You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
3
4
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
5
'''The Stone Powder Wall Shaping Mechanism on Machine-made Sand'''</div>
6
7
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
8
<span style="text-align: center; font-size: 75%;">Luojian Yu<sup>1,2,3</sup>  Peng Sun<sup>1,2,3</sup>Saifei Han<sup>1,2,3</sup>  Yancong Song<sup>1,2,3</sup>  Huangyi Wu<sup>1,2,3</sup>Xin Tong<sup>1,2,3</sup>Pan Peng<sup>1,2,3</sup></span></div>
9
10
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
11
<span style="text-align: center; font-size: 75%;">''(1. Key Laboratory of Intelligent Processing Technology and Equipment of Fujian Province, Fuzhou, Fujijan 350118 China;2. Numerical Control Equipment Industry Technology Innovation Institute of Fujian Province, Fuzhou, Fujijan 350118 China; 3. School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou, Fujijan 350118 China)''</span></div>
12
13
<span style="text-align: center; font-size: 75%;">Luojian Yu;</span> <span style="text-align: center; font-size: 75%;">The telephone number of the correspondent is 13696896544, and the email address is [mailto:ylj14@fjut.edu.cn ylj14@fjut.edu.cn]</span>
14
-->
15
16
'''Abstract:''' At present, the researches on the mechanical properties of sand aggregate mainly focus on the shaping process of particles, and lack the researches on the crushing mechanism. This paper first defines the shaping process of stone powder wall, and explores the crushing mechanism of sand aggregate by adopting multiple times of small energy crushing. The effect of energy is investigated by simulation and experiment. The machine-made sand crushing mechanism is analyzed by establishing corresponding contact mathematical models. The result shows that the stone powder wall involves two mathematical models under impact: the elastic-plastic model at low impact velocity and the elastic-brittle model at high impact velocity.
17
18
'''Key words:''' machine-made sand; stone powder wall; crushing mechanism; mechanical contact model
19
20
==1. Introduction==
21
22
Compared with natural sand, machine-made sand has richer resources. Ore, rock, construction waste etc. can be made into aggregate after crushing and shaping by equipment like crushers. It not only alleviates the problem of resource shortage, but also protects the environment. With the demand of high-performance concrete for infrastructure applications, high quality aggregate has become the most needed basic raw material for high-grade buildings.
23
24
Ma ZhiMing et al.<sup>[1]</sup> proposed a novel and feasible method to pulverize recycled aggregate into recycled machine-made sand; Dwayne D. Tannant et al.<sup>[2]</sup> introduced the discrete element simulation results of sand crushing calibrated by laboratory data of one-dimensional compression test. Djamel Benyessad et al.<sup>[3] </sup>proposed an expression to quantify the mathematical model of crushed sand grains. Gongalves, J.P. et al.<sup>[4]</sup> compared the performance of artificial sand, produced by impact crushing or cone crushing, and natural sand in cement preparation. Cepuritis et al.<sup>[5]</sup> introduced micro-proportioning of full-size aggregates achieved through high-speed vertical shaft impact crushing and static air classification. Petit et al.<sup>[6]</sup> designed a device for sustainable air classification, which improved the production efficiency by overcoming the disadvantage of conventional method, which only produced a single machine-made sand. The study by Wu Huixia et al.<sup>[7]</sup> showed that the application of fine aggregates and fine powders obtained from concrete waste in recycled mortar is conducive to resource recycling. Santhosh et al.<sup>[8]</sup> proposed the substitute of industrial by-products for river sand to manufacture concrete. Shen Weiguo et al.<sup>[9]</sup> recommended digital control manufactured sand to achieve zero discharge of solid waste such as waste stone, dust and slurry. Feng Wei et al.<sup>[10]</sup> analyzed the effect of different amounts of CaO expansion agent on the physical mechanics and frost resistance of concrete by adding mixed sand in concrete. Huanhuan Hou<sup>[11]</sup> studied the influence of various performance indexes of machine-made sand on concrete work performance and admixture adaptability. Yan Tan et al.<sup>[12]</sup> studied effects of polypropylene fibers on the frost resistance of natural sand concrete and machine-made sand concrete. Dunwen Liu<sup>[13]</sup> compared the factors affecting the mechanical properties of machine-made sand concrete using grey correlation analysis. All above discussed the effects of machine-made sand and natural sand respectively as an aggregate added to concrete. Can Chen et al.<sup>[14]</sup> investigated the effect of machine-made sand gradation and fineness modulus on the workability and rheological properties of mortar. Lei Deng et al.<sup>[15]</sup> determined the methylene blue (MB) value of machine-made sand by experiment and analyzed the mineral composition of machine-made sand. Zhangjun Chen et al.<sup>[16]</sup> analyzed the big data about machine-made sand performance. Wenbin Fei et al.<sup>[17]</sup> used computed tomography (CT) scanned images of four dry sands and network analysis to predict effective thermal conductivity in sands. Hang He et al.<sup>[18]</sup> developed a physical packing model together with the related mathematical model of fresh mortar. All these studied and explored the property of machine-made sand itself. Yuli Wang et al.<sup>[19]</sup> investigated the effect of aggregate micro fines in machine-made sand on the volume stability of concrete in plastic stage. Yu Tang et al.<sup>[20]</sup> analyzed the properties of machine-made mortar with different stone powder contents through experiments. Pengtao Wang et al.<sup>[21]</sup> studied the effect of boulder powder on the compressive strength of concrete. Xuebin Wang et al.<sup>[22]</sup> studied the effect of basalt powder, as a substitute for cement and machine-made sand, on the properties of dry mixed mortar to determine the best usage of basalt powder. These explored the shaping of the machine-made sand from the perspective of the stone powder and the effect it has as an additive.
25
26
The above literature has focused on the shaping process of machine-made sand. Shaping process plays a decisive role in improving the quality of sand, however, what is the mechanism of sand shaping? It is worth exploring. At present, the studies on the particle crushing mechanism are relatively few and not closely related to the technology of crushing equipment. Therefore, the study of sand shaping mechanism and process parameters is particularly important<sup>[23]</sup>. Sand shaping involves the techniques of removing sharps of irregular aggregates by collision. Common irregular aggregates are shown in Figure 1.1 and Figure 1.2.
27
28
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
29
 
30
{|
31
|-
32
| [[Image:Draft_Peng_137819056-image1.png|138px]]
33
| [[Image:Draft_Peng_137819056-image2.png|center|138px]]
34
|}
35
</div>
36
37
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
38
<span style="text-align: center; font-size: 75%;">'''Figure 1.1 Strip aggregates     Figure 1.2 Flat-elongated aggregates'''</span></div>
39
40
That is, particles accelerated by the impeller collide with and rub against other particles and liners in the crushing chamber<sup>[24]</sup>. Therefore, the essence of stone powder wall shaping process is multiple times of crushing of particles and aggregates with small energy. This paper will focus on the stone powder wall formation, its shaping mechanism, the establishment and validation of the theoretical contact model, and based on all these, discusses the design of the stone powder wall segments.
41
42
==2. Stone Powder Wall Formation Mechanism==
43
44
When the crusher is working, the stones enter the machine through the feeder and pass through the divider to the rotor chamber and contact with the high-speed rotating impeller. After being accelerated by the centrifugal force in the impeller, they are ejected from the three flow channels evenly distributed around the rotor chamber at high speed. Part of them are piled up in the crushing chamber by the action of the particle liner to form a physical solid wall. And the particles flying out from the impeller flow passage collide with them again, achieving the shaping effect, hence the stone powder wall (or stone wall) mechanism.
45
46
Figure 2.1 shows two types of contact for sand shaping: rock-metal contact and rock-rock contact. The gray particles and red particles are the first and second group of particles ejected from the rotor, respectively. The gray particles hit the sensor counter inside the impact plate and collide with the red particles again after rebounding from the contact point of the impact plate. The collision of the particles with the impact plate and the chamber forms a rock-metal contact, while the collision between the particles forms a rock-rock contact. A study showed that rock-rock contact is the main way of particle formation<sup>[25]</sup>.
47
48
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
49
 [[Image:Draft_Peng_137819056-image3.png|390px]] </div>
50
51
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
52
<span style="text-align: center; font-size: 75%;">'''Figure 2.1 Sand particle crushing test bench'''</span></div>
53
54
According to Emerson et al.<sup>[25]</sup> (Figure 2.2), the inter-particle collision energy is higher in the rock-rock contact mode than in the rock-metal contact mode. In addition, the collision between rock bed and sand not only crushes the particles, but also protects the interior of the crushing chamber from wear and tear, thus extending the service life of the machine.
55
56
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
57
 [[Image:Draft_Peng_137819056-image4.png|384px]] </div>
58
59
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
60
<span style="text-align: center; font-size: 75%;">'''Figure 2.2 Rock bed geometry from the references'''</span></div>
61
62
As shown in Figure 2.3, most current crushers are equipped with a smooth impact plate with pits on the surface after a period of collision with the particles. These pits deposit rock powders, forming a “rock bed”. As shown in Figure 2.4(a), the rock particles collide with the impact plate and the rock powder accumulates in the pits, forming a rock bed that not only crushes the particles, but also protects the interior of the crushing chamber from wear and tear. As shown in Fig. 2.4(b), the pits deposit rock particles, and although it accelerates the wear of the impact plate, the rock layer will protect it from abrasion, thus still extending the service life of the machine.
63
64
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
65
 [[Image:Draft_Peng_137819056-image5.jpeg|318px]] </div>
66
67
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
68
<span style="text-align: center; font-size: 75%;">'''Figure 2.3 The rock bed in a real machine'''</span></div>
69
70
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
71
 [[Image:Draft_Peng_137819056-image6.png|324px]] </div>
72
73
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
74
<span style="text-align: center; font-size: 75%;">'''Figure 2.4 The formation of “stone powder wall”'''</span></div>
75
76
==3. Stone Powder Wall Shaping Mechanism==
77
78
As the impact velocity of particles keeps increasing, the energy gained by particles on the cyclotron accelerator is gradually elevated. The kinetic energy is determined by ''K<sub>e</sub> = 0.5 mv<sup>2</sup>'', where ''m'' is the mass of particles and ''v'' is the velocity of particles.
79
80
Residence Time: the length of time that a particle exists in the simulation. “Residence Time = Simulation Time - Particle Creation Time”.
81
82
Normal force: it is generated when two objects are in direct contact. It is always perpendicular to the object that exerts the force. The force depends on the contact model, which is usually a spring force with a damping component.
83
84
3.1 Analysis and comparison of the data of “rock-rock” and “rock-metal” models
85
86
As shown in Figure 3.1 (a), the particles accelerate through the cyclotron accelerator and impact on the flat steel plate, and are ejected from the impact plate to the crushing chamber. With the increase of working time, a layer of stone powders will form on the surface of the flat steel plate, as shown in Fig. 3.1 (b).
87
88
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
89
 [[Image:Draft_Peng_137819056-image7.png|336px]] </div>
90
91
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
92
(一一)扁钢板</div>
93
94
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
95
 [[Image:Draft_Peng_137819056-image8.png|336px]] </div>
96
97
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
98
(b) Flat stone power wall</div>
99
100
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
101
<span style="text-align: center; font-size: 75%;">'''Figure 3.1 Experiments of shaping on flat surface'''</span></div>
102
103
When the simulation is done on a flat impact plate, as shown in Figure 3.2, the residence time of particle-stone wall is larger than that of particle-metal in the same group, thus the stone powder wall has a damping effect on the particles. Both have decreasing residence time as the impact velocity of particles increases. However, the range of variation of particle-metal residence time is small, proving that the overall velocity change has a less effect on particle-metal residence time than that of the particle-stone wall. By comparing the simulation data, it is found that under the impact load, the energy of “rock-metal” model is 3 to 8 times larger than that of “rock-rock” model. The stone powder wall stores and decomposes impact energy, having an obvious elastic damping effect.
104
105
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
106
 [[Image:Draft_Peng_137819056-image9.png|342px]] </div>
107
108
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
109
<span style="text-align: center; font-size: 75%;">'''Figure 3.2 Particle residence time under different impact velocities on flat surface'''</span></div>
110
111
Figure 3.3 shows the particle energy when simulated on a flat impact plate, which further verified a significant elastic damping effect of the stone powder wall.
112
113
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
114
 
115
{|
116
|-
117
| [[Image:Draft_Peng_137819056-image10.png|150px]]
118
| [[Image:Draft_Peng_137819056-image11.png|center|156px]]
119
|}
120
[[Image:Draft_Peng_137819056-image12.png|156px]] </div>
121
122
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
123
<span style="text-align: center; font-size: 75%;">'''Figure 3.3 Energy under different impact velocities on flat surface'''</span></div>
124
125
As shown in Figure 3.4 (a), the particles accelerate through the cyclotron accelerator and impact on the arc steel plate, and are ejected from the impact plate once or twice to the crushing chamber. With the increase of working time, a layer of stone powders will form on the surface of the arc steel plate, as shown in Fig. 3.4 (b).
126
127
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
128
 [[Image:Draft_Peng_137819056-image13.png|348px]] </div>
129
130
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
131
(a) Arc steel plate</div>
132
133
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
134
 [[Image:Draft_Peng_137819056-image14.png|336px]] </div>
135
136
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
137
(b) Arc stone powder wall</div>
138
139
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
140
<span style="text-align: center; font-size: 75%;">'''Figure 3.4 Experiments of shaping on arc surface'''</span></div>
141
142
As shown in Figure 3.5, in the simulation on the arc impact plate, the particle-steel plate residence time is smaller than the particle-stone wall residence time at a low to medium speed of 30-50 m/s; between 50-70 m/s, the particle-steel plate residence time gradually becomes larger than the particle-stone wall residence time. However, the particle-stone wall residence time decreases gradually with the increase of impact velocity, and the variation ranges of particle-stone wall residence time and particle-steel plate residence time are both small, proving that the arc has a positive effect on prolonging the particle residence time.
143
144
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
145
 [[Image:Draft_Peng_137819056-image15.png|342px]] </div>
146
147
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
148
<span style="text-align: center; font-size: 75%;">'''Figure 3.5 Particle residence time under different impact velocities on arc surface'''</span></div>
149
150
The same impact velocity is applied to the particles so that the initial energy of the particles is the same, and as shown in Figure 3.6, the maximum value of energy carried by the particles increases with the increase of velocity. The energy of particle- stone wall model decreases more slowly and the frequency of the particle energy exchange is much higher than that of the particle-steel plate model at the same velocity.
151
152
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
153
 
154
{|
155
|-
156
| [[Image:Draft_Peng_137819056-image16.png|150px]]
157
| [[Image:Draft_Peng_137819056-image17.png|center|150px]]
158
|}
159
 [[Image:Draft_Peng_137819056-image18.png|150px]] </div>
160
161
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
162
<span style="text-align: center; font-size: 75%;">'''Figure 3.6 Energy under different impact velocities on flat surface'''</span></div>
163
164
3.2 Particle contact model in shaping process
165
166
Figure 3.7 shows the elastic-plastic contact model formed by the stone particles when they act on the stone wall.
167
168
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
169
 [[Image:Draft_Peng_137819056-image19.png|390px]] </div>
170
171
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
172
<span style="text-align: center; font-size: 75%;">'''Figure 3.7 Shaping contact model'''</span></div>
173
174
As shown in Figure 3.8, ''r<sub>1</sub>'' and ''r<sub>2</sub>'' are the diameters of particle 1 and particle 2, respectively, and ''B'' is the width of the contact surface, the expression of which is defined as:
175
176
{| class="formulaSCP" style="width: 100%; text-align: center;" 
177
|-
178
| 
179
{| style="text-align: center; margin:auto;" 
180
|-
181
| <math>B\mbox{=}\sigma r</math>
182
|}
183
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
184
|}
185
186
The non-dimensional shape parameter σ can be determined by comparing the data results of the internal friction angle parameter obtained from numerical simulations and the particle shape test with the target test results. In Figure 3.8, a normal basic unit is fixed on the contact surface, which consists of a spring and a damper connected in parallel and is then connected in series with the separator. The stiffness of the spring is ''kn'' (N/m<sup>2</sup>), reflecting the elasticity of particle contact point and the damping coefficient ''ɳ<sub>n</sub>'' of the damping generator. To achieve energy dissipation, a separator is used to simulate the absence of tension (N/m) when the cement fails. Similarly, a tangential basic unit is defined, which consists of a spring and a damper connected in parallel and is connected in series with the slider. The difference between the tangential basic unit and the normal basic unit is that the spring and damper in the former are on the tangent and the slider replaces the separator in the normal unit. The slider is used to simulate plastic sliding at the contact point under a certain shear strength, which is determined by the normal pressure at a specified point and the Mohr - Coulomb criterion. The result shows that the normal basic unit has a cementing effect at the contact point, which resists inter-particle torsion, while the tangential basic unit does not have this effect.
187
188
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
189
 [[Image:Draft_Peng_137819056-image22.jpeg|420px]] </div>
190
191
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
192
<span style="text-align: center; font-size: 75%;">'''Figure 3.8 Normal contact model'''</span></div>
193
194
Assume that the thickness of the contact area is constant and normal and tangential basic units are continuously distributed on the contact surface. The overall normal stiffness ''K<sub>n </sub>''and tangential stiffness ''K<sub>s</sub>'' (N/m) of particles, the damping coefficient ''µ<sub>n</sub>'', and the stiffness of normal basic elements ''k<sub>n</sub>'' and the stiffness of tangential basic elements ''k<sub>s</sub>'' satisfy the following requirements:
195
196
{| class="formulaSCP" style="width: 100%; text-align: center;" 
197
|-
198
| 
199
{| style="text-align: center; margin:auto;" 
200
|-
201
| <math>K_n=k_nB,K_s=k_sB,{\mu }_n={\eta }_nB</math>
202
|}
203
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
204
|}
205
206
207
If a finite relative rotation angle ''θ<sub>r</sub>'' is specified, denote ''c<sub>1</sub> c'' or ''c<sub>2</sub>'' c by B. The cementing between the particles will produce a force couple that will be transferred from particle 1 to particle 2.
208
209
Derive the relationship between the force couple ''M'' and ''θ<sub>r</sub>'' with small rotation angles.
210
211
The first step is to consider the absence of sliding, which corresponds to the linear elastic phase. As shown in Figure 3.9 (a), with a constant normal force ''F<sub>n</sub>'', particle 1 is rotated counterclockwise by a small angle ''θ<sub>r</sub>'' relative to particle 2. The concentration of the normal contact force ''p'' is linearly distributed along the contact area, as shown in Figure 3.9 (b), and the load intensity at the left ''p<sup>l</sup>'' and the load intensity at the right ''p<sup>r</sup>'' are expressed as
212
213
{| class="formulaSCP" style="width: 100%; text-align: center;" 
214
|-
215
| 
216
{| style="text-align: center; margin:auto;" 
217
|-
218
| <math display="inline">p^l=\overline{p}+\frac{{\theta }_rK_n}{2},p^r=\overline{p}-</math><math>\frac{{\theta }_rK_n}{2}</math>
219
|}
220
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
221
|}
222
223
<math>\bar{p}</math>is the average intensity of normal forces, defined as
224
225
{| class="formulaSCP" style="width: 100%; text-align: center;" 
226
|-
227
| 
228
{| style="text-align: center; margin:auto;" 
229
|-
230
| <math display="inline">\overline{p}=\frac{F_n}{B}</math>
231
|}
232
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
233
|}
234
235
236
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
237
 [[Image:Draft_Peng_137819056-image27.png|456px]] </div>
238
239
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
240
a</div>
241
242
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
243
 [[Image:Draft_Peng_137819056-image28.png|462px]] </div>
244
245
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
246
b</div>
247
248
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
249
<span style="text-align: center; font-size: 75%;">'''Figure 3.9 Normal force distribution on contact surface without sliding'''</span></div>
250
251
The distribution of the normal force on the contact surface causes the bending moment ''M'':
252
253
{| class="formulaSCP" style="width: 100%; text-align: center;" 
254
|-
255
| 
256
{| style="text-align: center; margin:auto;" 
257
|-
258
| <math display="inline">M=\frac{{\theta }_rK_nB^2}{12}=K_m{\theta }_r</math>
259
|}
260
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
261
|}
262
263
264
''K<sub>m</sub>'' is the rolling stiffness, in N·m.
265
266
{| class="formulaSCP" style="width: 100%; text-align: center;" 
267
|-
268
| 
269
{| style="text-align: center; margin:auto;" 
270
|-
271
| <math display="inline">K_m=\frac{K_nB^2}{12}=\frac{K_nr^2}{12}{\delta }^2</math>
272
|}
273
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
274
|}
275
276
277
''K<sub>m</sub>'' depends on ''δ'', ''r'' and ''K<sub>n</sub>''. If ''K<sub>m</sub>'' is a constant, then ''M'' increases linearly with it.
278
279
The second step is to consider the partial sliding, which corresponds to the plastic phase. The plastic mechanism is defined by the separation of the separator. According to Figure 3.10 (a), when particle 1 is rotated counterclockwise relative to particle 2 with a constant normal force ''F<sub>n</sub>'', its basic contact unit at the right edge and the separator fail and crack. With the increase of ''θ'', the damage of normal elements and the cracking of the separator continue to move inwards from the edge, so that ''p'' at the corresponding point is 0 and is redistributed linearly, as shown in Figure 3.10 (b). Let ''l'' be the contact width and ''P<sub>min</sub>'' (''P<sub>max</sub>'') indicate the minimum (maximum) normal contact force located at the rightmost (leftmost) end of the contact area (the width is l).
280
281
{| class="formulaSCP" style="width: 100%; text-align: center;" 
282
|-
283
| 
284
{| style="text-align: center; margin:auto;" 
285
|-
286
| <math>p_{min}=0,p_{max}=\theta_rK_nl^2/B</math>
287
|}
288
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
289
|}
290
291
292
The bending moment ''M'' and the normal force ''F<sub>n</sub>'' are:
293
294
{| class="formulaSCP" style="width: 100%; text-align: center;" 
295
|-
296
| 
297
{| style="text-align: center; margin:auto;" 
298
|-
299
| <math display="inline">M=\frac{{\theta }_rK_nl^2}{2B}\left(\frac{B}{2}-\frac{l}{3}\right),\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }F_n=</math><math>\frac{{\theta }_rK_nl^2}{2B}</math>
300
|}
301
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
302
|}
303
304
{| class="formulaSCP" style="width: 100%; text-align: center;" 
305
|-
306
| 
307
{| style="text-align: center; margin:auto;" 
308
|-
309
| <math display="inline">M=\left(F_nB\right)\left(\frac{1}{2}-\frac{l}{3B}\right),l=</math><math>{\left(\frac{2F_nB}{K_n{\theta }_r}\right)}^{0.5}</math>
310
|}
311
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
312
|}
313
314
315
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
316
 [[Image:Draft_Peng_137819056-image34.png|438px]] </div>
317
318
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
319
(1) Separation mechanism of the separator caused by relative rolling on contact point</div>
320
321
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
322
 [[Image:Draft_Peng_137819056-image35.jpg|384px]] </div>
323
324
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
325
(2) Normal contact force distribution</div>
326
327
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
328
 [[Image:Draft_Peng_137819056-image36.png|474px]] </div>
329
330
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
331
(3) Rolling contact model</div>
332
333
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
334
<span style="text-align: center; font-size: 75%;">'''Figure 3.10 Separation model of the separator'''</span></div>
335
336
When ''l'' = ''B'', the normal contact point is not damaged and the separator does not separate, i.e., there is no plasticity, and the critical values of the relative rotation angle ''θ<sub>r</sub>'' and bending moment ''M'' are ''θ0 r'' and ''M<sub>0</sub>'',respectively:
337
338
{| class="formulaSCP" style="width: 100%; text-align: center;" 
339
|-
340
| 
341
{| style="text-align: center; margin:auto;" 
342
|-
343
| <math>M_0=\frac{1}{6}\left(F_nB\right),{\theta }_\mbox{r}^\mbox{0}\mbox{=}\frac{\mbox{2}F_\mbox{n}}{K_\mbox{n}B}</math>
344
|}
345
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
346
|}
347
348
349
Put the equation into the following equation, the rolling bending moment with  <math display="inline">l\leq B</math> can be obtained:
350
351
{| class="formulaSCP" style="width: 100%; text-align: center;" 
352
|-
353
| 
354
{| style="text-align: center; margin:auto;" 
355
|-
356
| <math display="inline">M=M_0\left[3-2{\left(\frac{{\theta }_r^0}{{\theta }_r}\right)}^{0.5}\right]</math>
357
|}
358
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
359
|}
360
361
362
Once the above process is completed, the linear elastic and plastic phases represented by the equations (5) and (11) are combined to establish the rolling contact model. As shown in Figure 3.10 (c), theoretical and numerical analysis for plastic process is more difficult. Two types of simple models for stone powder wall contact are proposed.
363
364
Type 1: Elastic-plastic model
365
366
{| class="formulaSCP" style="width: 100%; text-align: center;" 
367
|-
368
| 
369
{| style="text-align: center; margin:auto;" 
370
|-
371
| <math display="inline">\left\{\begin{array}{c}
372
M=K_m{\theta }_r=\frac{{\theta }_rK_nB^2}{12},{\theta }_r\leq {\theta }_r^0\\
373
M=M_0=\frac{1}{6}\left(F_nB\right),{\theta }_r>{\theta }_r^0
374
\end{array}\right\}</math>
375
|}
376
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
377
|}
378
379
380
Type 2: Elastic-brittle model
381
382
{| class="formulaSCP" style="width: 100%; text-align: center;" 
383
|-
384
| 
385
{| style="text-align: center; margin:auto;" 
386
|-
387
| <math display="inline">\left\{\begin{array}{c}
388
M=K_m{\theta }_r=\frac{{\theta }_rK_nB^2}{12},{\theta }_r\leq {\theta }_r^0\\
389
M=\mbox{0}\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ },{\theta }_r>{\theta }_r^0
390
\end{array}\right\}</math>
391
|}
392
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
393
|}
394
395
396
When ''δ''= 0, the contact model is a simplified model in the classical particle discrete element method. The dashed lines in Figure 3.10 (c) indicate type 1 and type 2, respectively, where the former is more like the rolling contact model and represents the elastic-plastic action that approximates the Mohr - Coulomb criterion. Type 2 is used to simulate particle crushing, in which particle crushing is achieved by the disappearance of rolling caused by the sudden disappearance of contact width.
397
398
Based on the stone powder wall shaping contact model, the overall shear contact model is made to cover the continuously distributed tangential basic units and control the relevant tangential motion on the shear surface; the overall normal contact model is obtained from the continuously distributed normal basic units, which determines the normal motion of the contact surface on the contact surface.
399
400
The mechanical contact model of stone powder wall shaping is now derived, but there is a certain correlation between stone powder wall shaping and the particles’ angle of incidence, so based on the above conclusion, an incidence angle factor ''I'' is added to improve the contact model of stone powder wall shaping.
401
402
3.3 The verification of the contact models
403
404
By simulating the incidence angles at different positions of the arc plate (Figure 3.11), particles can be ejected at a certain position for several times, and hence meeting the demand of the shaping mechanism.
405
406
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
407
 
408
{|
409
|-
410
| [[Image:Draft_Peng_137819056-image42.png|162px]]
411
| [[Image:Draft_Peng_137819056-image43.png|center|156px]]
412
|}
413
 [[Image:Draft_Peng_137819056-image44.png|180px]] </div>
414
415
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
416
<span style="text-align: center; font-size: 75%;">'''Figure 3.11 Ejection trajectory'''</span></div>
417
418
<span id='_Hlk97732452'></span>The impact simulation tests were conducted on the arc impact plate at velocities of 30, 50, and 70 m/s, respectively, as shown in Figure 3.12(a). At the low impact velocity of 30 m/s, the residence time of particles of 20 mm-diameter was the longest, and showed an increasing to decreasing trend. The residence time of particles of 20 mm-diameter in the particle-steel group was the smallest at the impact velocity of 50 m/s, as shown in Figure 3.12(b). At the impact velocity of 70 m/s, the overall residence time did not fluctuate much, and the residence time of the steel plate group was larger than that of the stone wall group, as shown in Figure 3.12(c).
419
420
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
421
 [[Image:Draft_Peng_137819056-image45.png|288px]] </div>
422
423
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
424
(a) 30m/s</div>
425
426
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
427
 [[Image:Draft_Peng_137819056-image46.png|288px]] </div>
428
429
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
430
(b) 50m/s</div>
431
432
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
433
 [[Image:Draft_Peng_137819056-image47.png|294px]] </div>
434
435
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
436
(c) 70m/s</div>
437
438
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
439
<span style="text-align: center; font-size: 75%;">'''Figure 3.12 Particle residence time under arc impact with different particle sizes'''</span></div>
440
441
The impact simulation tests were conducted on the flat impact plate at velocities of 30, 50, and 70 m/s, respectively, as shown in Figure 3.13. The analysis showed that the residence time of the steel plate group was less than that of the stone wall group. As shown in Figure 3.13 (a), at low impact velocities of 30 and 50 m/s, the difference of residence time was not great, and the residence time stayed stable as the particle size increased. As shown in Figure 3.13 (b and c), the difference between the residence time of the particles of the steel plate group and the stone wall group is larger at the medium and high impact velocities of 50 and 70 m/s.
442
443
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
444
 [[Image:Draft_Peng_137819056-image48.png|294px]] </div>
445
446
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
447
(a) 30 m/s</div>
448
449
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
450
 [[Image:Draft_Peng_137819056-image49.png|294px]] </div>
451
452
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
453
(b) 50 m/s</div>
454
455
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
456
 [[Image:Draft_Peng_137819056-image50.png|300px]] </div>
457
458
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
459
(c) 70 m/s</div>
460
461
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
462
<span style="text-align: center; font-size: 75%;">'''Figure 3.13 Particle residence time under flat impact with different particle sizes'''</span></div>
463
464
Particle shaping is achieved by multiple times of crushing between particles and shaping plates with small energy. The arc impact plate can effectively increase the time and chance of collision. The mechanical contact model of stone powder wall shaping is now derived, but there is a certain correlation between stone powder wall shaping and the particles’ angle of incidence, so based on the above conclusion, an incidence angle factor ''I'' is added to improve the contact model of stone powder wall shaping. Under the impact velocity of 30 m/s, the contact model of particles is mainly type 1, that is, the elastic-plastic model, and the incidence angle factor ''I'' ranges reasonably from 0.9 to 1.1. Under the impact velocity of 50-70 m/s, which is conventional, the contact model of particles is mainly type 2, that is, the elastic-brittle model, and the incidence angle factor ''I'' ranges from 1.0 to 1.2.
465
466
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
467
 [[Image:Draft_Peng_137819056-image51.png|306px]] </div>
468
469
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
470
<span style="text-align: center; font-size: 75%;">'''Figure 3.14 Impact energy'''</span></div>
471
472
According to Figure 3.15 shows the effect of average shear force and average extrusion force on the crushing ratio. When only a single force of the two are at its maximum or minimum, the crushing ratio of rock particles will be greatly reduced, while when the two forces act simultaneously and are balanced, the crushing effect is the best.
473
474
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
475
 [[Image:Draft_Peng_137819056-image52.png|222px]] </div>
476
477
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
478
<span style="text-align: center; font-size: 75%;">'''Figure 3.15 Multi-factor cloud image'''</span></div>
479
480
Based on the cross-sectional scanning electron microscope (SEM) images of the crushed particles (Figure 3.16), and by comparison, the crushing mechanisms of three typical rocks were analyzed.
481
482
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
483
 [[Image:Draft_Peng_137819056-image53.png|270px]] </div>
484
485
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
486
Before shaping</div>
487
488
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
489
 [[Image:Draft_Peng_137819056-image54.png|270px]] </div>
490
491
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
492
After shaping</div>
493
494
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
495
<span style="text-align: center; font-size: 75%;">'''Figure 3.16 Comparison of aggregate forms before and after shaping'''</span></div>
496
497
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
498
 [[Image:Draft_Peng_137819056-image55.jpeg|264px]] </div>
499
500
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
501
SEM image before shaping</div>
502
503
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
504
 [[Image:Draft_Peng_137819056-image56.jpeg|270px]] </div>
505
506
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
507
SEM image after shaping</div>
508
509
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
510
<span style="text-align: center; font-size: 75%;">'''Figure 3.17 Comparison of sand aggregate SEM images before and after crushing'''</span></div>
511
512
According to the comparison of sand aggregates before and after crushing, shown in Figure 3.16, and the SEM image in Figure 3.17, it is found that in the process of crushing, when the acceleration exerted by the main impeller on the rock particles causes the impact stress on the particles more than what they can withstand, the particles are prone to crushing. The crushed samples are mostly limestone, and the crushed surface gets thicker from the outer edge, which is generally of arc shape, to the center. The crushed surface is not neat but presents a step-like shape. With the same external factors and the same initial state, larger particles need greater crushing energy, and the crushing effect is better. With the same mass, the number of elongated shapes crushed out of larger particles is also larger.
513
514
As shown in Figure 3.18, the fracture surface has the same fracture along the crystal surface direction, while the overall damage is not very significant, so it can be judged that the particle shaping is mainly achieved by “small energy” of shear force. Based on the above analysis, the essence of the stone powder wall shaping mechanism is “multiple times of small energy crushing”. The contact models involve:
515
516
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
517
 [[Image:Draft_Peng_137819056-image57.png|296x296px]] </div>
518
519
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
520
<span style="text-align: center; font-size: 75%;">'''Figure 3.18 SEM image of crushed surface'''</span></div>
521
522
Type 1: Elastic-plastic model
523
524
{| class="formulaSCP" style="width: 100%; text-align: center;" 
525
|-
526
| 
527
{| style="text-align: center; margin:auto;" 
528
|-
529
| <math display="inline">\left\{\begin{array}{c}
530
M=IK_m{\theta }_r=\frac{{\theta }_rK_nB^2}{12},{\theta }_r\leq {\theta }_r^0\\
531
M=M_0=\frac{1}{6}\left(F_nB\right),{\theta }_r>{\theta }_r^0
532
\end{array}\right\}</math>
533
|}
534
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
535
|}
536
537
538
Type 2: Elastic-brittle model
539
540
{| class="formulaSCP" style="width: 100%; text-align: center;" 
541
|-
542
| 
543
{| style="text-align: center; margin:auto;" 
544
|-
545
| <math display="inline">\left\{\begin{array}{c}
546
M=IK_m{\theta }_r=\frac{{\theta }_rK_nB^2}{12},{\theta }_r\leq {\theta }_r^0\\
547
M=\mbox{0}\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ }\mbox{ },{\theta }_r>{\theta }_r^0
548
\end{array}\right\}</math>
549
|}
550
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
551
|}
552
553
554
The established mathematical models can reasonably reflect the change of rolling bending moment of sand aggregate under different contact models. The SEM image are in agreement with the theory to a certain extent, indicating that the mathematical models are reasonable.
555
556
==4. Experiment verification==
557
558
4.1 lntroduction of experimental prototype
559
560
The equipment used in this test is the sand impact mechanism test machine, which has the advantages of being easy to use and use, and can simulate the situation of sand and gravel material being thrown and crushed in the crushing process, which can more intuitively understand the crushing process. The hardware first sets the linear velocity of the material collision, and obtains the corresponding motor velocity, and then adjusts the motor velocity through the control box, in order to adjust the speed of the rotor that is connected to the belt, in order for the material on the turn table's locking mechanism to achieve the corresponding linear velocity, once the turntable reaches the tuned linear speed, the electromagnetic push-pull connecting rod of the cutting mechanism can be set. As the turntable reaches the set linear velocity, the electromagnetic push-pull rod of the shear mechanism extends to cause the cutting knife to cut the string, and the movable baffle pivots rap idly outward to open at the same time. At the same time, the gravel material also spirals out ward at high velocity and collides with the impact plate. Figure 4.1 shows the specific schematic diagram, and Figure 4. 2 shows the actual image of the experimental machine.[[Image:Draft_Peng_137819056-image60.jpeg|center|288px]]<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><span style="text-align: center; font-size: 75%;">'''Figure 4.1 Schematic diagram of test prototype'''</span>[[Image:Draft_Peng_137819056-image61.jpeg|center|270px]]</div>
561
562
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
563
<span style="text-align: center; font-size: 75%;">'''Figure 4.2 Actual internal view of experimental machine'''</span></div>
564
565
4.2Analysis of experimental process and results
566
567
The prototype is tested on the self-designed impact-crushing simulation test machine. Since area I is a stone -walled structure in the optimization model, since the angle control is not yet designed in this paper, 3D printing technology is used to print the shape in a manner similar to the strength of the rock wall. Figure 4.3 below shows the shape of the printed cavity, and the strength of the stone wall is achieved by adjusting the fill rate of the 3D components.
568
569
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
570
<span style="text-align: center; font-size: 75%;">'''
571
[[Image:Draft_Peng_137819056-image62.png|center|324px]]
572
Figure 4.3 3D printed stone wall shape'''<nowiki/>'''
573
</div>The surface is then coated with a layer of stone beating raw materials to perform simulation of the surface contact parameters, which can be seen in Figure 4.4 (limestone, pebble and granite) from the left to the right.[[Image:Draft_Peng_137819056-image63.png|center|396px]]<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
574
<span style="text-align: center; font-size: 75%;">'''Figure 4.4 Optimized stone wall shape'''</span></div>
575
576
To simulate the different contact properties of different materials, we coated the 3D printed specimen with a certain particle thickness of stone wall material in order to realize the actual contact parameters of the particles. Since the influence of stone wall material thickness on the test cannot be ascertained, to test the influence of stone wall thickness, we designed an orthogonal test set. Select the appropriate orthogonal array based on the number of factors and levels. In most cases the number of factors less than or equal to the number of columns of the orthogonal array, and the number of factor levels should be consistent with the number of levels in the orthogonal table. Assuming the above conditions are satisfied, the orthogonal array with smaller specifications should be chosen. We adopt the three-factor, three- level test for this mud wall thickness test. Due to its three-tiered nature, L<sub>9</sub>(3<sup>4</sup>) is adopted. Table 1 shows the factor-level table, and Table 2 shows the trained test table and the final data.
577
578
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
579
<span style="text-align: center; font-size: 75%;">'''Table 1. Factor level table'''</span></div>
580
581
{| style="width: 100%;margin: 1em auto 0.1em auto;border-collapse: collapse;" 
582
|-
583
|  style="border-top: 2pt solid black;text-align: center;vertical-align: bottom;"| 
584
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|Impact velocity(m/s)
585
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|Thickness of earth wall(mm)
586
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|Impact angle(°)
587
|-
588
|  style="text-align: center;vertical-align: bottom;"|1
589
|  style="text-align: center;vertical-align: bottom;"|60
590
|  style="text-align: center;vertical-align: bottom;"|1
591
|  style="text-align: center;vertical-align: bottom;"|10
592
|-
593
|  style="text-align: center;vertical-align: bottom;"|2
594
|  style="text-align: center;vertical-align: bottom;"|70
595
|  style="text-align: center;vertical-align: bottom;"|3
596
|  style="text-align: center;vertical-align: bottom;"|20
597
|-
598
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|3
599
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|80
600
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|5
601
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|30
602
|}
603
604
605
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
606
<span style="text-align: center; font-size: 75%;">'''Table 2. Orthogonal test results.'''</span></div>
607
608
{| style="width: 100%;border-collapse: collapse;" 
609
|-
610
|  style="border-top: 2pt solid black;vertical-align: bottom;"|Test number
611
|  style="border-top: 2pt solid black;vertical-align: bottom;"|Impact velocity
612
|  style="border-top: 2pt solid black;text-align: center;vertical-align: bottom;"|Thickness of earth wall
613
|  style="border-top: 2pt solid black;text-align: center;vertical-align: bottom;"|Impact angle
614
|  style="border-top: 2pt solid black;vertical-align: bottom;"|Empty column
615
|  style="border-top: 2pt solid black;text-align: center;vertical-align: bottom;"|Crushing ratio
616
|-
617
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|1
618
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|1
619
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|1
620
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|1
621
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|1
622
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|0.5000 
623
|-
624
|  style="text-align: center;vertical-align: bottom;"|2
625
|  style="text-align: center;vertical-align: bottom;"|1
626
|  style="text-align: center;vertical-align: bottom;"|2
627
|  style="text-align: center;vertical-align: bottom;"|2
628
|  style="text-align: center;vertical-align: bottom;"|2
629
|  style="text-align: center;vertical-align: bottom;"|0.7500 
630
|-
631
|  style="text-align: center;vertical-align: bottom;"|3
632
|  style="text-align: center;vertical-align: bottom;"|1
633
|  style="text-align: center;vertical-align: bottom;"|3
634
|  style="text-align: center;vertical-align: bottom;"|3
635
|  style="text-align: center;vertical-align: bottom;"|3
636
|  style="text-align: center;vertical-align: bottom;"|0.5526 
637
|-
638
|  style="text-align: center;vertical-align: bottom;"|4
639
|  style="text-align: center;vertical-align: bottom;"|2
640
|  style="text-align: center;vertical-align: bottom;"|1
641
|  style="text-align: center;vertical-align: bottom;"|2
642
|  style="text-align: center;vertical-align: bottom;"|3
643
|  style="text-align: center;vertical-align: bottom;"|0.8667 
644
|-
645
|  style="text-align: center;vertical-align: bottom;"|5
646
|  style="text-align: center;vertical-align: bottom;"|2
647
|  style="text-align: center;vertical-align: bottom;"|2
648
|  style="text-align: center;vertical-align: bottom;"|3
649
|  style="text-align: center;vertical-align: bottom;"|1
650
|  style="text-align: center;vertical-align: bottom;"|0.6786 
651
|-
652
|  style="text-align: center;vertical-align: bottom;"|6
653
|  style="text-align: center;vertical-align: bottom;"|2
654
|  style="text-align: center;vertical-align: bottom;"|3
655
|  style="text-align: center;vertical-align: bottom;"|1
656
|  style="text-align: center;vertical-align: bottom;"|2
657
|  style="text-align: center;vertical-align: bottom;"|0.6552 
658
|-
659
|  style="text-align: center;vertical-align: bottom;"|7
660
|  style="text-align: center;vertical-align: bottom;"|3
661
|  style="text-align: center;vertical-align: bottom;"|1
662
|  style="text-align: center;vertical-align: bottom;"|3
663
|  style="text-align: center;vertical-align: bottom;"|2
664
|  style="text-align: center;vertical-align: bottom;"|0.6316 
665
|-
666
|  style="text-align: center;vertical-align: bottom;"|8
667
|  style="text-align: center;vertical-align: bottom;"|3
668
|  style="text-align: center;vertical-align: bottom;"|2
669
|  style="text-align: center;vertical-align: bottom;"|1
670
|  style="text-align: center;vertical-align: bottom;"|3
671
|  style="text-align: center;vertical-align: bottom;"|0.3714 
672
|-
673
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|9
674
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|3
675
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|3
676
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|2
677
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|1
678
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|0.6923 
679
|}Figure 4.5 shows that with increasing impact velocity, the particle break ratio initially increases and then decreases at a speed of 70m/s. With a maximum angle of incidence of 20 degrees.[[Image:Draft_Peng_137819056-image64.png|center|342px]]<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
680
<span style="text-align: center; font-size: 75%;">'''Figure 4.5 Visual analysis trend chart'''</span></div><span style="text-align: center; font-size: 75%;">'''<nowiki/>''''''</span>It can be seen from the range analysis Figure 4.6 that the angle of impact has the largest influence on the crush ratio, followed by the velocity of the impact, and the thickness of the mud wall has little effect.
681
682
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
683
[[Image:Draft_Peng_137819056-image65.png|center|258px]]
684
<span style="text-align: center; font-size: 75%;">'''Figure 4.6 Range scatter plot'''</span></div>
685
686
The results of the Analysis of Variance Table 3 show that the impact angle and impact velocity have a large influence on the particle break up ratio, but the thickness of the mud wall of the test target has little impact.
687
688
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
689
<span style="text-align: center; font-size: 75%;">'''Table 3 Analysis of variance table'''</span></div>
690
691
{| style="width: 100%;border-collapse: collapse;" 
692
|-
693
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|Difference source
694
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|SS
695
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|df
696
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|MS
697
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|F
698
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|p-value
699
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|Significance
700
|-
701
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|Impact angle
702
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|0.1027
703
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|2
704
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|0.0513
705
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|12.05
706
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|0.020269
707
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|*
708
|-
709
|  style="text-align: center;vertical-align: bottom;"|Impact velocity
710
|  style="text-align: center;vertical-align: bottom;"|0.0472
711
|  style="text-align: center;vertical-align: bottom;"|2
712
|  style="text-align: center;vertical-align: bottom;"|0.0236
713
|  style="text-align: center;vertical-align: bottom;"|5.54
714
|  style="text-align: center;vertical-align: bottom;"|0.070385
715
|  style="text-align: center;vertical-align: bottom;"|*
716
|-
717
|  style="text-align: center;vertical-align: bottom;"|Thickness of earth wall
718
|  style="text-align: center;vertical-align: bottom;"|0.0066
719
|  style="text-align: center;vertical-align: bottom;"|2
720
|  style="text-align: center;vertical-align: bottom;"|0.0033
721
|  style="text-align: center;vertical-align: bottom;"|
722
|  style="text-align: center;vertical-align: bottom;"|
723
|  style="text-align: center;vertical-align: bottom;"|
724
|-
725
|  style="text-align: center;vertical-align: bottom;"|Error  <math display="inline">e</math> 
726
|  style="text-align: center;vertical-align: bottom;"|0.0105
727
|  style="text-align: center;vertical-align: bottom;"|2
728
|  style="text-align: center;vertical-align: bottom;"|0.0052
729
|  style="text-align: center;vertical-align: bottom;"|
730
|  style="text-align: center;vertical-align: bottom;"|
731
|  style="text-align: center;vertical-align: bottom;"|
732
|-
733
|  style="text-align: center;vertical-align: bottom;"|
734
735
{| 
736
|-
737
|  style="text-align: center;vertical-align: bottom;"|Error  <math display="inline">e\Delta </math> 
738
|}
739
740
741
742
|  style="text-align: center;vertical-align: bottom;"|0.0170
743
|  style="text-align: center;vertical-align: bottom;"|4
744
|  style="text-align: center;vertical-align: bottom;"|0.0043
745
|  style="text-align: center;vertical-align: bottom;"|
746
|  style="text-align: center;vertical-align: bottom;"|
747
|  style="text-align: center;vertical-align: bottom;"|
748
|-
749
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|Summation
750
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|0.17
751
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|8.00
752
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|
753
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|
754
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|
755
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|
756
|}
757
758
For the purposes of this paper, in order to adjust the use of the test prototype, firstly, to change the shape of the new cor plate, and repeating the test of each contraption plate four times, and calculating the materials broken respectively. Insert this optimized component into a proof machine, the relative position is illustrated in Figure 4.7, The left side is the optimized cavity shape, the left side is the sand making machine, and the particle impact velocity is adjusted by controlling the rotational speed of the rotor. Figure 4.8 shows a photograph of the stone wall after impact crushing. The particles can be seen to impact in to the I region of the stone wall, and the stone wall in I area is broken, which is consistent with the definition of the crushing function in I area in the test simulation. A large amount of energy is absorbed into the stone wall and the particles are broken. The material then ejected upwards to Zone II, and the particles from the stone wall on the surface were disrupted by friction, and eventually flew along Zone III of the rock wall with only minor 
759
friction.[[Image:Draft_Peng_137819056-image68.png|center|264px]]<div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><span style="text-align: center; font-size: 75%;">'''Figure 4.7 Installation of test prototype'''</span>[[Image:Draft_Peng_137819056-image69.png|center|240px]]</div>
760
761
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
762
<span style="text-align: center; font-size: 75%;">Figure 4.8 Change of stone wall after impact crushing</span></div>
763
764
As can be seen in Table 4, only the advantages and disadvantages of the four shock plate shapes are compared by different methods, focusing on how they differ from the original shock plate shapes. Thus, depending on the grinding ratio, the grinding performance of the three impact plates can be compared.
765
766
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
767
<span style="text-align: center; font-size: 75%;">'''Table 4 Comparison before and after optimization of counterattack board'''</span></div>
768
769
{| style="width: 76%;border-collapse: collapse;" 
770
|-
771
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|Counterattack plate
772
|  colspan='3'  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|Crushing ratio
773
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"| 
774
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|Average
775
|-
776
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|After optimization
777
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|0.525
778
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|0.5526
779
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|0.6782
780
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|0.6552
781
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|0.60275
782
|-
783
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|Before optimization
784
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|0.423
785
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|0.5124
786
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|0.5322
787
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|0.4978
788
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|0.49135
789
|}
790
791
792
By means of experimental verification, the structural parameters that can make the best crushing performance of the new counter plate are obtained: when the angle of the I area is 35 degrees, area angle II is 100 degrees, and area angle III is 10 degrees, the shape of the shaped particles is relatively optimum, and the value of the performance index can be improved by about 8%-10% compared to the counter plate commonly used in the industry. These results provide strong support for the machine-made sand shaping mechanism.
793
794
==5. Conclusions==
795
796
The following conclusions were obtained:
797
798
(1) The numerical analysis of “rock-rock” and “rock-metal” models verifies that the energy of “rock-metal” model under impact is 3 - 8 times greater than that of “rock-rock” model. The stone powder wall plays a damping role in the impact process, which effectively reduces the impact energy.
799
800
(2) The residence time of particle-stone wall model is about 0.002s longer than that of particle-metal model at low to medium speed of 30-50 m/s on the arc impact plate, and about 0.01s longer than that of particle-metal model at the speed of 50-70 m/s. The comparison between flat and arc impact plates shows that the arc impact plate has a positive effect on particle residence.
801
802
(3) Mathematical models of stone powder wall particles shaping mechanism were established, and the incidence angle factor is considered to analyze particles’ tangential and normal motion. At low impact velocity, it is mainly the elastic-plastic model, while at high impact velocity, it is mainly the elastic-brittle model. It is concluded that the mechanism of stone powder wall shaping is multiple times of low-energy shear crushing in nature.
803
804
==Data Availability==
805
806
The data will be provided upon request, and all of them can be used without any conflict of interest.
807
808
==Acknowledgements==
809
810
This project is funded by Fujian University of Technology and is a science and technology project of Fujian University of Technology. The project number is (GY-Z220201)
811
812
==References==
813
814
[1] Ma Z, Shen J, Wang C, et al. Characterization of sustainable mortar containing high-quality recycled manufactured sand crushed from recycled coarse aggregate[J]. Cement and Concrete Composites, (2022), 132: 104629.
815
816
[2] Zheng W, Tannant D Tennant. Grain breakage criteria for discrete element models of sand crushing under one-dimensional compression[J]. Computers and Geotechnics, (2018), 95: 231-239.
817
818
[3] Benyessad D, Arkoub H, Seghir A. Modeling and optimization of sand crushing plant using experimental design methodology[J]. World Journal of Engineering, (2019).
819
820
[4] Gonçalves J P, Tavares L M, Toledo Filho R D, et al. Comparison of natural and manufactured fine aggregates in cement mortars[J]. Cement and Concrete Research, (2007), 37(6): 924-932.
821
822
[5] Cepuritis R, Jacobsen S, Onnela T. Sand production with VSI crushing and air classification: Optimising fines grading for concrete production with micro-proportioning[J]. Minerals Engineering, (2015), 78: 1-14.
823
824
[6] Petit A, Cordoba G, Paulo C I, et al. Novel air classification process to sustainable production of manufactured sands for aggregate industry[J]. Journal of cleaner production, (2018), 198: 112-120.
825
826
[7] Wu H, Wang C, Ma Z. Drying shrinkage, mechanical and transport properties of sustainable mortar with both recycled aggregate and powder from concrete waste[J]. Journal of Building Engineering, (2022), 49: 104048.
827
828
[8] Santhosh K G, Subhani S M, Bahurudeen A. Cleaner production of concrete by using industrial by-products as fine aggregate: A sustainable solution to excessive river sand mining[J]. Journal of Building Engineering, (2021), 42: 102415.
829
830
[9] Shen W, Wu J, Du X, et al. Cleaner production of high-quality manufactured sand and ecological utilization of recycled stone powder in concrete[J]. Journal of Cleaner Production, (2022): 134146.
831
832
[10] Wei F, Zhang F, Gao L, et al. Mechanical Properties and Micromorphology of Calcium Oxide Expansion Agent on River Sand/Machine-Made Sand Concrete[J]. Advances in Civil Engineering, (2022).
833
834
[11] Hou H. Influence of Machine-Made Sand Performance on Concrete[C]//E3S Web of Conferences. EDP Sciences, (2021), 233: 01040.
835
836
[12] Tan Y, Long J, Xiong W, et al. Effects of Polypropylene Fibers on the Frost Resistance of Natural Sand Concrete and Machine-Made Sand Concrete[J]. Polymers, (2022), 14(19): 4054.
837
838
[13] Liu D, Zhang W, Tang Y, et al. Orthogonal Experimental Study on Concrete Properties of Machine-Made Tuff Sand[J]. Materials, (2022), 15(10): 3516.
839
840
[14] Chen C, Yang H, Fan Z. Research on the influence of machine-made sand gradation and fineness modulus on the workability and rheological properties of mortar[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, (2021), 760(1): 012031.
841
842
[15] Deng L, Shen J, Lu S, et al. Study on how to determine the methylene blue (MB) value of machine-made sand and its effects on admixture dosage and compressive strength of concrete[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, (2021), 676(1): 012104.
843
844
[16] Chen Z, Yu K, Miao D, et al. Analysis of Machine-made Sand Parameters in Shaanxi[C]//E3S Web of Conferences. EDP Sciences, (2021), 233: 01099.
845
846
[17] Fei W, Narsilio G A, Disfani M M. Predicting effective thermal conductivity in sands using an artificial neural network with multiscale microstructural parameters[J]. International Journal of Heat and Mass Transfer, (2021), 170: 120997.
847
848
[18] He H, Wang Y, Wang J. Compactness and hardened properties of machine-made sand mortar with aggregate micro fines[J]. Construction and Building Materials, (2020), 250: 118828.
849
850
[19] Wang Y, He H, Wang J, et al. Effect of aggregate micro fines in machine-made sand on bleeding, autogenous shrinkage and plastic shrinkage cracking of concrete[J]. Materials and Structures, (2022), 55(3): 1-15.
851
852
[20] Tang Y, Qiu W, Liu D, et al. Experimental Study on the Properties of Mortar and Concrete Made with Tunnel Slag Machine-Made Sand[J]. Materials, (2022), 15(14): 4817.
853
854
[21] Wang P. Influence of boulder machine-made sand powder on compressive strength of concrete[C]//E3S Web of Conferences. EDP Sciences, (2021), 293.
855
856
[22] Wang X, Rao Y, Wang L, et al. Study on the Effect of Basalt Rock Powder on the Properties of Dry Mixed Mortar with Machine-Made Sand[J]. (2020).
857
858
[23] Cleary P W, Sinnott M D. Simulation of particle flows and breakage in crushers using DEM: Part 1–Compression crushers[J]. Minerals Engineering, (2015), 74: 178-197.
859
860
[24] Quist J, Evertsson C M. Cone crusher modelling and simulation using DEM[J]. Minerals Engineering, (2016), 85: 92-105.
861
862
[25] da Cunha E R, de Carvalho R M, Tavares L M. Simulation of solids flow and energy transfer in a vertical shaft impact crusher using DEM[J]. Minerals Engineering, (2013), 43: 85-90.
863

Return to Peng et al 2023a.

Back to Top