c_{7}</math>, <math>\left\Vert \tilde{I_{1}}\right\Vert \le c_{8}</math>, <math>\left\Vert R_{1}\right\Vert \le c_{9}</math>, <math>\left\Vert \tilde{R_{1}}\right\Vert \le c_{10}</math>. Hence, for the kernels <math>\varrho _{1}\left(t,S_{1}\right)</math>, <math>\varrho _{2}\left(t,P_{1}\right)</math>, <math>\varrho _{3}\left(t,E_{1}\right)</math>, <math>\varrho _{4}\left(t,I_{1}\right)</math> and <math>\varrho _{5}\left(t,R_{1}\right)</math>, the Lipschitz condition is justified.
666
667
'''Theorem4.1''' Presume that <math display="inline">S_{1}\left(t\right)</math> is obliged, then the operator <math display="inline">\xi \left\{S_{1}\left(t\right)\right\}</math> is supplied by
668
669
{| class="formulaSCP" style="width: 100%; text-align: left;" 
670
|-
671
| 
672
{| style="text-align: left; margin:auto;width: 100%;" 
673
|-
674
| style="text-align: center;" | <math>\xi \left\{S_{1}\left(t\right)\right\}  =  S_{1}\left(0\right)+\frac{1-\upsilon }{\chi \left(\upsilon \right)}\varrho _{1}\left(t,S_{1}\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\varrho _{1}\left(\theta ,S_{1}\right)d\theta , </math>
675
|}
676
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
677
|}
678
679
satisfies the Lipschitz condition.
680
681
'''Proof''' Assume that <math>S_{1}\left(t\right)</math> and <math>\tilde{S_{1}}\left(t\right)</math> are bounded functions with <math display="inline">S_{1}\left(0\right)=\tilde{S_{1}}\left(0\right)</math>, then we have
682
683
{| class="formulaSCP" style="width: 100%; text-align: left;" 
684
|-
685
| 
686
{| style="text-align: left; margin:auto;width: 100%;" 
687
|-
688
| style="text-align: center;" | <math>\left\Vert \xi \left\{S_{1}\left(t\right)\right\}-\xi \left\{\tilde{S_{1}}\left(t\right)\right\}\right\Vert   =  \left\Vert \frac{1-\upsilon }{\chi \left(\upsilon \right)}\left(\varrho _{1}\left(t,S_{1}\right)-\varrho _{1}\left(t,\tilde{S_{1}}\right)\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\left(\varrho _{1}\left(\theta ,S_{1}\right)-\varrho _{1}\left(\theta ,\tilde{S_{1}}\right)\right)d\theta \right\Vert </math>
689
|-
690
| style="text-align: center;" | <math>   \leq  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\left\Vert \varrho _{1}\left(t,S_{1}\right)-\varrho _{1}\left(t,\tilde{S_{1}}\right)\right\Vert +\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\left\Vert \varrho _{1}\left(\theta ,S_{1}\right)-\varrho _{1}\left(\theta ,\tilde{S_{1}}\right)\right\Vert d\theta </math>
691
|-
692
| style="text-align: center;" | <math>   \leq  \left(\frac{1-\upsilon }{\chi \left(\upsilon \right)}X_{S_{1}}-\frac{X_{S_{1}}t^{\upsilon }}{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right)\left\Vert S_{1}-\tilde{S_{1}}\right\Vert . </math>
693
|}
694
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
695
|}
696
697
This completes the proof. The same process can be applied to <math display="inline">P_{1}\left(t\right)</math>, <math display="inline">E_{1}\left(t\right)</math>, <math display="inline">I_{1}\left(t\right)</math> and <math display="inline">R_{1}\left(t\right)</math>.
698
699
'''Theorem4.2''' If <math display="inline">S_{1}\left(t\right)</math> is a bounded, then the operator
700
701
{| class="formulaSCP" style="width: 100%; text-align: left;" 
702
|-
703
| 
704
{| style="text-align: left; margin:auto;width: 100%;" 
705
|-
706
| style="text-align: center;" | <math>\xi _{1}\left\{S_{1}\left(t\right)\right\}=r(M-N)-\gamma S_{1}\left(t\right)-\frac{a_{1}}{M}S_{1}\left(t\right)I_{1}\left(t\right)-\alpha S_{1}\left(t\right)+\beta P_{1}\left(t\right), </math>
707
|}
708
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
709
|}
710
711
satisfies
712
713
'''(i)''' &nbsp;
714
715
{| class="formulaSCP" style="width: 100%; text-align: left;" 
716
|-
717
| 
718
{| style="text-align: left; margin:auto;width: 100%;" 
719
|-
720
| style="text-align: center;" | <math>\left|\left\langle \xi _{1}\left(S_{1}\right)-\xi _{1}\left(\tilde{S_{1}}\right),S_{1}-\tilde{S_{1}}\right\rangle \right| \leq  X_{S_{1}}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert ^{2}, </math>
721
|}
722
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
723
|}
724
725
where <math display="inline">\langle{.},.\rangle </math> is the inner product space bounded in <math display="inline">\mathcal{L}^{2}</math>.
726
727
'''(ii)''' 
728
729
{| class="formulaSCP" style="width: 100%; text-align: left;" 
730
|-
731
| 
732
{| style="text-align: left; margin:auto;width: 100%;" 
733
|-
734
| style="text-align: center;" | <math> \left|\left\langle \xi _{1}\left(S_{1}\right)-\xi _{1}\left(\tilde{S_{1}}\right),D\right\rangle \right| \leq  X_{S_{1}}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert \left\Vert D\right\Vert ,0<\left\Vert D\right\Vert <\infty{.} </math>
735
|}
736
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
737
|}
738
739
'''Proof<math>\;</math>(i)''' Suppose that <math>S_{1}\left(t\right)</math> is bounded function, then
740
741
{| class="formulaSCP" style="width: 100%; text-align: left;" 
742
|-
743
| 
744
{| style="text-align: left; margin:auto;width: 100%;" 
745
|-
746
| style="text-align: center;" | <math>\begin{array}{l} \left|\left\langle \xi _{1}\left(S_{1}\right)-\xi _{1}\left(\tilde{S_{1}}\right),S_{1}-\tilde{S_{1}}\right\rangle \right|& = & \left|\left\langle -\gamma \left(S_{1}-\tilde{S_{1}}\right)-\frac{a_{1}I_{1}}{M}\left(S_{1}-\tilde{S_{1}}\right)-\alpha \left(S_{1}-\tilde{S_{1}}\right),S_{1}-\tilde{S_{1}}\right\rangle \right|\\  & \leq & \left|\left\langle \gamma \left(S_{1}-\tilde{S_{1}}\right),S_{1}-\tilde{S_{1}}\right\rangle \right|+\left|\left\langle \frac{a_{1}I_{1}}{M}\left(S_{1}-\tilde{S_{1}}\right),S_{1}-\tilde{S_{1}}\right\rangle \right|+\left|\left\langle \alpha \left(S_{1}-\tilde{S_{1}}\right),S_{1}-\tilde{S_{1}}\right\rangle \right|\\  & \leq & \gamma \left\Vert S_{1}-\tilde{S_{1}}\right\Vert \left\Vert S_{1}-\tilde{S_{1}}\right\Vert +\frac{a_{1}\phi }{M}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert \left\Vert S_{1}-\tilde{S_{1}}\right\Vert +\alpha \left\Vert S_{1}-\tilde{S_{1}}\right\Vert \left\Vert S_{1}-\tilde{S_{1}}\right\Vert \\  & \leq & \left\{\gamma +\frac{a_{1}\phi }{M}+\alpha \right\}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert ^{2}\\  & \leq & X_{S_{1}}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert ^{2}. \end{array}</math>
747
|}
748
|}
749
750
'''Proof<math>\;</math>(ii)''' Suppose that <math display="inline">0<\left\Vert D\right\Vert <\infty </math>, since <math>S_{1}\left(t\right)</math> is bounded function, so
751
752
{| class="formulaSCP" style="width: 100%; text-align: left;" 
753
|-
754
| 
755
{| style="text-align: left; margin:auto;width: 100%;" 
756
|-
757
| style="text-align: center;" | <math>\begin{array}{l} \left|\left\langle \xi _{1}\left(S_{1}\right)-\xi _{1}\left(\tilde{S_{1}}\right),D\right\rangle \right|& = & \left|\left\langle -\gamma \left(S_{1}-\tilde{S_{1}}\right)-\frac{a_{1}I_{1}}{M}\left(S_{1}-\tilde{S_{1}}\right)-\alpha \left(S_{1}-\tilde{S_{1}}\right),D\right\rangle \right|\\  & \leq & \left|\left\langle \gamma \left(S_{1}-\tilde{S_{1}}\right),D\right\rangle \right|+\left|\left\langle \frac{a_{1}I_{1}}{M}\left(S_{1}-\tilde{S_{1}}\right),D\right\rangle \right|+\left|\left\langle \alpha \left(S_{1}-\tilde{S_{1}}\right),D\right\rangle \right|\\  & \leq & \gamma \left\Vert S_{1}-\tilde{S_{1}}\right\Vert \left\Vert D\right\Vert +\frac{a_{1}\phi }{M}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert \left\Vert D\right\Vert +\alpha \left\Vert S_{1}-\tilde{S_{1}}\right\Vert \left\Vert D\right\Vert \\  & \leq & \left\{\gamma +\frac{a_{1}\phi }{M}+\alpha \right\}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert \left\Vert D\right\Vert \\  & \leq & X_{S_{1}}\left\Vert S_{1}-\tilde{S_{1}}\right\Vert \left\Vert D\right\Vert . \end{array}</math>
758
|}
759
|}
760
761
This completes the proof. The same process can be applied to <math display="inline">P_{1}\left(t\right)</math>, <math display="inline">E_{1}\left(t\right)</math>, <math display="inline">I_{1}\left(t\right)</math> and <math display="inline">R_{1}\left(t\right)</math>.
762
763
An inquiry into the existence and uniqueness of Eq. ([[#eq-1|1]]) will be discussed in the following. From Eq. ([[#eq-29|29]]) we can write
764
765
{| class="formulaSCP" style="width: 100%; text-align: left;" 
766
|-
767
| 
768
{| style="text-align: left; margin:auto;width: 100%;" 
769
|-
770
| style="text-align: center;" | <math>\left(S_{1}\right)_{n}  =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\varrho _{1}\left(t,\left(S_{1}\right)_{n-1}\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\varrho _{1}\left(\theta ,\left(S_{1}\right)_{n-1}\right)d\theta ,\;n=1,2,3,\cdots{.} </math>
771
|}
772
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
773
|}
774
775
The difference of the successive term can be written as
776
777
<span id="eq-45"></span>
778
{| class="formulaSCP" style="width: 100%; text-align: left;" 
779
|-
780
| 
781
{| style="text-align: left; margin:auto;width: 100%;" 
782
|-
783
| style="text-align: center;" | <math>\Upsilon _{n+1}\left(t\right)=\left(S_{1}\right)_{n+1}-\left(S_{1}\right)_{n}=\frac{1-\upsilon }{\chi \left(\upsilon \right)}\left[\varrho _{1}\left(t,\left(S_{1}\right)_{n}\right)-\varrho _{1}\left(t,\left(S_{1}\right)_{n-1}\right)\right]+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\left[\varrho _{1}\left(\theta ,\left(S_{1}\right)_{n}\right)-\varrho _{1}\left(\theta ,\left(S_{1}\right)_{n-1}\right)\right]d\theta{.} </math>
784
|}
785
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
786
|}
787
788
According to [34], it would be easy to write
789
790
<span id="eq-46"></span>
791
{| class="formulaSCP" style="width: 100%; text-align: left;" 
792
|-
793
| 
794
{| style="text-align: left; margin:auto;width: 100%;" 
795
|-
796
| style="text-align: center;" | <math>\left(S_{1}\right)_{n+1}  =  \stackrel={\scriptscriptstyle I_{1}=1}\Upsilon _{{\scriptscriptstyle I_{1}-1}}. </math>
797
|}
798
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
799
|}
800
801
Then, from Eq. ([[#eq-45|45]]), we get
802
803
{| class="formulaSCP" style="width: 100%; text-align: left;" 
804
|-
805
| 
806
{| style="text-align: left; margin:auto;width: 100%;" 
807
|-
808
| style="text-align: center;" | <math>\left\Vert \Upsilon _{n+1}\left(t\right)\right\Vert =\left\Vert \left(S_{1}\right)_{n+1}-\left(S_{1}\right)_{n}\right\Vert =\left\Vert \frac{1-\upsilon }{\chi \left(\upsilon \right)}\left[\varrho _{1}\left(t,\left(S_{1}\right)_{n}\right)-\varrho _{1}\left(t,\left(S_{1}\right)_{n-1}\right)\right]+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\left[\varrho _{1}\left(\theta ,\left(S_{1}\right)_{n}\right)-\varrho _{1}\left(\theta ,\left(S_{1}\right)_{n-1}\right)\right]d\theta \right\Vert . </math>
809
|}
810
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
811
|}
812
813
By triangular inequality, the above Eq. turn into
814
815
{| class="formulaSCP" style="width: 100%; text-align: left;" 
816
|-
817
| 
818
{| style="text-align: left; margin:auto;width: 100%;" 
819
|-
820
| style="text-align: center;" | <math>\left\Vert \Upsilon _{n+1}\left(t\right)\right\Vert \leq \frac{1-\upsilon }{\chi \left(\upsilon \right)}\left\Vert \varrho _{1}\left(t,\left(S_{1}\right)_{n}\right)-\varrho _{1}\left(t,\left(S_{1}\right)_{n-1}\right)\right\Vert +\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\left\Vert \varrho _{1}\left(\theta ,\left(S_{1}\right)_{n}\right)-\varrho _{1}\left(\theta ,\left(S_{1}\right)_{n-1}\right)\right\Vert d\theta{.} </math>
821
|}
822
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
823
|}
824
825
Whereas, the kernel fulfilled the Lipschitz condition. we have
826
827
<span id="eq-49"></span>
828
{| class="formulaSCP" style="width: 100%; text-align: left;" 
829
|-
830
| 
831
{| style="text-align: left; margin:auto;width: 100%;" 
832
|-
833
| style="text-align: center;" | <math>\left\Vert \Upsilon _{n+1}\left(t\right)\right\Vert \leq \frac{1-\upsilon }{\chi \left(\upsilon \right)}X_{S_{1}}\left\Vert \left(S_{1}\right)_{n}-\left(S_{1}\right)_{n-1}\right\Vert +\frac{\upsilon X_{S_{1}}}{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\left\Vert \left(S_{1}\right)_{n}-\left(S_{1}\right)_{n-1}\right\Vert d\theta{.} </math>
834
|}
835
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
836
|}
837
838
'''Theorem4.3''' If <math display="inline">t_{0}</math> fits the following condition
839
840
{| class="formulaSCP" style="width: 100%; text-align: left;" 
841
|-
842
| 
843
{| style="text-align: left; margin:auto;width: 100%;" 
844
|-
845
| style="text-align: center;" | <math>\frac{1-\upsilon }{\chi \left(\upsilon \right)}X_{S_{1}}+\frac{X_{S_{1}}t_{0}^{\upsilon }}{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\leq{1}, </math>
846
|}
847
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
848
|}
849
850
then, model ([[#eq-1|1]]) has a unique solution.
851
852
'''Proof''' Suppose that <math display="inline">S_{1}(t)</math> is bounded. As the Lipschitz condition is fulfilled by the kernel, therefore, utilizing the recursive process of Eq. ([[#eq-49|49]]), we acquire
853
854
{| class="formulaSCP" style="width: 100%; text-align: left;" 
855
|-
856
| 
857
{| style="text-align: left; margin:auto;width: 100%;" 
858
|-
859
| style="text-align: center;" | <math> \left\Vert \Upsilon _{n+1}\left(t\right)\right\Vert \leq \left\{\frac{1-\upsilon }{\chi \left(\upsilon \right)}X_{S_{1}}+\frac{\upsilon X_{S_{1}}t_{0}^{\upsilon }}{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right\}^{n+1}\left\Vert S_{1}\left(0\right)\right\Vert . </math>
860
|}
861
|}
862
863
Therefore, the <math display="inline">S_{1}(t)</math> function offered by Eq. ([[#eq-46|46]]) exists and is smooth as well. Currently, we wish to illustrate that the above-mentioned functions are actually a solution to englishmodel ([[#eq-1|1]]). Presume that
864
865
{| class="formulaSCP" style="width: 100%; text-align: left;" 
866
|-
867
| 
868
{| style="text-align: left; margin:auto;width: 100%;" 
869
|-
870
| style="text-align: center;" | <math>S_{1}(t)-S_{1}(0)  =  \left(S_{1}\right)_{n}-\left(\overline{S_{1}}\right)_{n} </math>
871
|}
872
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
873
|}
874
875
So that,
876
877
{| class="formulaSCP" style="width: 100%; text-align: left;" 
878
|-
879
| 
880
{| style="text-align: left; margin:auto;width: 100%;" 
881
|-
882
| style="text-align: center;" | <math>\left\Vert \left(\overline{S_{1}}\right)_{n}\right\Vert   =  \left\Vert \frac{1-\upsilon }{\chi \left(\upsilon \right)}\left[\varrho _{1}\left(t,S_{1}\right)-\varrho _{1}\left(t,\left(S_{1}\right)_{n}\right)\right]+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\left[\varrho _{1}\left(\theta ,S_{1}\right)-\varrho _{1}\left(\theta ,\left(S_{1}\right)_{n}\right)\right]d\theta \right\Vert .</math>
883
|-
884
| style="text-align: center;" | <math>   \leq  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\Bigl\Vert \varrho _{1}\left(t,S_{1}\right)-\varrho _{1}\left(t,\left(S_{1}\right)_{n}\right)\Bigr\Vert +\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\Bigl\Vert \varrho _{1}\left(\theta ,S_{1}\right)-\varrho _{1}\left(\theta ,\left(S_{1}\right)_{n}\right)\Bigr\Vert d\theta </math>
885
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
886
|-
887
| style="text-align: center;" | <math>   \leq  \frac{1-\upsilon }{\chi \left(\upsilon \right)}X_{S_{1}}\left\Vert S_{1}-\left(S_{1}\right)_{n}\right\Vert +\frac{\upsilon X_{S_{1}}t^{\upsilon }}{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left\Vert S_{1}-\left(S_{1}\right)_{n}\right\Vert . </math>
888
|}
889
|}
890
891
Using the recursive approach once more, we get
892
893
{| class="formulaSCP" style="width: 100%; text-align: left;" 
894
|-
895
| 
896
{| style="text-align: left; margin:auto;width: 100%;" 
897
|-
898
| style="text-align: center;" | <math>\left\Vert \left(\overline{S_{1}}\right)_{n}\right\Vert   \leq  \left\{\frac{1-\upsilon }{\chi \left(\upsilon \right)}+\frac{\upsilon t^{\upsilon }}{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right\}^{n+2}X_{S_{1}}^{n+2}. </math>
899
|}
900
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
901
|}
902
903
If <math display="inline">t=t_{0}</math>, we get
904
905
<span id="eq-54"></span>
906
{| class="formulaSCP" style="width: 100%; text-align: left;" 
907
|-
908
| 
909
{| style="text-align: left; margin:auto;width: 100%;" 
910
|-
911
| style="text-align: center;" | <math>\left\Vert \left(\overline{S_{1}}\right)_{n}\right\Vert   \leq  \left\{\frac{1-\upsilon }{\chi \left(\upsilon \right)}+\frac{\upsilon t_{0}^{\upsilon }}{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right\}^{n+2}X_{S_{1}}^{n+2}. </math>
912
|}
913
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
914
|}
915
916
Using the limit in Eq. ([[#eq-54|54]]) as <math display="inline">n</math> gets closer to <math display="inline">\infty </math> , we arrive at <math display="inline">\left\Vert \left(\overline{S_{1}}\right)_{n}\right\Vert \rightarrow{0}</math>. Thus, the existence is demonstrated. It is still necessary to demonstrate the uniqueness of the model english([[#eq-1|1]]). Assume that <math display="inline">\tilde{S_{1}}\left(t\right)</math> is another solution of model ([[#eq-1|1]]), then
917
918
<span id="eq-55"></span>
919
{| class="formulaSCP" style="width: 100%; text-align: left;" 
920
|-
921
| 
922
{| style="text-align: left; margin:auto;width: 100%;" 
923
|-
924
| style="text-align: center;" | <math>S_{1}\left(t\right)-\tilde{S_{1}}\left(t\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\left[\varrho _{1}\left(t,S_{1}\right)-\varrho _{1}\left(t,\tilde{S_{1}}\right)\right]+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\left[\varrho _{1}\left(\theta ,S_{1}\right)-\varrho _{1}\left(\theta ,\tilde{S_{1}}\right)\right]d\theta{.} </math>
925
|}
926
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
927
|}
928
929
Using the norm for Eq. ([[#eq-55|55]]), we get
930
931
{| class="formulaSCP" style="width: 100%; text-align: left;" 
932
|-
933
| 
934
{| style="text-align: left; margin:auto;width: 100%;" 
935
|-
936
| style="text-align: center;" | <math>\left\Vert S_{1}\left(t\right)-\tilde{S_{1}}\left(t\right)\right\Vert   \leq  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\left\Vert \varrho _{1}\left(t,S_{1}\right)-\varrho _{1}\left(t,\tilde{S_{1}}\right)\right\Vert +\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\left\Vert \varrho _{1}\left(\theta ,S_{1}\right)-\varrho _{1}\left(\theta ,\tilde{S_{1}}\right)\right\Vert d\theta{.} </math>
937
|}
938
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
939
|}
940
941
Because the kernel fulfills the Lipschitz condition, thus we may write
942
943
{| class="formulaSCP" style="width: 100%; text-align: left;" 
944
|-
945
| 
946
{| style="text-align: left; margin:auto;width: 100%;" 
947
|-
948
| style="text-align: center;" | <math>\left\Vert S_{1}\left(t\right)-\tilde{S_{1}}\left(t\right)\right\Vert   \leq  \frac{1-\upsilon }{\chi \left(\upsilon \right)}X_{S_{1}}\left\Vert S_{1}\left(t\right)-\tilde{S_{1}}\left(t\right)\right\Vert +\frac{\upsilon X_{S_{1}}}{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t-\theta \right)^{\upsilon{-1}}\left\Vert S_{1}\left(t\right)-\tilde{S_{1}}\left(t\right)\right\Vert d\theta{.} </math>
949
|}
950
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
951
|}
952
953
Consequently,
954
955
{| class="formulaSCP" style="width: 100%; text-align: left;" 
956
|-
957
| 
958
{| style="text-align: left; margin:auto;width: 100%;" 
959
|-
960
| style="text-align: center;" | <math>\left\Vert S_{1}\left(t\right)-\tilde{S_{1}}\left(t\right)\right\Vert \left(1-\frac{1-\upsilon }{\chi \left(\upsilon \right)}X_{S_{1}}-\frac{X_{S_{1}}t_{0}^{\upsilon }}{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right) \leq  0. </math>
961
|}
962
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
963
|}
964
965
If
966
967
{| class="formulaSCP" style="width: 100%; text-align: left;" 
968
|-
969
| 
970
{| style="text-align: left; margin:auto;width: 100%;" 
971
|-
972
| style="text-align: center;" | <math>\left(1-\frac{1-\upsilon }{\chi \left(\upsilon \right)}X_{S_{1}}-\frac{X_{S_{1}}t_{0}^{\upsilon }}{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right) \geq  0, </math>
973
|}
974
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
975
|}
976
977
then,
978
979
{| class="formulaSCP" style="width: 100%; text-align: left;" 
980
|-
981
| 
982
{| style="text-align: left; margin:auto;width: 100%;" 
983
|-
984
| style="text-align: center;" | <math>\left\Vert S_{1}\left(t\right)-\tilde{S_{1}}\left(t\right)\right\Vert   =  0,</math>
985
|-
986
| style="text-align: center;" | <math> S_{1}\left(t\right)-\tilde{S_{1}}\left(t\right) =  0,</math>
987
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
988
|-
989
| style="text-align: center;" | <math> S_{1}\left(t\right) =  \tilde{S_{1}}\left(t\right). </math>
990
|}
991
|}
992
993
Thus, the uniqueness is verified. We can prove the uniqueness of the rest of equations in model ([[#eq-1|1]]) by using the same method. Therefore model ([[#eq-1|1]]) has a unique solution.
994
995
==5 Numerical algorithm with ABC fractional derivative==
996
997
It is not possible to solve various real and physical applications developed using fractional PDEs accurately. However, a numerical approach to the solution is always enough to take care of a problem in engineering and science. For the Adams-Bashforth-Moulton technique, it can be used here to score a solution. Compared to the RK4, ABMM offers many noteworthy benefits, due to the fact that RK4 calculates four function evaluations per integration step while ABMM only calculates two [42]. As a result of the wider interpolation interval, Adams-Moulton methods produce more precise approximations. Generally speaking, implicit procedures are more stable than their explicit counterparts and they also achieve a greater order with the same number of preceding steps. Naturally, its implicit nature makes it challenging to solve because it results in a non-linear equation.
998
999
In this part, we discuss the plant diseases model known as the SPEIR model with the Atangana-Baleanu fractional operator to show the effectiveness, excellence and generality of our approach. All analytical and numerical analyses were detailed throughout the time spent computation using the MATLAB software package.
1000
1001
Taking into account the following fractional differential equation
1002
1003
<span id="eq-61"></span>
1004
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1005
|-
1006
| 
1007
{| style="text-align: left; margin:auto;width: 100%;" 
1008
|-
1009
| style="text-align: center;" | <math>\begin{cases}^{ABC}D_{t}^{\upsilon }\varphi \left(t\right)=\mathcal{F}\left(t,\varphi \left(t\right)\right),\\ \varphi \left(0\right)=\varphi _{0}. \end{cases} </math>
1010
|}
1011
| style="width: 5px;text-align: right;white-space: nowrap;" | (61)
1012
|}
1013
1014
We apply the basic calculus theorem in order to transform the Eq. ([[#eq-61|61]]) to
1015
1016
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1017
|-
1018
| 
1019
{| style="text-align: left; margin:auto;width: 100%;" 
1020
|-
1021
| style="text-align: center;" | <math>\varphi \left(t\right)-\varphi \left(0\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\mathcal{F}\left(t,\varphi \left(t\right)\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\mathcal{F}\left(\chi ,\varphi \left(\chi \right)\right)\left(t-\chi \right)^{\upsilon{-1}}d\chi , </math>
1022
|}
1023
| style="width: 5px;text-align: right;white-space: nowrap;" | (62)
1024
|}
1025
1026
at <math display="inline">t=t_{n+1},n=1,2,\cdots ,</math> we find that
1027
1028
<span id="eq-63"></span>
1029
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1030
|-
1031
| 
1032
{| style="text-align: left; margin:auto;width: 100%;" 
1033
|-
1034
| style="text-align: center;" | <math>\varphi \left(t_{n+1}\right)-\varphi \left(0\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\mathcal{F}\left(t_{n},\varphi _{n}\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\mathcal{F}\left(t,\varphi \left(t\right)\right)\left(t_{n+1}-t\right)^{\upsilon{-1}}dt, </math>
1035
|}
1036
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
1037
|}
1038
1039
and at <math display="inline">t=t_{n}</math>, we have
1040
1041
<span id="eq-64"></span>
1042
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1043
|-
1044
| 
1045
{| style="text-align: left; margin:auto;width: 100%;" 
1046
|-
1047
| style="text-align: center;" | <math>\varphi \left(t_{n}\right)-\varphi \left(0\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\mathcal{F}\left(t_{n-1},\varphi _{n-1}\right)+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\mathcal{F}\left(t,\varphi \left(t\right)\right)\left(t_{n}-t\right)^{\upsilon{-1}}dt. </math>
1048
|}
1049
| style="width: 5px;text-align: right;white-space: nowrap;" | (64)
1050
|}
1051
1052
The result of subtracting ([[#eq-64|64]]) from ([[#eq-63|63]]) is as follows
1053
1054
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1055
|-
1056
| 
1057
{| style="text-align: left; margin:auto;width: 100%;" 
1058
|-
1059
| style="text-align: center;" | <math>\varphi \left(t_{n+1}\right)-\varphi \left(t_{n}\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\left\{\mathcal{F}\left(t_{n},\varphi _{n}\right)-\mathcal{F}\left(t_{n-1},\varphi _{n-1}\right)\right\}+\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\mathcal{F}\left(t,\varphi \left(t\right)\right)\left(t_{n+1}-t\right)^{\upsilon{-1}}dt</math>
1060
|-
1061
| style="text-align: center;" | <math>     -\frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\mathcal{F}\left(t,\varphi \left(t\right)\right)\left(t_{n}-t\right)^{\upsilon{-1}}dt </math>
1062
|}
1063
| style="width: 5px;text-align: right;white-space: nowrap;" | (65)
1064
|}
1065
1066
Consequently,
1067
1068
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1069
|-
1070
| 
1071
{| style="text-align: left; margin:auto;width: 100%;" 
1072
|-
1073
| style="text-align: center;" | <math>\varphi \left(t_{n+1}\right)-\varphi \left(t_{n}\right) =  \frac{1-\upsilon }{\chi \left(\upsilon \right)}\left\{\mathcal{F}\left(t_{n},\varphi _{n}\right)-\mathcal{F}\left(t_{n-1},\varphi _{n-1}\right)\right\}+\mathcal{A}_{\upsilon }-\mathcal{B}_{\upsilon }, </math>
1074
|}
1075
| style="width: 5px;text-align: right;white-space: nowrap;" | (66)
1076
|}
1077
1078
where
1079
1080
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1081
|-
1082
| 
1083
{| style="text-align: left; margin:auto;width: 100%;" 
1084
|-
1085
| style="text-align: center;" | <math>\mathcal{A}_{\upsilon }  =  \frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\mathcal{F}\left(t,\varphi \left(t\right)\right)\left(t_{n+1}-t\right)^{\upsilon{-1}}dt, </math>
1086
|}
1087
| style="width: 5px;text-align: right;white-space: nowrap;" | (67)
1088
|}
1089
1090
and
1091
1092
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1093
|-
1094
| 
1095
{| style="text-align: left; margin:auto;width: 100%;" 
1096
|-
1097
| style="text-align: center;" | <math>\mathcal{B}_{\upsilon }  =  \frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\mathcal{F}\left(t,\varphi \left(t\right)\right)\left(t_{n}-t\right)^{\upsilon{-1}}dt. </math>
1098
|}
1099
| style="width: 5px;text-align: right;white-space: nowrap;" | (68)
1100
|}
1101
1102
Then, we have
1103
1104
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1105
|-
1106
| 
1107
{| style="text-align: left; margin:auto;width: 100%;" 
1108
|-
1109
| style="text-align: center;" | <math>\mathcal{A}_{\upsilon }  =  \frac{\upsilon }{\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t_{n+1}-t\right)^{\upsilon{-1}}\left\{\frac{t-t_{n-1}}{h}\mathcal{F}\left(t_{n},\varphi _{n}\right)-\frac{t-t_{n}}{h}\mathcal{F}\left(t_{n},\varphi _{n}\right)\right\}dt</math>
1110
|-
1111
| style="text-align: center;" | <math>   =  \frac{\upsilon \mathcal{F}\left(t_{n},\varphi _{n}\right)}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t_{n+1}-t\right)^{\upsilon{-1}}\mathcal{F}\left(t-t_{n-1}\right)dt-\frac{\upsilon \mathcal{F}\left(t_{n-1},\varphi _{n-1}\right)}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\stackrel=0\left(t_{n+1}-t\right)^{\upsilon{-1}}\mathcal{F}\left(t-t_{n-1}\right)dt</math>
1112
|-
1113
| style="text-align: center;" | <math>   =  \frac{\upsilon \mathcal{F}\left(t_{n},\varphi _{n}\right)}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left\{\frac{2ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}\right\}-\frac{\upsilon \mathcal{F}\left(t_{n-1},\varphi _{n-1}\right)}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left\{\frac{ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}\right\}. </math>
1114
|}
1115
| style="width: 5px;text-align: right;white-space: nowrap;" | (69)
1116
|}
1117
1118
likewise, we obtain
1119
1120
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1121
|-
1122
| 
1123
{| style="text-align: left; margin:auto;width: 100%;" 
1124
|-
1125
| style="text-align: center;" | <math>\mathcal{B}_{\upsilon }  =  \frac{\upsilon \mathcal{F}\left(t_{n},\varphi _{n}\right)}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left\{\frac{ht_{n}^{\upsilon }}{\upsilon }-\frac{t_{n}^{\upsilon{+1}}}{\upsilon{+1}}\right\}-\frac{\upsilon \mathcal{F}\left(t_{n-1},\varphi _{n-1}\right)}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}. </math>
1126
|}
1127
| style="width: 5px;text-align: right;white-space: nowrap;" | (70)
1128
|}
1129
1130
The analytical solution is thus given as
1131
1132
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1133
|-
1134
| 
1135
{| style="text-align: left; margin:auto;width: 100%;" 
1136
|-
1137
| style="text-align: center;" | <math>\varphi \left(t_{n+1}\right) =  \varphi \left(t_{n}\right)+\mathcal{F}\left(t_{n},\varphi _{n}\right)\left\{\frac{1-\upsilon }{\chi \left(\upsilon \right)}+\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{2ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}\right]-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n}^{\upsilon }}{\upsilon }-\frac{t_{n}^{\upsilon{+1}}}{\upsilon{+1}}\right]\right\}</math>
1138
|-
1139
| style="text-align: center;" | <math>     +\mathcal{F}\left(t_{n-1},\varphi _{n-1}\right)\left\{\frac{\upsilon{-1}}{\chi \left(\upsilon \right)}-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}+\frac{t_{n}^{\upsilon{+1}}}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right]\right\}. </math>
1140
|}
1141
| style="width: 5px;text-align: right;white-space: nowrap;" | (71)
1142
|}
1143
1144
Therefore, the model's solution ([[#eq-1|1]]) is 
1145
1146
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1147
|-
1148
| 
1149
{| style="text-align: left; margin:auto;width: 100%;" 
1150
|-
1151
| style="text-align: center;" | <math>\begin{array}{l} \left(S_{1}\right)_{n+1} & = & \left(S_{1}\right)_{n}+\left\{\frac{1-\upsilon }{\chi \left(\upsilon \right)}+\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{2ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}\right]-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n}^{\upsilon }}{\upsilon }-\frac{t_{n}^{\upsilon{+1}}}{\upsilon{+1}}\right]\right\}\left\{r(M-N)-\left(S_{1}\right)_{n}\left(t_{n}\right)\left(\gamma -\frac{a_{1}}{M}\left(I_{1}\right)_{n}\left(t_{n}\right)-\alpha \right)+\beta \left(P_{1}\right)_{n}\left(t_{n}\right)\right\}\\  &  & +\left\{\frac{\upsilon{-1}}{\chi \left(\upsilon \right)}-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}+\frac{t_{n}^{\upsilon{+1}}}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right]\right\}\left\{r(M-N)-\left(S_{1}\right)_{n-1}\left(t_{n-1}\right)\left(\gamma -\frac{a_{1}}{M}\left(I_{1}\right)_{n-1}\left(t_{n-1}\right)-\alpha \right)+\beta \left(P_{1}\right)_{n-1}\left(t_{n-1}\right)\right\},\qquad  \end{array}</math>
1152
|}
1153
| style="width: 5px;text-align: right;white-space: nowrap;" | (72)
1154
|}
1155
1156
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1157
|-
1158
| 
1159
{| style="text-align: left; margin:auto;width: 100%;" 
1160
|-
1161
| style="text-align: center;" | <math>\left(P_{1}\right)_{n+1}  =  \left(P_{1}\right)_{n}+\left\{\frac{1-\upsilon }{\chi \left(\upsilon \right)}+\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{2ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}\right]-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n}^{\upsilon }}{\upsilon }-\frac{t_{n}^{\upsilon{+1}}}{\upsilon{+1}}\right]\right\}\left\{\alpha \left(S_{1}\right)_{n}\left(t_{n}\right)+\left(P_{1}\right)_{n}\left(t_{n}\right)\left(\beta{-\gamma}\right)\right\}</math>
1162
|-
1163
| style="text-align: center;" | <math>     +\left\{\frac{\upsilon{-1}}{\chi \left(\upsilon \right)}-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}+\frac{t_{n}^{\upsilon{+1}}}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right]\right\}\left\{\alpha \left(S_{1}\right)_{n-1}\left(t_{n-1}\right)+\left(P_{1}\right)_{n-1}\left(t_{n-1}\right)\left(\beta{-\gamma}\right)\right\}, </math>
1164
|}
1165
| style="width: 5px;text-align: right;white-space: nowrap;" | (73)
1166
|}
1167
1168
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1169
|-
1170
| 
1171
{| style="text-align: left; margin:auto;width: 100%;" 
1172
|-
1173
| style="text-align: center;" | <math>\left(E_{1}\right)_{n+1}  =  \left(E_{1}\right)_{n}+\left\{\frac{1-\upsilon }{\chi \left(\upsilon \right)}+\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{2ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}\right]-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n}^{\upsilon }}{\upsilon }-\frac{t_{n}^{\upsilon{+1}}}{\upsilon{+1}}\right]\right\}\left\{\frac{a_{1}}{M}\left(S_{1}\right)_{n}\left(t_{n}\right)\left(I_{1}\right)_{n}\left(t_{n}\right)-\left(\gamma{+}a_{2}+b_{1}\right)\left(E_{1}\right)_{n}\left(t_{n}\right)\right\}</math>
1174
|-
1175
| style="text-align: center;" | <math>     +\left\{\frac{\upsilon{-1}}{\chi \left(\upsilon \right)}-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}+\frac{t_{n}^{\upsilon{+1}}}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right]\right\}\left\{\frac{a_{1}}{M}\left(S_{1}\right)_{n-1}\left(t_{n-1}\right)\left(I_{1}\right)_{n-1}\left(t_{n-1}\right)-\left(\gamma{+}a_{2}+b_{1}\right)\left(E_{1}\right)_{n-1}\left(t_{n-1}\right)\right\}, </math>
1176
|}
1177
| style="width: 5px;text-align: right;white-space: nowrap;" | (74)
1178
|}
1179
1180
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1181
|-
1182
| 
1183
{| style="text-align: left; margin:auto;width: 100%;" 
1184
|-
1185
| style="text-align: center;" | <math>\left(I_{1}\right)_{n+1}  =  \left(I_{1}\right)_{n}+\left\{\frac{1-\upsilon }{\chi \left(\upsilon \right)}+\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{2ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}\right]-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n}^{\upsilon }}{\upsilon }-\frac{t_{n}^{\upsilon{+1}}}{\upsilon{+1}}\right]\right\}\left\{a_{2}\left(E_{1}\right)_{n}\left(t_{n}\right)-\left(\gamma{+}a_{3}+b_{2}+\eta \right)\left(I_{1}\right)_{n}\left(t_{n}\right)\right\}</math>
1186
|-
1187
| style="text-align: center;" | <math>     +\left\{\frac{\upsilon{-1}}{\chi \left(\upsilon \right)}-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}+\frac{t_{n}^{\upsilon{+1}}}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right]\right\}\left\{a_{2}\left(E_{1}\right)_{n-1}\left(t_{n-1}\right)-\left(\gamma{+}a_{3}+b_{2}+\eta \right)\left(I_{1}\right)_{n-1}\left(t_{n-1}\right)\right\}, </math>
1188
|}
1189
| style="width: 5px;text-align: right;white-space: nowrap;" | (75)
1190
|}
1191
1192
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1193
|-
1194
| 
1195
{| style="text-align: left; margin:auto;width: 100%;" 
1196
|-
1197
| style="text-align: center;" | <math>\left(R_{1}\right)_{n+1}  =  \left(R_{1}\right)_{n}+\left\{\frac{1-\upsilon }{\chi \left(\upsilon \right)}+\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{2ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}\right]-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n}^{\upsilon }}{\upsilon }-\frac{t_{n}^{\upsilon{+1}}}{\upsilon{+1}}\right]\right\}\left\{a_{3}\left(I_{1}\right)_{n}\left(t_{n}\right)-\left(\gamma{+}b_{3}\right)\left(R_{1}\right)_{n}\left(t_{n}\right)\right\}</math>
1198
|-
1199
| style="text-align: center;" | <math>     +\left\{\frac{\upsilon{-1}}{\chi \left(\upsilon \right)}-\frac{\upsilon }{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\left[\frac{ht_{n+1}^{\upsilon }}{\upsilon }-\frac{t_{n+1}^{\upsilon{+1}}}{\upsilon{+1}}+\frac{t_{n}^{\upsilon{+1}}}{h\chi \left(\upsilon \right)\lambda \left(\upsilon \right)}\right]\right\}\left\{a_{3}\left(I_{1}\right)_{n-1}\left(t_{n-1}\right)-\left(\gamma{+}b_{3}\right)\left(R_{1}\right)_{n-1}\left(t_{n-1}\right)\right\}. </math>
1200
|}
1201
| style="width: 5px;text-align: right;white-space: nowrap;" | (76)
1202
|}
1203
1204
==6 Numerical simulation & Discussion==
1205
1206
This section employs the Adams-Bashforth-Moulton technique to numerically dissolve the fractional operator SPEIR model [40,41].
1207
1208
The values of the initial conditions for model ([[#eq-1|1]]) are given as follows: <math display="inline">M=1000</math>, <math display="inline">S_{1}\left(0\right)=100</math>, <math display="inline">P_{1}\left(0\right)=30</math>, <math display="inline">E_{1}\left(0\right)=60</math>, <math display="inline">I_{1}\left(0\right)=60</math> and <math display="inline">R_{1}\left(0\right)=60</math>. The parameter values applied in the mathematical simulation were extracted from the classical case of the model as shown in Table [[#table-1|1]] [8,9]. The outcomes of the numerical simulation of the SPEIR model are shown in the paragraphs that follow (with and without control).
1209
1210
1211
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
1212
|+ style="font-size: 75%;" |<span id='table-1'></span>Table. 1 Values of Parameters.
1213
|- style="border-top: 2px solid;"
1214
| style="border-left: 2px solid;border-right: 2px solid;" |  Parameter 
1215
| style="border-left: 2px solid;border-right: 2px solid;" | <math>a_{1}</math>
1216
| style="border-left: 2px solid;border-right: 2px solid;" | <math>a_{2}</math>
1217
| style="border-left: 2px solid;border-right: 2px solid;" | <math>a_{3}</math>
1218
| style="border-left: 2px solid;border-right: 2px solid;" | <math>b_{1}</math>
1219
| style="border-left: 2px solid;border-right: 2px solid;" | <math>b_{2}</math>
1220
| style="border-left: 2px solid;border-right: 2px solid;" | <math>b_{3}</math>
1221
| style="border-left: 2px solid;border-right: 2px solid;" | <math>r</math>
1222
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\alpha </math>
1223
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\beta </math>
1224
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\gamma </math>
1225
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\eta </math>
1226
|- style="border-top: 2px solid;"
1227
| style="border-left: 2px solid;border-right: 2px solid;" |  Value (<math display="inline">\mathrm{\mathcal{R}}_{0}<1</math>)  
1228
| style="border-left: 2px solid;border-right: 2px solid;" | 0.06 
1229
| style="border-left: 2px solid;border-right: 2px solid;" | 0.17 
1230
| style="border-left: 2px solid;border-right: 2px solid;" | 0.04 
1231
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
1232
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
1233
| style="border-left: 2px solid;border-right: 2px solid;" | 0.01 
1234
| style="border-left: 2px solid;border-right: 2px solid;" | 0.011 
1235
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0052 
1236
| style="border-left: 2px solid;border-right: 2px solid;" | 0.048 
1237
| style="border-left: 2px solid;border-right: 2px solid;" | 0.004 
1238
| style="border-left: 2px solid;border-right: 2px solid;" | 0.089
1239
|- style="border-top: 2px solid;border-bottom: 2px solid;"
1240
| style="border-left: 2px solid;border-right: 2px solid;" |  Value( <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math>) 
1241
| style="border-left: 2px solid;border-right: 2px solid;" | 0.3 
1242
| style="border-left: 2px solid;border-right: 2px solid;" | 0.17 
1243
| style="border-left: 2px solid;border-right: 2px solid;" | 0.02 
1244
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
1245
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
1246
| style="border-left: 2px solid;border-right: 2px solid;" | 0.01 
1247
| style="border-left: 2px solid;border-right: 2px solid;" | 0.013 
1248
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0052 
1249
| style="border-left: 2px solid;border-right: 2px solid;" | 0.048 
1250
| style="border-left: 2px solid;border-right: 2px solid;" | 0.0008 
1251
| style="border-left: 2px solid;border-right: 2px solid;" | 0.087
1252
1253
|}
1254
1255
Figure ([[#img-1|1]]) shows the numerical simulation of plant compartments Susceptible <math display="inline">S_{1}\left(t\right)</math>, Protected <math display="inline">P_{1}\left(t\right)</math> and Latent <math display="inline">E_{1}\left(t\right)</math> with time history for various values of fractional order at <math display="inline">\mathrm{\mathcal{R}}_{0}<1</math> and <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math>. Figure ([[#img-1|1]],a) and Figure ([[#img-1|1]],b) show that the maximum value of <math display="inline">S_{1}(t)</math> decreases whether <math display="inline">\mathrm{\mathcal{R}}_{0}<1</math> and <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math>, as the time increases and the fractional-order decreases. Figure ([[#img-1|1]],c) and Figure ([[#img-1|1]],d) show that <math display="inline">P_{1}(t)</math> decreases as the fractional order decreases and on a big difference between the situation when <math display="inline">\mathrm{\mathcal{R}}_{0}<1</math> and <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math>. Figure ([[#img-1|1]],e) shows that <math display="inline">E_{1}(t)</math> decreases dramatically during the first period with increasing the fractional order until it reaches about 120 days, and then the process reverses after that. While Figure ([[#img-1|1]]1,f) shows that <math display="inline">E_{1}(t)</math> is decreasing, but only until 50 days before it starts increasing again. Figure ([[#img-2|2]]) shows the numerical simulation of plant compartments Infected <math display="inline">I_{1}\left(t\right)</math> and Removed <math display="inline">R_{1}\left(t\right)</math> with time history for several values of fractional order at <math display="inline">\mathrm{\mathcal{R}}_{0}<1</math> and <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math>. Figure ([[#img-2|2]],a) shows that <math display="inline">I_{1}(t)</math> initially decreases until close to 150 days with the value of the fractional order differing, and then the process reverses after that. While Figure ([[#img-2|2]],b) shows that <math display="inline">I_{1}(t)</math> decreases until the period from 60 to 80 days, but its value does not reach zero on the vertical axis, as happened with Figure ([[#img-2|2]],a). Figure ([[#img-3|3]]) shows the numerical simulation of plant compartments <math display="inline">S_{1}\left(t\right)</math>, <math display="inline">P_{1}\left(t\right)</math>, <math display="inline">E_{1}\left(t\right)</math>, <math display="inline">I_{1}\left(t\right)</math> and <math display="inline">R_{1}\left(t\right)</math> with time history for various values of fractional order at <math display="inline">\mathrm{\mathcal{R}}_{0}<1</math> and <math display="inline">\mathrm{\mathcal{R}}_{0}>1</math>. Figure ([[#img-4|4]]) shows the dynamic compartments of Susceptible and Infected with various roguing and replanting values at <math display="inline">\upsilon=0.85</math>. Figure ([[#img-4|4]],a) and Figure ([[#img-4|4]],b) show that the maximum value of <math display="inline">S_{1}(t)</math> increases as the rate of replanting decreases and the rate of roguing increases. Figure ([[#img-4|4]],c) and Figure ([[#img-4|4]],d) show that infectious can be increased as the rate of replanting decreases and the rate of roguing increases. Figures [[#img-5|5]] and [[#img-6|6]] illustrate the effect of different parameters on plant compartments of americanthe SPEIR model at <math display="inline">\upsilon=0.85</math>.
1256
1257
<div id='img-1'></div>
1258
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1259
|-
1260
|[[Image:Draft_Hagag_877846790-1.png|600px|Numerical simulation of plant compartments S₁(t),P₁(t),E₁(t) for various values of fractional order with \mathcalR₀<1 and \mathcalR₀>1.]]
1261
|- style="text-align: center; font-size: 75%;"
1262
| colspan="1" | '''Figure 1:''' Numerical simulation of plant compartments <math>S_{1}\left(t\right),P_{1}\left(t\right),E_{1}\left(t\right)</math> for various values of fractional order with <math>\mathrm{\mathcal{R}}_{0}<1</math> and <math>\mathrm{\mathcal{R}}_{0}>1</math>.
1263
|}
1264
1265
<div id='img-2'></div>
1266
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1267
|-
1268
|[[Image:Draft_Hagag_877846790-2.png|600px|Numerical simulation of plant compartments I₁(t),R₁(t) for various values of fractional order with \mathcalR₀<1 and \mathcalR₀>1.]]
1269
|- style="text-align: center; font-size: 75%;"
1270
| colspan="1" | '''Figure 2:''' Numerical simulation of plant compartments <math>I_{1}\left(t\right),R_{1}\left(t\right)</math> for various values of fractional order with <math>\mathrm{\mathcal{R}}_{0}<1</math> and <math>\mathrm{\mathcal{R}}_{0}>1</math>.
1271
|}
1272
1273
<div id='img-3'></div>
1274
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1275
|-
1276
|[[Image:Draft_Hagag_877846790-3.png|600px|Numerical simulation of plant compartments S₁(t),P₁(t),E₁(t),I₁(t),R₁(t) with \mathcalR₀<1 and \mathcalR₀>1.]]
1277
|- style="text-align: center; font-size: 75%;"
1278
| colspan="1" | '''Figure 3:''' Numerical simulation of plant compartments <math>S_{1}\left(t\right),P_{1}\left(t\right),E_{1}\left(t\right),I_{1}\left(t\right),R_{1}\left(t\right)</math> with <math>\mathrm{\mathcal{R}}_{0}<1</math> and <math>\mathrm{\mathcal{R}}_{0}>1</math>.
1279
|}
1280
1281
<div id='img-4'></div>
1282
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1283
|-
1284
|[[Image:Draft_Hagag_877846790-4.png|600px|Dynamic compartments of Susceptible and Infected with various roguing and replanting values at υ=0.85.]]
1285
|- style="text-align: center; font-size: 75%;"
1286
| colspan="1" | '''Figure 4:''' Dynamic compartments of Susceptible and Infected with various roguing and replanting values at <math>\upsilon=0.85</math>.
1287
|}
1288
1289
<div id='img-5'></div>
1290
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1291
|-
1292
|[[Image:Draft_Hagag_877846790-5.png|600px|The effect of alteration the values of parameters a₁, a₂, b₁ and b₂ on all compartment stages where the fractional operator υ=0.85.]]
1293
|- style="text-align: center; font-size: 75%;"
1294
| colspan="1" | '''Figure 5:''' The effect of alteration the values of parameters <math>a_{1}</math>, <math>a_{2}</math>, <math>b_{1}</math> and <math>b_{2}</math> on all compartment stages where the fractional operator <math>\upsilon=0.85</math>.
1295
|}
1296
1297
<div id='img-6'></div>
1298
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1299
|-
1300
|[[Image:Draft_Hagag_877846790-6.png|600px|The effect of alteration the values of parameters α, β, γ and η on all compartment stages where the fractional operator υ=0.85.]]
1301
|- style="text-align: center; font-size: 75%;"
1302
| colspan="1" | '''Figure 6:''' The effect of alteration the values of parameters <math>\alpha </math>, <math>\beta </math>, <math>\gamma </math> and <math>\eta </math> on all compartment stages where the fractional operator <math>\upsilon=0.85</math>.
1303
|}
1304
1305
==7 Conclusion==
1306
1307
In this study, we considered and analyzed the SPEIR model displayed the dynamics of plant diseases with the Atangana-Baleanu fractional derivative in Caputo sense. Both the NEE and EE points were analyzed in terms of model equilibria and stability analysis (local-global). We also demonstrated the generic form of <math display="inline">\mathrm{\mathcal{R}}_{0}</math> and the effects of the controls proposed on it. The Adams-Bashforth-Moulton approach was used to study and solve numerical simulations of the suggested model. The value of the fractional order <math display="inline">\upsilon </math> as well as the parameters of the SPEIR model affect the numerical results that are obtained. Because of this, solutions generated by the fractional order model typically converge extremely quickly to real issues.
1308
1309
'''Availability<math>\;</math>of<math>\;</math>data<math>\;</math>and<math>\;</math>material:''' No data is available for this paper '''Conflict<math>\;</math>of<math>\;</math>Interest:''' The author declare that there is no Conflict of Interest. '''Acknowledgments:''' This research project was funded by the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication, grant No (43- PRFA-P-19).
1310
1311
===BIBLIOGRAPHY===
1312
1313
<div id="cite-1"></div>
1314
'''[1]''' J. E. Vanderplank, Plant disease: epidemics and control. New York: Academic Press; (1963).
1315
1316
<div id="cite-2"></div>
1317
'''[2]''' K. Verhoeff, Latent infection by fungi, Annu Rev Phytopathol 12 (1974) 99-107.
1318
1319
<div id="cite-3"></div>
1320
'''[3]''' G. N. Agrios, Lant pathology. San Diego: Academic Press; (1988).
1321
1322
<div id="cite-4"></div>
1323
'''[4]''' T. Zhang, et al., Dynamical analysis of delayed plant disease models with continuous or impulsive cultural control strategies, Abstract and applied analysis 2012 (2012) 1-25.
1324
1325
<div id="cite-5"></div>
1326
'''[5]''' M. S. Sisterson and D. C. Stenger, Roguing with replacement in perennial crops: conditions for successful disease management. Phytopathology 103 (2013) 117-28.
1327
1328
<div id="cite-6"></div>
1329
'''[6]''' W. Yang, D. Wang, and L. Yang, A stable numerical method for space fractional LandauLifshitz equations, Applied Mathematics Letters 61 (2016) 149-155.
1330
1331
<div id="cite-7"></div>
1332
'''[7]''' Y. Kuang, and G. Hu, An adaptive FEM with ITP approach for steady Schrödinger equation, International Journal of Computer Mathematics 95 (2018) 187-201.
1333
1334
<div id="cite-8"></div>
1335
'''[8]''' Y. Luo, et al., A discrete plant disease model with roguing and replanting, Advances in Difference Equations 1 (2015) 1-18.
1336
1337
<div id="cite-9"></div>
1338
'''[9]''' M. S. Chan and M. J. Jeger, An analytical model of plant virus disease dynamics with roguing and replanting, Journal of Applied Ecology 31 (1994) 413-427.
1339
1340
<div id="cite-10"></div>
1341
'''[10]''' N. Blas and G. David, Dynamical roguing model for controlling the spread of tungro virus via Nephotettix Virescens in a rice field, Journal of Physics: Conference Series 893 (2017) 012018.
1342
1343
<div id="cite-11"></div>
1344
'''[11]''' N. Anggriani, M. Yusuf and A. K. Supriatna, The effect of insecticide on the vector of rice tungro disease: insight from a mathematical model, International Information Institute (Tokyo) 20 (2017) 6197-206.
1345
1346
<div id="cite-12"></div>
1347
'''[12]''' N. Anggriani, et al., A mathematical model of protectant and curative fungicide application and its stability analysis, IOP Conf Ser 31 (2016) 012014
1348
1349
<div id="cite-13"></div>
1350
'''[13]''' N Anggriani, et al., Dynamical analysis of plant disease model with roguing, replanting and preventive treatment. In: 4th ICRIEMS Proceedings, published by the faculty of mathematics and natural sciences. Yogyakarta State University; ISBN 978-602-74529-2-3.
1351
1352
<div id="cite-14"></div>
1353
'''[14]''' N. Anggriani, et al., Dynamical analysis of plant disease model with roguing, replanting and preventive treatment, Proceedings of 4th International Conferenve on Research, Implementation, and Education of Mathematics and Science (2017).
1354
1355
<div id="cite-15"></div>
1356
'''[15]''' Z. Odibat and S. Kumar, A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equations, Journal of Computational and Nonlinear Dynamics 14 (2019) 081004.
1357
1358
<div id="cite-15"></div>
1359
'''[16]''' S. Momani, O. Abu Arqub, and B. Maayah, Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana–Baleanu–Caputo model of the Lienard’s equation, Fractals 28 (2020) 2040007.
1360
1361
<div id="cite-16"></div>
1362
'''[17]''' A. Akgul, A. Cordero and J. R. Torregrosa, Solutions of fractional gas dynamics equation by a new technique, Mathematical Methods in the Applied Sciences 43 (2020) 1349-1358.
1363
1364
<div id="cite-17"></div>
1365
'''[18]''' J. Singh, R. Swroop and D. Kumar, A computational approach for fractional convection-diffusion equation via integral transforms, Ain Shams Engineering Journal 9 (2018) 1019-1028.
1366
1367
<div id="cite-18"></div>
1368
'''[19]''' M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications 1 (2015) 73-85.
1369
1370
<div id="cite-19"></div>
1371
'''[20]''' O. Abu Arqub, J. Singh, B. Maayah, and M. Alhodaly, Reproducing kernel approach for numerical solutions of fuzzy fractional initial value problems under the Mittag–Leffler kernel differential operator, Mathematical Methods in the Applied Sciences (2021).
1372
1373
<div id="cite-19"></div>
1374
'''[21]''' D. Baleanu, A. Mousalou and S. Rezapour, On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations, Boundary Value Problems 1 (2017) 1-9.
1375
1376
<div id="cite-20"></div>
1377
'''[22]''' A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Thermal Science 20 (2016) 763-9.
1378
1379
<div id="cite-21"></div>
1380
'''[23]''' A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Thermal Science 20 (2016) 763-769.
1381
1382
<div id="cite-21"></div>
1383
'''[24]''' B. Maayah, O. Abu Arqub, S. Alnabulsi, and H. Alsulami, Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme, Chinese Journal of Physics 80 (2022) 463-483.
1384
1385
<div id="cite-21"></div>
1386
'''[25]''' O. Abu Arqub, J. Singh, and M. Alhodaly, Adaptation of kernel functions‐based approach with Atangana–Baleanu–Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations, Mathematical Methods in the Applied Sciences 46 (2023) 7807-7834.
1387
1388
<div id="cite-21"></div>
1389
'''[26]''' S. Djennadi, N. Shawagfeh, and O. Abu Arqub, Well-posedness of the inverse problem of time fractional heat equation in the sense of the Atangana-Baleanu fractional approach, Alexandria Engineering Journal 59 (2020) 2261-2268.
1390
1391
<div id="cite-22"></div>
1392
'''[27]''' A. Akgu l, A novel method for a fractional derivative with nonlocal and non-singular kernel, Chaos, Solitons Fractals 114 (2018) 478-482.
1393
1394
<div id="cite-23"></div>
1395
'''[28]''' A. Jajarmi, B. Ghanbari and D. Baleanu, A new and efficient numerical method for the fractional modelling and optimal control of diabetes and tuberculosis co-existence, Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (2019) 093111.
1396
1397
<div id="cite-24"></div>
1398
'''[29]''' T. A. Yildiz, et al., New aspects of time fractional optimal control problems within operators with nonsingular kernel, Discrete & Continuous Dynamical Systems-S 13 (2020) 407-28.
1399
1400
<div id="cite-25"></div>
1401
'''[30]''' T. Sardar, et al., A generic model for a single strain mosquito-transmitted disease with memory on the host and the vector, Mathematical biosciences 263 (2015) 18-36.
1402
1403
<div id="cite-26"></div>
1404
'''[31]''' I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).
1405
1406
<div id="cite-27"></div>
1407
'''[32]''' americanR. Gorenflo and F. Mainardi, Fractional calculus: Int and differential equations of fractional order, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus, New York, (1997).
1408
1409
<div id="cite-28"></div>
1410
'''[33]''' P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180 (2002) 29-48.
1411
1412
<div id="cite-29"></div>
1413
'''[34]''' C. Castillo-Chavez, Z. Feng and W. Huang, On the computation of R0 and its role in global stability, IMA Volumes in Mathematics and Its Applications, 125 (2002) 229-250.
1414
1415
<div id="cite-30"></div>
1416
'''[35]''' O. Diekmann and J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Vol. 5, John Wiley & Sons, (2000).
1417
1418
<div id="cite-31"></div>
1419
'''[36]''' N. S. Nise, Control systems engineering, John Wiley & Sons, (2020).
1420
1421
<div id="cite-32"></div>
1422
'''[37]''' F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer: Heidelberg (1996).
1423
1424
<div id="cite-33"></div>
1425
'''[38]''' S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Texts in Applied Mathematics) 2nd Edition., Springer-Verlag: Heidelberg (2000).
1426
1427
<div id="cite-34"></div>
1428
'''[39]''' D. Kumar, J. Singh and D. Baleanu, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Physica A 492 (2018) 155-167.
1429
1430
<div id="cite-35"></div>
1431
'''[40]''' K. Diethelm and A. D. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order, Forschung und wissenschaftliches Rechnen, (1999) 57-71.
1432
1433
<div id="cite-36"></div>
1434
'''[41]''' Z. R. Garrappa, On linear stability of predictor-corrector algorithms for fractional differential equations, International Journal of Computer Mathematics 87 (2010) 2281-2290.
1435
1436
<div id="cite-37"></div>
1437
'''[42]''' J. Butcher, Numerical methods for ordinary differential equations in the 20th century, Journal of Computational and Applied Mathematics 125 (2000) 1-29.
1438

Return to Alqahtani Hagag 2023a.

Back to Top

Document information

Published on 21/07/23
Accepted on 16/07/23
Submitted on 25/01/23

Volume 39, Issue 3, 2023
DOI: 10.23967/j.rimni.2023.07.001
Licence: CC BY-NC-SA license

Document Score

0

Views 107
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?