You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
3
4
<span id='_Hlk51705514'></span><span id='_Hlk41492253'></span><span id='_Hlk55074535'></span>
5
6
==Consolidation of soil induced by pile installation considering disturbance effect==
7
8
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
9
by</div>
10
11
==Authors: E-mail:==
12
13
<span id='_Hlk82103515'></span><span id='_Hlk82103504'></span>Ping Li<sup>1</sup> [mailto:geopingli@163.com geopingli@163.com]
14
15
Zhijian Chen<sup>2</sup> [mailto:zhijianchen_geo@163.com zhijianchen_geo@163.com]
16
17
Yi Ding<sup>3</sup> [mailto:nsscm_yiding@163.com nsscm_yiding@163.com]
18
19
==Affiliations:==
20
21
<sup>1</sup>College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China.
22
23
<sup>2</sup>School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China.
24
25
<span id='OLE_LINK4'></span><sup>3</sup> Nanjing Supervision Station for Construction Market, Nanjing 210098, China.
26
27
<span id='_Hlk73473327'></span>'''Corresponding author: '''Zhijian Chen<br/>
28
-->
29
==Abstract==
30
31
In practice, the consolidation of soil around the pile has a great influence on the time-dependent bearing capacity of pile. However, most of the consolidation theory of soil around the pile neglects the disturbance effect of pile-driving on surrounding soil and regards the soil as homogeneous, which overestimates the consolidation efficiency of the soil, and obtains a higher pile bearing capacity. In view of this, a consolidation model of soil around a pipe pile considering soil disturbance effect is presented in this paper. Fourier transform and separation of variables are used to obtain the analytical solution, and then the solution is verified by degradation analysis and Finite Difference Method (FDM). Firstly, the radial and vertical distribution of excess pore pressure generated after pile-driving is analyzed. In the radial direction, the excess pore pressure decreases rapidly from the radius of pipe pile to the radius of the disturbed zone, then slowly decays to 0 from'' ''the radius of disturbed zone to the influencing radius of pipe pile. In the vertical direction, the excess pore pressure along the vertical direction grows linearly. Subsequently, the variation of the average excess pore pressure at the pile-soil interface with the permeability coefficient and radius of disturbance zone are analyzed. The permeability coefficient of disturbance zone has a remarkable negative effect on the excess pore pressure during the whole consolidation period. Increasing the radius of the disturbance zone will hinder the dissipation of the excess pore pressure in the intermediate and later stages. Finally, the validity of the proposed analytical solution is illustrated by comparing with the laboratory results.
32
33
'''Keywords''': Pipe pile, disturbance effect, consolidation theory, analytical solution<br/>
34
35
==1. Introduction==
36
37
Coastal areas are mostly soft soil foundation, which needs to be treated before construction. Static pile technique is a common method to deal with soft soil foundation, which has been widely used in the world [1-3]. Although the bearing capacity of the foundation can be improved by pressing the static pile into the soil by the static pile pressing machine, it is inevitable to squeeze the soil in the process of pile installation, resulting in disturbance of the surrounding soil around the static pile [4-6]. Further, pile installation could produce high excess pore pressure, which results in the slow development of pile bearing capacity [7]. High excess pore pressure could also cause some negative effects on the pile and surrounding soil, including deviation of pile and ground heave [8-10]. Therefore, it is necessary to put forward a set of prediction scheme to evaluate the excess pore pressure after pile installation, so that engineers can deal with the risks in advance.
38
39
Axisymmetric consolidation model is often used to evaluate the dissipation of excess pore pressure after pile-driving. Randolph and Wroth [10] first proposed an analytical solution of axisymmetric consolidation around an impermeable pile considering radial drainage through pile-driving test. Subsequently, in the theoretical study on the axisymmetric consolidation of the soil around the impermeable pile, Guo  [11] proposed the analytical solution considering viscoelastic soil, and Gao and Shi [12] proposed the analytical solution considering both radial and vertical drainage. Recently, a permeable pile technique has been developed to accelerate the consolidation rate of foundation soil. Therefore, some scholars have further studied axisymmetric consolidation around a permeable pile [13,14].
40
41
It should be emphasized that all above-mentioned studies are limited to undisturbed soils. In fact, the existing field data and test data show that the disturbance effect on the soil around the pile is inevitable in the process of pile installation [15,16]. In general, in the process of pile installation, radial compression will occur to the soil around the pile, leading to the decrease of the radial permeability coefficient of the disturbed soil, which will lead to the decrease of the radial drainage performance of the soil. When the vertical drainage distance is long, the soil drainage path is mainly radial. In this case, the disturbance effect of soil should not be ignored.
42
43
Similar to pile installation, the prefabricated vertical drains (i.e., PVDs) installation has been fully studied <sup>[17-20]</sup>. Compared with the smear effect by PVD installation [21-25], the disturbance effect induced by pile installation is much more significant due to its bigger radius. Thus, it is of significance to study the consolidation of soil around the pile considering disturbance effect. Additionally, the growth rate of pile bearing capacity could be overestimated by using the current consolidation model, which leads to some unknown risks (e.g., excessive settlement and insufficient bearing capacity) and reducing the accuracy of building’s reliability analysis [9,26,27]. Therefore, whether it is the study of consolidation theory of soil around pile or the subsequent analysis of pile bearing capacity, the study of consolidation theory considering disturbance effect is of great significance. Unfortunately, there is no an analytical solution to axisymmetric consolidation of soil considering the disturbance effect around a pipe pile.
44
45
In order to better predict the dissipation process of excess pore pressure and the increase process of pile bearing capacity after piling, it is necessary to further optimize the existing consolidation theory. On the condition that the disturbance effect cannot be ignored, this paper presents an analytical solution to axisymmetric consolidation of soil considering the disturbance effect around a pipe pile on the basis of previous studies. Fourier transform and separation of variables are used to solve the problem, and the solution is calibrated by degradation analysis and FEM. Subsequently, the distribution of excess pore pressure along vertical and radial directions are analyzed by graphical interpretation. Moreover, the concept of the dimensionless average excess pore pressure at pile-soil interface is put forward and the influence of disturbance parameters on it is analyzed. Most importantly, the validity of the solution is demonstrated by comparing with test data.
46
47
==2. Mathematical model==
48
49
===2.1 Model description===
50
51
As shown in [[#img-1|Figure 1]], all involved parameters include the depth of foundation,  <math>H</math> , the radius of pipe pile,  <math>r_{0}</math> , the radius of the disturbed zone,  <math>r_{d}</math> , and the influencing radius of pipe pile,  <math>r_{e}</math> . In this model, the following assumptions are given:
52
53
(1) The soil around the pipe pile is elastic saturated soil, and the pipe pile is impermeable pile;
54
55
(2) The soil around the pile only has disturbance effect in radial direction;
56
57
(3) The soil parameters used in the model remain unchanged during the consolidation process.
58
59
<div id='img-1'></div>
60
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
61
|-
62
|style="padding:10px;"|  [[Image:Review_932178682507-image5.png|246px]]
63
|- style="text-align: center; font-size: 75%;"
64
| colspan="1" style="padding:10px;"| '''Figure 1'''. Schematic diagram of consolidation model for the soil around a pipe pile 
65
|}
66
67
===2.2 Governing equations===
68
69
According to the findings of Randolph and Wroth [10], the excess pore pressure generated during pile-driving will dissipate in both radial and vertical directions. Therefore, the following governing equations are established:
70
71
{| class="formulaSCP" style="width: 100%; text-align: center;" 
72
|-
73
| 
74
{| style="text-align: center; margin:auto;" 
75
|-
76
| <span id='ZEqnNum571777'></span>  <math>\begin{array}{c}
77
\displaystyle\frac{\partial u_1}{\partial t}=C_{d}\left(\displaystyle\frac{{\partial }^2u_1}{\partial r^2}+\displaystyle\frac{1}{r}\frac{\partial u_1}{\partial r}\right){+}C_{v}\displaystyle\frac{{\partial }^2u_1}{\partial z^2}\\
78
\displaystyle\frac{\partial u_2}{\partial t}=C_{h}\left(\displaystyle\frac{{\partial }^2u_2}{\partial r^2}+\displaystyle\frac{1}{r}\displaystyle\frac{\partial u_2}{\partial r}\right){+}C_{v}\displaystyle\frac{{\partial }^2u_2}{\partial z^2}
79
\end{array}</math>
80
|}
81
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
82
|}
83
84
where  <math>u_\mbox{1}</math> and  <math>u_\mbox{2}</math> are the excess pore pressure of disturbed zone (i.e.,  <math>r_0\leq r\leq r_\mbox{d}</math>) and undisturbed zone  (i.e.,  <math>r_\mbox{d}\leq r\leq r_\mbox{e}</math>), respectively;  <math>C_\mbox{h}</math> (i.e.,  <math>k_\mbox{h}/\left({\gamma }_\mbox{w}m_\mbox{v}\right)</math>) and  <math>C_\mbox{d}</math> (i.e.,  <math>k_\mbox{d}/\left({\gamma }_\mbox{w}m_\mbox{v}\right)</math>) represent the consolidation coefficient in radial direction of undisturbed and disturbed zones, respectively;  <math>C_\mbox{v}</math> (i.e.,  <math>k_\mbox{v}/\left({\gamma }_\mbox{w}m_\mbox{v}\right)</math>) represent the consolidation coefficient in vertical direction of the undisturbed zone;  <math>k_\mbox{h}</math> and  <math>k_\mbox{d}</math> represent the permeability coefficient in radial direction of disturbed and undisturbed zones, respectively;  <math>k_\mbox{v}</math> represent the permeability coefficient in vertical direction of the influencing zone;  <math>m_\mbox{v}</math> is the volume compression coefficient of soil;  <math>{\gamma }_\mbox{w}</math> is the unit weight of water;  <math>r</math> and  <math>z</math> are the radial distance from the center of pile and the depth from the ground surface, respectively; and  <math>t</math> is consolidation time.
85
86
===2.3 Initial and boundary conditions===
87
88
The initial pore pressure distribution of soil around a pile after pile-driving can generally be obtained through numerical simulation or experimental test [28-30]. Here, the initial excess pore pressure is generalized expressed as
89
90
{| class="formulaSCP" style="width: 100%; text-align: center;" 
91
|-
92
| 
93
{| style="text-align: center; margin:auto;" 
94
|-
95
| <span id='ZEqnNum823648'></span>  <math>{u_1\vert }_{t=0}={u_2\vert }_{t=0}=u_0\left(r,z\right)</math>
96
|}
97
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
98
|}
99
100
The pile is impermeable and the excess pore pressure outside the influencing radius  <math>r_\mbox{e}</math> affected by pipe pile is ignored, it yields
101
102
{| class="formulaSCP" style="width: 100%; text-align: center;" 
103
|-
104
| 
105
{| style="text-align: center; margin:auto;" 
106
|-
107
| <span id='ZEqnNum743846'></span>  <math>\frac{\partial u_1}{\partial r}\Bigg|_{r=r_0} ={u_2\vert }_{r=r_\mbox{e}}=</math><math>0</math>
108
|}
109
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
110
|}
111
112
The interface between the disturbed and undisturbed zones needs to satisfy the flow continuity condition, that is
113
114
{| class="formulaSCP" style="width: 100%; text-align: center;" 
115
|-
116
| 
117
{| style="text-align: center; margin:auto;" 
118
|-
119
| <span id='ZEqnNum201641'></span>  <math>\begin{array}{c}
120
{u_1\vert }_{r=r_\mbox{d}}={u_2\vert }_{r=r_\mbox{d}}\\
121
k_\mbox{d}\displaystyle\frac{\partial u_1}{\partial r}\Bigg|_{r=r_\mbox{d}}=k_\mbox{h}\displaystyle\frac{\partial u_2}{\partial r}\Bigg|_{r=r_\mbox{d}}
122
\end{array}</math>
123
|}
124
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
125
|}
126
127
The top of the ground is permeable, while the bottom is impermeable. Therefore, the vertical boundary can be expressed as
128
129
{| class="formulaSCP" style="width: 100%; text-align: center;" 
130
|-
131
| 
132
{| style="text-align: center; margin:auto;" 
133
|-
134
| <span id='ZEqnNum798795'></span>  <math>\begin{array}{c}
135
{u_1\vert }_{z=0}=\displaystyle\frac{\partial u_1}{\partial z}\Bigg|_{z=H}=0\\
136
{u_2\vert }_{z=0}=\displaystyle\frac{\partial u_2}{\partial z}\Bigg|_{z=H}=0
137
\end{array}</math>
138
|}
139
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
140
|}
141
142
===2.4 Solving procedures===
143
144
According to the boundary condition of Eq.<span id='cite-ZEqnNum798795'></span>[[#ZEqnNum798795|(5)]], the finite Fourier sine transform is performed on the governing equation (i.e., Eq.<span id='cite-ZEqnNum571777'></span>[[#ZEqnNum571777|(1)]]) and its remaining solving conditions (i.e., Eq.<span id='cite-ZEqnNum823648'></span>[[#ZEqnNum823648|(2)]]-<span id='cite-ZEqnNum201641'></span>[[#ZEqnNum201641|(4)]]), which yields
145
146
{| class="formulaSCP" style="width: 100%; text-align: center;" 
147
|-
148
| 
149
{| style="text-align: center; margin:auto;" 
150
|-
151
| <span id='ZEqnNum149568'></span>  <math> \frac{\partial \overline{u}_1}{\partial t}=C_d \left(\frac{\partial^2 \overline{u}_1}{\partial r^2}+ \frac{1}{r} \frac{\partial \overline{u}_1}{\partial r}\right) - C_v \left(\frac{N_n}{H} \right)^2 \overline{u}_1, \quad r_0\le r\le r_d ; </math>
152
|-
153
| <math> \frac{\partial {\overline{u}}_2}{\partial t}=C_h \left( \frac{\partial^2 {\overline{u}}_2}{\partial r^2}+ \frac{1}{r} \frac{\partial {\overline{u}}_2}{\partial r}\right) - C_v \left(\frac{N_n}{H} \right)^2\overline{u}_2, \quad r_d\le r\le r_e ; </math>
154
|}
155
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
156
|}
157
158
{| class="formulaSCP" style="width: 100%; text-align: center;" 
159
|-
160
| 
161
{| style="text-align: center; margin:auto;" 
162
|-
163
| <span id='ZEqnNum969494'></span>  <math>{{\overline{u}}_1\vert }_{t=0}={{\overline{u}}_2\vert }_{t=0}=</math><math>{\int }_0^Hu_0\left(r,z\right)\sin\frac{N_nz}{H}{d}z</math>
164
|}
165
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
166
|}
167
168
{| class="formulaSCP" style="width: 100%; text-align: center;" 
169
|-
170
| 
171
{| style="text-align: center; margin:auto;" 
172
|-
173
| <span id='ZEqnNum791600'></span>  <math>\displaystyle\frac{\partial {\overline{u}}_1}{\partial r}\Bigg|_{r=r_0}={{\overline{u}}_2\vert }_{r=r_{e}}=0</math>
174
|}
175
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
176
|}
177
178
{| class="formulaSCP" style="width: 100%; text-align: center;" 
179
|-
180
| 
181
{| style="text-align: center; margin:auto;" 
182
|-
183
| <span id='ZEqnNum399916'></span>  <math>\begin{array}{c}
184
{{\overline{u}}_1\vert }_{r=r_{d}}={{\overline{u}}_2\vert }_{r=r_{d}}\\
185
k_{d}\displaystyle\frac{\partial {\overline{u}}_1}{\partial r}\Bigg|_{r=r_{d}}=k_{h}\displaystyle\frac{\partial {\overline{u}}_2}{\partial r}\Bigg|_{r=r_{d}}
186
\end{array}</math>
187
|}
188
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
189
|}
190
191
where  <math>{\overline{u}}_i={\int }_0^Hu_i \sin\frac{N_nz}{H}{d}z,{ }i=1,2</math>; and  <math>N_n=\left(2n-1\right){π}/2</math>.
192
193
According to the separation of variables method,  <math>{\overline{u}}_1</math> and  <math>{\overline{u}}_2</math> can be written as
194
195
{| class="formulaSCP" style="width: 100%; text-align: center;" 
196
|-
197
| 
198
{| style="text-align: center; margin:auto;" 
199
|-
200
| <span id='ZEqnNum108209'></span>  <math>\begin{array}{c}
201
{\overline{u}}_1=R_{1mn}\left(r\right)T_{1mn}\left(t\right)\\
202
{\overline{u}}_2=R_{2mn}\left(r\right)T_{2mn}\left(t\right)
203
\end{array}</math>
204
|}
205
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
206
|}
207
208
where  <math>R_{1mn}</math> and  <math>R_{2mn}</math> are functions of  <math>r</math>;  <math>T_{1mn}</math> and  <math>T_{2mn}</math> are functions of  <math>t</math>.
209
210
Substituting Eq.(10) into Eq.(6), one can obtain
211
212
{| class="formulaSCP" style="width: 100%; text-align: center;" 
213
|-
214
| 
215
{| style="text-align: center; margin:auto;" 
216
|-
217
| <span id='ZEqnNum505543'></span>  <math>\begin{array}{c}
218
\displaystyle\frac{\displaystyle\frac{{d}T_{1mn}}{{d}t}}{C_{d}T_{1mn}}+\displaystyle\frac{C_{v}}{C_{d}}{\alpha }_n^2=\displaystyle\frac{1}{R_{1mn}}\left(\displaystyle\frac{{d}^2R_{1mn}}{{d}r^2}+\displaystyle\frac{1}{r}\displaystyle\frac{{d}R_{1mn}}{{d}r}\right)=-{\beta }_{1mn}^2\\
219
\displaystyle\frac{\displaystyle\frac{{d}T_{2mn}}{{d}t}}{C_{h}T_{2mn}}+\displaystyle\frac{C_{v}}{C_{h}}{\alpha }_n^2=\displaystyle\frac{1}{R_{2mn}}\left(\displaystyle\frac{{d}^2R_{2mn}}{{d}r^2}+\displaystyle\frac{1}{r}\displaystyle\frac{{d}R_{2mn}}{{d}r}\right)=-{\beta }_{2mn}^2
220
\end{array}</math>
221
|}
222
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
223
|}
224
225
where  <math>{\alpha }_n=N_n/H</math>; and  <math>{\beta }_{1mn}</math> and  <math>{\beta }_{2mn}</math> are the separation constants.
226
227
It can be found that Eq.<span id='cite-ZEqnNum505543'></span>[[#ZEqnNum505543|(11)]] is an ordinary differential equation, and the solution to Eq.<span id='cite-ZEqnNum505543'></span>[[#ZEqnNum505543|(11)]] can be easily obtained as follows
228
229
{| class="formulaSCP" style="width: 100%; text-align: center;" 
230
|-
231
| 
232
{| style="text-align: center; margin:auto;" 
233
|-
234
| <span id='ZEqnNum188101'></span>  <math>\begin{array}{l}
235
R_{1mn}=a_{1mn}{J}_0\left({\beta }_{1mn}r\right)+b_{1mn}{Y}_0\left({\beta }_{1mn}r\right)\\
236
T_{1mn}=c_{1mn}{e}^{-\left(C_{d}{\beta }_{1mn}^2+C_{v}{\alpha }_n^2\right)t}
237
\end{array}</math>
238
|}
239
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
240
|}
241
242
{| class="formulaSCP" style="width: 100%; text-align: center;" 
243
|-
244
| 
245
{| style="text-align: center; margin:auto;" 
246
|-
247
| <span id='ZEqnNum833305'></span>  <math>\begin{array}{l}
248
R_{2mn}=a_{2mn}{J}_0\left({\beta }_{2mn}r\right)+b_{2mn}{Y}_0\left({\beta }_{2mn}r\right)\\
249
T_{2mn}=c_{2mn}{e}^{-\left(C_{h}{\beta }_{2mn}^2+C_{v}{\alpha }_n^2\right)t}
250
\end{array}</math>
251
|}
252
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
253
|}
254
255
where  <math>{J}_0</math>,  <math>{Y}_0</math> are the zero-order Bessel functions of the first- and second- kind, respectively.
256
257
Combining Eqs.<span id='cite-ZEqnNum188101'></span>[[#ZEqnNum188101|(12)]] and <span id='cite-ZEqnNum833305'></span>[[#ZEqnNum833305|(13)]],  <math>{\overline{u}}_1</math> and  <math>{\overline{u}}_2</math> can be rewritten as
258
259
{| class="formulaSCP" style="width: 100%; text-align: center;" 
260
|-
261
| 
262
{| style="text-align: center; margin:auto;" 
263
|-
264
| <span id='ZEqnNum354201'></span>  <math>\begin{array}{c}
265
{\overline{u}}_1=\displaystyle\sum_{m=1}^{\infty }\left[A_{1mn}{J}_0\left({\beta }_{1mn}r\right)+B_{1mn}{Y}_0\left({\beta }_{1mn}r\right)\right]{e}^{-\left(C_{d}{\beta }_{1mn}^2+C_{v}{\alpha }_n^2\right)t}\\
266
{\overline{u}}_2=\displaystyle\sum_{m=1}^{\infty }\left[A_{2mn}{J}_0\left({\beta }_{2mn}r\right)+B_{2mn}{Y}_0\left({\beta }_{2mn}r\right)\right]{e}^{-\left(C_{h}{\beta }_{2mn}^2+C_{v}{\alpha }_n^2\right)t}
267
\end{array}</math>
268
|}
269
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
270
|}
271
272
Substituting Eq.<span id='cite-ZEqnNum354201'></span>[[#ZEqnNum354201|(14)]] into the boundary condition of Eq.<span id='cite-ZEqnNum791600'></span>[[#ZEqnNum791600|(8)]], it yields
273
274
{| class="formulaSCP" style="width: 100%; text-align: center;" 
275
|-
276
| 
277
{| style="text-align: center; margin:auto;" 
278
|-
279
| <span id='ZEqnNum665918'></span>  <math>\begin{array}{c}
280
{\overline{u}}_1=\displaystyle\sum_{m=1}^{\infty }A_{1mn}R_1\left({\beta }_{1mn}r\right){e}^{-\left(C_{d}{\beta }_{1mn}^2+C_{v}{\alpha }_n^2\right)t}\\
281
{\overline{u}}_2=\displaystyle\sum_{m=1}^{\infty }A_{2mn}R_2\left({\beta }_{2mn}r\right){e}^{-\left(C_{h}{\beta }_{2mn}^2+C_{v}{\alpha }_n^2\right)t}
282
\end{array}</math>
283
|}
284
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
285
|}
286
287
where  <math>{\chi }_1\left({\beta }_{1mn}\right)=\frac{{J}_1\left({\beta }_{1mn}r_0\right)}{{Y}_1\left({\beta }_{1mn}r_0\right)}</math>;  <math>{\chi }_2\left({\beta }_{2mn}\right)=\frac{{J}_0\left({\beta }_{2mn}r_{e}\right)}{{Y}_0\left({\beta }_{2mn}r_{e}\right)}</math>;  <math>R_1\left({\beta }_{1mn}r\right)={J}_0\left({\beta }_{1mn}r\right)-</math><math>{\chi }_1\left({\beta }_{1mn}\right){Y}_0\left({\beta }_{1mn}r\right)</math>; and  <math>R_2\left({\beta }_{2mn}r\right)={J}_0\left({\beta }_{2mn}r\right)-</math><math>{\chi }_2\left({\beta }_{2mn}\right){Y}_0\left({\beta }_{2mn}r\right)</math>.
288
289
Substituting Eq.<span id='cite-ZEqnNum665918'></span>[[#ZEqnNum665918|(15)]] into the continuous boundary condition (i.e., Eq.<span id='cite-ZEqnNum399916'></span>[[#ZEqnNum399916|(9)]]), it yields
290
291
{| class="formulaSCP" style="width: 100%; text-align: center;" 
292
|-
293
| 
294
{| style="text-align: center; margin:auto;" 
295
|-
296
| <span id='ZEqnNum164985'></span>  <math>R_1\left({\beta }_{1mn}r_{d}\right)A_{1mn}=R_2\left({\beta }_{2mn}r_{d}\right)A_{2mn}</math>
297
|}
298
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
299
|}
300
301
and
302
303
{| class="formulaSCP" style="width: 100%; text-align: center;" 
304
|-
305
| 
306
{| style="text-align: center; margin:auto;" 
307
|-
308
| <span id='ZEqnNum741519'></span>  <math>\left\{ \begin{array}{c}
309
C_{d}{\beta }_{1mn}^2=C_{h}{\beta }_{2mn}^2\\
310
\frac{R_2\left({\beta }_{2mn}r_{d}\right)}{R_1\left({\beta }_{1mn}r_{d}\right)}=\frac{k_{h}{\beta }_{2mn}P_2\left({\beta }_{2mn}r_{d}\right)}{k_{d}{\beta }_{1mn}P_1\left({\beta }_{1mn}r_{d}\right)}
311
\end{array}\right.</math>
312
|}
313
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
314
|}
315
316
where  <math>P_1\left({\beta }_{1mn}r\right)={J}_1\left({\beta }_{1mn}r\right)-</math><math>{\chi }_1\left({\beta }_{1mn}\right){Y}_1\left({\beta }_{1mn}r\right)</math>; and  <math>P_2\left({\beta }_{2mn}r\right)={J}_1\left({\beta }_{2mn}r\right)-</math><math>{\chi }_2\left({\beta }_{2mn}\right){Y}_1\left({\beta }_{2mn}r\right)</math>.
317
318
Combined with Eq.<span id='cite-ZEqnNum164985'></span>[[#ZEqnNum164985|(16)]], Eq.<span id='cite-ZEqnNum665918'></span>[[#ZEqnNum665918|(15)]] can be rewritten as
319
320
{| class="formulaSCP" style="width: 100%; text-align: center;" 
321
|-
322
| 
323
{| style="text-align: center; margin:auto;" 
324
|-
325
| <span id='ZEqnNum775505'></span>  <math>\begin{array}{l}
326
{\overline{u}}_1=\displaystyle\sum_{m=1}^{\infty }A_{2mn}\frac{R_2\left({\beta }_{2mn}r_{d}\right)}{R_1\left({\beta }_{1mn}r_{d}\right)}R_1\left({\beta }_{1mn}r\right){e}^{-\left(C_{d}{\beta }_{1mn}^2+C_{v}{\alpha }_n^2\right)t}\\
327
{\overline{u}}_2=\displaystyle\sum_{m=1}^{\infty }A_{2mn}R_2\left({\beta }_{2mn}r\right){e}^{-\left(C_{h}{\beta }_{2mn}^2+C_{v}{\alpha }_n^2\right)t}
328
\end{array}</math>
329
|}
330
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
331
|}
332
333
<math>{\beta }_{1mn}</math> and  <math>{\beta }_{2mn}</math> can be solved with Eq.<span id='cite-ZEqnNum741519'></span>[[#ZEqnNum741519|(17)]]. Then, using the initial condition of Eq.<span id='cite-ZEqnNum969494'></span>[[#ZEqnNum969494|(7)]] and orthogonality of eigenfunctions, one can obtain
334
335
{| class="formulaSCP" style="width: 100%; text-align: center;" 
336
|-
337
| 
338
{| style="text-align: center; margin:auto;" 
339
|-
340
| <span id='ZEqnNum753186'></span>  <math>\begin{array}{c}
341
A_{2mn}\displaystyle\int_{r_0}^{r_{d}}r{\left[\displaystyle\frac{R_2\left({\beta }_{2mn}r_{d}\right)}{R_1\left({\beta }_{1mn}r_{d}\right)}R_1\left({\beta }_{1mn}r\right)\right]}^2{d}r+A_{2mn}\displaystyle\int_{r_{d}}^{r_{e}}rR_2^2\left({\beta }_{2mn}r\right){d}r\\
342
=\displaystyle\int_{r_0}^{r_{d}}r\displaystyle\frac{R_2\left({\beta }_{2mn}r_{d}\right)}{R_1\left({\beta }_{1mn}r_{d}\right)}R_1\left({\beta }_{1mn}r\right)\displaystyle\int _0^Hu_0\left(r,z\right)\sin{\alpha }_nz{d}z{d}r+\displaystyle\int_{r_{d}}^{r_{e}}rR_2\left({\beta }_{2mn}r\right){\int }_0^Hu_0\left(r,z\right)\sin{\alpha }_nz{d}z{d}r
343
\end{array}</math>
344
|}
345
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
346
|}
347
348
According to Eq.<span id='cite-ZEqnNum753186'></span>[[#ZEqnNum753186|(19)]], the coefficient  <math>A_{2mn}</math> can be obtained. Applying finite Fourier inverse transform to Eq.<span id='cite-ZEqnNum775505'></span>[[#ZEqnNum775505|(18)]], the general solutions can be written as
349
350
{| class="formulaSCP" style="width: 100%; text-align: center;" 
351
|-
352
| 
353
{| style="text-align: center; margin:auto;" 
354
|-
355
| <math>\begin{array}{l}
356
u_1=\frac{2}{H}\displaystyle\sum_{m=1}^{\infty }\displaystyle\sum_{n=1}^{\infty }A_{2mn}\frac{R_2\left({\beta }_{2mn}r_{d}\right)}{R_1\left({\beta }_{1mn}r_{d}\right)}R_1\left({\beta }_{1mn}r\right)\sin{\alpha }_nz{e}^{-\left(C_{d}{\beta }_{1mn}^2+C_{v}{\alpha }_n^2\right)t}\\
357
u_2=\frac{2}{H}\displaystyle\sum_{m=1}^{\infty }\displaystyle\sum_{n=1}^{\infty }A_{2mn}R_2\left({\beta }_{2mn}r\right)\sin{\alpha }_nz{e}^{-\left(C_{h}{\beta }_{2mn}^2+C_{v}{\alpha }_n^2\right)t}
358
\end{array}</math>
359
|}
360
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
361
|}
362
363
The initial excess pore pressure is mainly distributed in the plastic zone. It decays along the radius direction and increases along the depth. It is also worthy to highlight the fact that the initial excess pore pressure is calculated after pile-driving, at which time the excess pore pressure of the upper part of surface soil has been completely dissipated [14]. So, the specific expression form of the initial excess pore pressure is given as follows
364
365
{| class="formulaSCP" style="width: 100%; text-align: center;" 
366
|-
367
| 
368
{| style="text-align: center; margin:auto;" 
369
|-
370
| <span id='ZEqnNum163277'></span>  <math>u_0\left(r,z\right)=a_1\left(z-h_0\right)ln\frac{r_{p}}{r}</math>
371
|}
372
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
373
|}
374
375
where  <math>r_{p}</math> is the radius of plastic zone; <math>a_1</math> and  <math>h_0</math> are constant to be determined. The distribution range of the initial excess pore pressure is  <math>\left\{z\geq h_0;r_0\leq r\leq r_{p}\right\}</math>.
376
377
Then, the coefficient  <math>A_{2mn}</math> can be specified as
378
379
{| class="formulaSCP" style="width: 100%; text-align: center;" 
380
|-
381
| 
382
{| style="text-align: center; margin:auto;" 
383
|-
384
| <math>A_{2mn}=\frac{a_1\left(\sin{\alpha }_nH-\sin{\alpha }_nh_0\right)}{{\alpha }_n{}^2}\frac{\frac{R_2\left({\beta }_{2mn}r_{d}\right)}{R_1\left({\beta }_{1mn}r_{d}\right)}{\delta }_1+{\delta }_2}{\frac{R_2^2\left({\beta }_{2mn}r_{d}\right)}{R_1^2\left({\beta }_{1mn}r_{d}\right)}{\delta }_3+{\delta }_4}</math>
385
|}
386
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
387
|}
388
389
where
390
391
<math>{\delta }_1=\frac{1}{{\beta }_{1mn}}\left\{\frac{1}{{\beta }_{1mn}}\left[R_1\left({\beta }_{1mn}r_{0}\right)-\right. \right. </math><math>\left. \left. R_1\left({\beta }_{1mn}r_{d}\right)\right]+\right. </math><math>\left. r_{d}ln\frac{r_{p}}{r_{d}}P_1\left({\beta }_{1mn}r_{d}\right)-\right. </math><math>\left. r_0ln\frac{r_{p}}{r_0}P_1\left({\beta }_{1mn}r_{0}\right)\right\}</math>;
392
393
<math>{\delta }_2=\frac{1}{{\beta }_{2mn}}\left\{\frac{1}{{\beta }_{2mn}}\left[R_2\left({\beta }_{2mn}r_{d}\right)-\right. \right. </math><math>\left. \left. R_2\left({\beta }_{2mn}r_{p}\right)\right]+\right. </math><math>\left. r_{p}ln\frac{r_{p}}{r_{p}}P_2\left({\beta }_{2mn}r_{p}\right)-\right. </math><math>\left. r_{d}ln\frac{r_{p}}{r_{d}}P_2\left({\beta }_{2mn}r_{d}\right)\right\}</math>;
394
395
<math>{\delta }_3=\frac{r_{d}{}^2}{2}\left[P_1^2\left({\beta }_{1mn}r_{d}\right)+\right. </math><math>\left. R_1^2\left({\beta }_{1mn}r_{d}\right)\right]-</math><math>\frac{r_{0}{}^2}{2}\left[P_1^2\left(m,n,r_{0}\right)+\right. </math><math>\left. R_1^2\left(m,n,r_{0}\right)\right]</math>;
396
397
<math>{\delta }_4=\frac{r_{e}{}^2}{2}\left[P_2{\left({\beta }_{2mn}r_{e}\right)}^2+\right. </math><math>\left. R_2^2\left({\beta }_{2mn}r_{e}\right)\right]-</math><math>\frac{r_{d}{}^2}{2}\left[P_2^2\left({\beta }_{2mn}r_{d}\right)+\right. </math><math>\left. R_2^2\left({\beta }_{2mn}r_{d}\right)\right]</math>.
398
399
===3. Degradation analysis and verification by FEM===
400
401
The verification and subsequent parameter sensitivity analysis using the parameters defined below. The parameters not mentioned can be obtained in the graphical analysis.
402
403
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
404
 <math>\begin{array}{ccc}
405
m_\mbox{v}={10}^{-2}\mbox{ }\mbox{m}^2/\mbox{kN} & {\gamma }_\mbox{w}=10\mbox{kN}/\mbox{m}^3 & k_\mbox{v}=2\times {10}^{-9}\mbox{m}/\mbox{s}\\
406
r_0=0.25\mbox{ m} & r_\mbox{p}=1.2\times r_\mbox{d} & r_\mbox{e}=20\times r_\mbox{0}\\
407
H=20\mbox{ m} & h_0=0.5\mbox{ m} & a_1=5\mbox{kPa}/\mbox{m}
408
\end{array}</math> </div>
409
410
<span id='_Hlk52459816'></span><span id='_Hlk52481419'></span>
411
412
====3.1 Degradation analysis====
413
414
<span id='_Hlk58346120'></span><span id='_Hlk51712381'></span><span id='_Hlk50932241'></span>When  <math>k_\mbox{h}</math> and  <math>k_\mbox{d}</math> are equal, it can be seen from Eq. <span id='cite-ZEqnNum741519'></span>[[#ZEqnNum741519|(17)]] that
415
416
{| class="formulaSCP" style="width: 100%; text-align: center;" 
417
|-
418
| 
419
{| style="text-align: center; margin:auto;" 
420
|-
421
| <span id='ZEqnNum989253'></span>  <math>{\beta }_{1mn}={\beta }_{2mn}</math>
422
|}
423
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
424
|}
425
426
427
and
428
429
{| class="formulaSCP" style="width: 100%; text-align: center;" 
430
|-
431
| 
432
{| style="text-align: center; margin:auto;" 
433
|-
434
| <span id='ZEqnNum808683'></span>  <math>{\chi }_1\left({\beta }_{1mn}\right)={\chi }_2\left({\beta }_{2mn}\right)</math>
435
|}
436
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
437
|}
438
439
440
<math>{\beta }_{1mn}</math> and  <math>{\beta }_{2mn}</math> are obtained by solving Eq. <span id='cite-ZEqnNum808683'></span>[[#ZEqnNum808683|(24)]]. Substituting Eq. <span id='cite-ZEqnNum989253'></span>[[#ZEqnNum989253|(23)]] and Eq. <span id='cite-ZEqnNum808683'></span>[[#ZEqnNum808683|(24)]] back into  <math>R_1\left({\beta }_{1mn}r\right)</math> ,  <math>R_2\left({\beta }_{2mn}r\right)</math> ,  <math>P_1\left({\beta }_{1mn}r\right)</math> and  <math>P_2\left({\beta }_{2mn}r\right)</math> , it yields
441
442
{| class="formulaSCP" style="width: 100%; text-align: center;" 
443
|-
444
| 
445
{| style="text-align: center; margin:auto;" 
446
|-
447
| <span id='ZEqnNum350685'></span>  <math>\lbrace \begin{array}{c}
448
R_1\left({\beta }_{1mn}r\right)=R_2\left({\beta }_{2mn}r\right)\\
449
P_1\left({\beta }_{1mn}r\right)=P_2\left({\beta }_{2mn}r\right)
450
\end{array}</math>
451
|}
452
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
453
|}
454
455
456
Combining Eq. <span id='cite-ZEqnNum164985'></span>[[#ZEqnNum164985|(16)]] with Eq. <span id='cite-ZEqnNum350685'></span>[[#ZEqnNum350685|(25)]], one can obtain
457
458
{| class="formulaSCP" style="width: 100%; text-align: center;" 
459
|-
460
| 
461
{| style="text-align: center; margin:auto;" 
462
|-
463
| <math>A_{1mn}=A_{2mn}</math>
464
|}
465
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
466
|}
467
468
469
So, it is found that  <math>{\overline{u}}_1</math> and  <math>{\overline{u}}_2</math> in Eq. <span id='cite-ZEqnNum665918'></span>[[#ZEqnNum665918|(15)]] are equal. Write them together as
470
471
{| class="formulaSCP" style="width: 100%; text-align: center;" 
472
|-
473
| 
474
{| style="text-align: center; margin:auto;" 
475
|-
476
| <math>\overline{u}=\sum_{m=1}^{\infty }A_{mn}R\left({\beta }_{mn}r\right)\mbox{e}^{-\left(C_\mbox{h}{\beta }_{mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}</math>
477
|}
478
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
479
|}
480
481
482
where  <math>A_{mn}=A_{1mn}=A_{2mn}</math> ;  <math>{\beta }_{mn}={\beta }_{1mn}={\beta }_{2mn}</math> ;  <math>\chi \left({\beta }_{mn}\right)={\chi }_1\left({\beta }_{1mn}\right)=</math><math>{\chi }_2\left({\beta }_{2mn}\right)</math> ; and <math>P\left({\beta }_{mn}r\right)=P_1\left({\beta }_{1mn}r\right)=</math><math>P_2\left({\beta }_{2mn}r\right)</math> .
483
484
After finite Fourier inverse transform, the final general solution without considering disturbance effect can be obtained as
485
486
{| class="formulaSCP" style="width: 100%; text-align: center;" 
487
|-
488
| 
489
{| style="text-align: center; margin:auto;" 
490
|-
491
| <math>u=\frac{2}{H}\sum_{m=1}^{\infty }\sum_{n=1}^{\infty }A_{mn}R\left({\beta }_{mn}r\right)sin{\alpha }_nz\mbox{e}^{-\left(C_\mbox{h}{\beta }_{mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}</math>
492
|}
493
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
494
|}
495
496
497
which is consistent with of the solution proposed by Gao and Shi (2008) <sup>[12]</sup>.
498
499
<span id='_Hlk52481937'></span>
500
501
====3.2 Verification by FDM====
502
503
<span id='_Hlk73027317'></span>In order to further verify the correctness of the proposed solution, the FDM is used for comparison. First, the solution domain  <math display="inline">\left\{\begin{array}{cc}
504
r_0\leq r\leq r_\mbox{e}; & 0\leq z\leq H
505
\end{array}\right\}</math> is discretized, as follow
506
507
{| class="formulaSCP" style="width: 100%; text-align: center;" 
508
|-
509
| 
510
{| style="text-align: center; margin:auto;" 
511
|-
512
| <math>\lbrace \begin{array}{lll}
513
r_i=r_0+i\Delta r & \Delta r=\frac{r_\mbox{e}-r_0}{I} & i=0,1...,I\\
514
z_j=j\Delta z & \Delta z=\frac{H}{J} & j=0,1...,J
515
\end{array}</math>
516
|}
517
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
518
|}
519
520
521
where  <math display="inline">r_i</math> and  <math display="inline">z_j</math> are respectively the radial distance and depth corresponding to point'' i ''or ''j'';  <math display="inline">\Delta r</math> and  <math display="inline">\Delta z</math> are respectively radial mesh and depth mesh.
522
523
The governing equation (i.e., Eq. <span id='cite-ZEqnNum571777'></span>[[#ZEqnNum571777|(1)]]) and solving conditions (i.e., Eqs. <span id='cite-ZEqnNum823648'></span>[[#ZEqnNum823648|(2)]] - <span id='cite-ZEqnNum798795'></span>[[#ZEqnNum798795|(5)]]) are discretized by using the forward-backward implicit difference scheme as shown below
524
525
{| class="formulaSCP" style="width: 100%; text-align: center;" 
526
|-
527
| 
528
{| style="text-align: center; margin:auto;" 
529
|-
530
| <math>\frac{u_{i,j}^k-u_{i,j}^{k-1}}{\Delta t}=C_{\mbox{h}i}\left[\frac{u_{i-1,j}^{k-1}-2u_{i,j}^{k-1}+u_{i+1,j}^{k-1}}{{\left(\Delta r\right)}^2}+\right. </math><math>\left. \frac{1}{r_i}\frac{u_{i+1,j}^{k-1}-u_{i-1,j}^{k-1}}{2\Delta r}\right]+</math><math>C_\mbox{v}\frac{u_{i,j-1}^{k-1}-2u_{i,j}^{k-1}+u_{i,j+1}^{k-1}}{{\left(\Delta z\right)}^2}</math>
531
|}
532
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
533
|}
534
535
{| class="formulaSCP" style="width: 100%; text-align: center;" 
536
|-
537
| 
538
{| style="text-align: center; margin:auto;" 
539
|-
540
| <math>u_{i,j}^0=u_0\left(r_i,z_j\right)</math>
541
|}
542
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
543
|}
544
545
{| class="formulaSCP" style="width: 100%; text-align: center;" 
546
|-
547
| 
548
{| style="text-align: center; margin:auto;" 
549
|-
550
| <math>\begin{array}{c}
551
u_{-1,j}^k=u_{1,j}^k\\
552
u_{I,j}^k=0
553
\end{array}</math>
554
|}
555
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
556
|}
557
558
{| class="formulaSCP" style="width: 100%; text-align: center;" 
559
|-
560
| 
561
{| style="text-align: center; margin:auto;" 
562
|-
563
| <math>k_{\mbox{h}I_\mbox{d}}\frac{u_{I_\mbox{d},j}^k-u_{I_\mbox{d}-1,j}^k}{\Delta r}=</math><math>k_{\mbox{h}I_\mbox{d}+1}\frac{u_{I_\mbox{d}+1,j}^k-u_{I_\mbox{d},j}^k}{\Delta r}</math>
564
|}
565
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
566
|}
567
568
{| class="formulaSCP" style="width: 100%; text-align: center;" 
569
|-
570
| 
571
{| style="text-align: center; margin:auto;" 
572
|-
573
| <math>\begin{array}{c}
574
u_{i,0}^k=0\\
575
u_{i,J-1}^k=u_{i,J+1}^k
576
\end{array}</math>
577
|}
578
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
579
|}
580
581
582
where  <math>k_{\mbox{h}i}=\lbrace \begin{array}{cc}
583
k_\mbox{d}, & 0\leq i\leq I_\mbox{d}\\
584
k_\mbox{h}, & I_\mbox{d}<i\leq I
585
\end{array}</math> and  <math>C_{\mbox{h}i}=\lbrace \begin{array}{cc}
586
C_\mbox{d}, & 0\leq i\leq I_\mbox{d}\\
587
C_\mbox{h}, & I_\mbox{d}<i\leq I
588
\end{array}</math> . The above FDM solution is programmed with MATLAB, and the specific programming steps are as follows:
589
590
For  <math display="inline">i\in \left[0,I\right],j=0</math>
591
592
{| class="formulaSCP" style="width: 100%; text-align: center;" 
593
|-
594
| 
595
{| style="text-align: center; margin:auto;" 
596
|-
597
| <math>u_{i,0}^k=0</math>
598
|}
599
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
600
|}
601
602
603
For  <math display="inline">i=I,j\in \left[1,J\right]</math>
604
605
{| class="formulaSCP" style="width: 100%; text-align: center;" 
606
|-
607
| 
608
{| style="text-align: center; margin:auto;" 
609
|-
610
| <math>u_{I,j}^k=0</math>
611
|}
612
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
613
|}
614
615
616
For  <math display="inline">i=0,j\in \left[1,J\right]</math>
617
618
{| class="formulaSCP" style="width: 100%; text-align: center;" 
619
|-
620
| 
621
{| style="text-align: center; margin:auto;" 
622
|-
623
| <math>u_{0,j}^k=\left\{1-2\Delta t\left[\frac{C_{\mbox{h}0}}{{\left(\Delta r\right)}^2}+\right. \right. </math><math>\left. \left. \frac{C_\mbox{v}}{{\left(\Delta z\right)}^2}\right]\right\}u_{0,j}^{k-1}+</math><math>\frac{2C_{\mbox{h}0}\Delta t}{{\left(\Delta r\right)}^2}u_{1,j}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{0,j-1}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{0,j+1}^{k-1}</math>
624
|}
625
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
626
|}
627
628
629
For  <math display="inline">i\in \left[1,I-1\right],j=J</math>
630
631
{| class="formulaSCP" style="width: 100%; text-align: center;" 
632
|-
633
| 
634
{| style="text-align: center; margin:auto;" 
635
|-
636
| <math>u_{i,J}^k=\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}-\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i-1,J}^{k-1}+</math><math>\left\{1-2\Delta t\left[\frac{C_{\mbox{h}i}}{{\left(\Delta r\right)}^2}+\right. \right. </math><math>\left. \left. \frac{C_\mbox{v}}{{\left(\Delta z\right)}^2}\right]\right\}u_{i,J}^{k-1}+</math><math>\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}+\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i+1,J}^{k-1}+</math><math>\frac{2C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{i,J-1}^{k-1}</math>
637
|}
638
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
639
|}
640
641
642
For  <math display="inline">i\in \left[1,I-1\right],\mbox{ }j\in \left[1,J-1\right]</math>
643
644
{| class="formulaSCP" style="width: 100%; text-align: center;" 
645
|-
646
| 
647
{| style="text-align: center; margin:auto;" 
648
|-
649
| <math>u_{i,j}^k=\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}-\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i-1,j}^{k-1}+</math><math>\left\{1-2\Delta t\left[\frac{C_{\mbox{h}i}}{{\left(\Delta r\right)}^2}+\right. \right. </math><math>\left. \left. \frac{C_\mbox{v}}{{\left(\Delta z\right)}^2}\right]\right\}u_{i,j}^{k-1}+</math><math>\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}+\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i+1,j}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{i,j-1}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{i,j+1}^{k-1},\mbox{ }\begin{array}{c}
650
I=1,\mbox{ }2,\mbox{ }\cdots \mbox{ }I-1\\
651
j=1,\mbox{ }2,\mbox{ }\cdots \mbox{ }J-1
652
\end{array}</math>
653
|}
654
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
655
|}
656
657
658
The time step is divided into 90 segments uniformly by the time of each order of magnitude (e.g., the time step is  <math>{10}^1\mbox{ s}</math> when  <math>t</math> between  <math>{10}^2\mbox{ s}</math> and  <math>{10}^3\mbox{ s}</math> ). The grid of the model is uniform, and the grid size is  <math display="inline">\Delta r</math> (0.25m) ×  <math display="inline">\Delta z</math> (0.25m) (Fig. 2(a)). Three positions (i.e., Point 1 at  <math>\left(r_0,H\right)</math> , Point 2 at  <math>\left(3r_0,\mbox{0}\mbox{.8}H\right)</math> and Point 3 at  <math>\left(5r_0,\mbox{0}\mbox{.6}H\right)</math> ) of the excess pore pressure are selected to compare the FDM solution and the analytical solution. As shown in Fig. 2(b), the proposed solution coincides with the FDM solution almost completely, which indicates the correctness of the proposed solution.
659
660
<div id="_Hlk76470900" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
661
 
662
{|
663
|-
664
| [[Image:Review_932178682507-image135.jpeg|102px]]
665
| [[Image:Review_932178682507-image136.jpeg|center|294px]]
666
|}
667
</div>
668
669
(a)                      (b)
670
671
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
672
Fig. 2 (a) mesh of the model, and (b) curves of relation between time and excess pore pressure.</div>
673
674
===4. Results and Discussion===
675
676
For convenience of analysis, the time factor,  <math>T_\mbox{v}</math> , and the dimensionless excess pore pressure,  <math>\overline{u}</math> are defined as follows
677
678
{| class="formulaSCP" style="width: 100%; text-align: center;" 
679
|-
680
| 
681
{| style="text-align: center; margin:auto;" 
682
|-
683
| <math>T_\mbox{v}=C_\mbox{v}t/H^2,\mbox{ }\overline{u}=</math><math>u/u_0\left(r_0,H\right)</math>
684
|}
685
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
686
|}
687
688
==4.1 Parameter analysis==
689
690
Fig. 3(a) illustrates the distribution of excess pore pressure along the depth. The excess pore pressure increases with the increase in depth. After consolidation for a period of time (i.e.,  <math>T_\mbox{v}={10}^{-3}</math> ), the excess pore pressure at different depths in the disturbed zone was still higher than that in the undisturbed zone (i.e.,  <math>r>r_\mbox{d}</math> ). Fig. 3(b) shows that the excess pore pressure increases linearly with depth direction under different ''r''. The growth rate of the excess pore pressure with depth is large in the disturbed zone (i.e.,  <math>r\leq r_\mbox{d}</math> ), while the growth rate of the excess pore pressure with depth is small in the undisturbed zone (i.e.,  <math>r>r_\mbox{d}</math> ).
691
692
<div id="_Hlk76470911" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
693
 
694
{|
695
|-
696
| [[Image:Review_932178682507-image144.jpeg|300px]]
697
| [[Image:Review_932178682507-image145.jpeg|center|300px]]
698
|}
699
</div>
700
701
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
702
Fig. 3 (a) Distribution of  <math>\overline{u}</math> along  <math>r</math> direction under different  <math>z</math> and (b) distribution of  <math>\overline{u}</math> along  <math>z</math> direction under different  <math>r</math> .</div>
703
704
<span id='_Hlk58959226'></span>According to the research works proposed by Li et al. (2017) <sup>[9]</sup>, time-dependent bearing capacity is mainly affected by the dissipation of the excess pore pressure at the pile-soil interface. In order to study the influence of the soil disturbance induced by pile installation on the excess pore pressure at pile-soil interface, this paper introduces the dimensionless average excess pore pressure at pile-soil interface ( <math>u_{\mbox{ave}}\left(t\right)</math> ) for analysis:
705
706
{| class="formulaSCP" style="width: 100%; text-align: center;" 
707
|-
708
| 
709
{| style="text-align: center; margin:auto;" 
710
|-
711
| <math>u_{\mbox{ave}}\left(t\right)=\frac{{\int }_\mbox{0}^H2\mbox{π}r_0u_1\left(t,r_0,z\right)\mbox{d}z}{{\int }_\mbox{0}^H2\mbox{π}r_0u_0\left(r_0,z\right)\mbox{d}z}</math>
712
|}
713
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
714
|}
715
716
717
<span id='_Hlk96335254'></span>In Fig. 4, the influence of permeability coefficient ratio  <math>k_\mbox{d}/k_\mbox{h}</math> on the excess pore pressure under deep and shallow foundations, where  <math>k_\mbox{d}/k_\mbox{h}</math> reflects the disturbance degree of pile installation. When  <math>k_\mbox{d}/k_\mbox{h}\mbox{=1}</math> , this solution can degenerate into the solution of homogeneous soil around a pile <sup>[12]</sup>. Whether it's shallow foundation (i.e., Case of  <math>H=5\mbox{ m}</math> ) or deep foundation (i.e., Case of  <math>H=20\mbox{ m}</math> ), the dissipation rate of the excess pore pressure gradually decreases with decreases in  <math>k_\mbox{d}/k_\mbox{h}</math> . That indicates that  <math>u_{\mbox{ave}}\left(t\right)</math> could be overestimated at the anytime without considering the disturbance effect. The dissipation rate of the average excess pore pressure at pile-soil interface decreases obviously with the increase of  <math>k_\mbox{d}/k_\mbox{h}</math> , which indicated that soil disturbance has a significant hindering effect on  <math>u_{\mbox{ave}}\left(t\right)</math> . By comparing Case of shallow foundation and Case of deep foundation, it is clearly known that the disturbance effect has a greater influence on deep foundation than on shallow foundation. Moreover, the difference of drainage performance of deep and shallow foundations is gradually obvious with the increase of  <math>k_\mbox{d}/k_\mbox{h}</math> .
718
719
<div id="_Hlk76470922" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
720
 [[Image:Review_932178682507-image164.jpeg|300px]] </div>
721
722
<div id="_Hlk76471195" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
723
Fig 4. Influence of permeability coefficient ratio  <math>k_\mbox{d}/k_\mbox{h}</math> on the excess pore pressure.</div>
724
725
Unlike  <math>k_\mbox{d}/k_\mbox{h}</math> which reflect the degree of disturbance, the radius of the disturbed zone,  <math>r_\mbox{d}</math> , reflects the disturbance range. The impact of  <math>r_\mbox{d}/r_\mbox{0}</math> on the excess pore pressure is introduced in Fig. 5. This solution can degenerate into the solution of homogeneous soil around a pile when  <math>r_\mbox{d}/r_\mbox{0}\mbox{=1}</math> <sup>[12]</sup>. Additionally, compared with the case without disturbed zone (i.e.,  <math>r_\mbox{d}/r_\mbox{0}\mbox{=1}</math> ), the dissipation rate of  <math>u_{\mbox{ave}}\left(t\right)</math> decreases gradually with the increase of  <math>r_\mbox{d}</math> in the intermediate and later stages. Moreover, it is found that the consolidation rate of the deep foundation is smaller than that of the shallow foundation with the increase of  <math>r_\mbox{d}/r_\mbox{0}</math> .
726
727
<div id="_Hlk76470928" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
728
 [[Image:Review_932178682507-image174.jpeg|300px]] </div>
729
730
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
731
Fig 5. Influence of the disturbance radius ratio  <math>r_\mbox{d}/r_\mbox{0}</math> on the excess pore pressure.</div>
732
733
==4.2 Test analysis==
734
735
To demonstrate the validity of the proposed solution, a set of published laboratory test data is used for comparison <sup>[31]</sup>. As shown in Figure 6 (a), the test box is a cube with a side length of 1000 mm, and the test pile is a PVC pipe with a radius of 30 mm and length of 900 mm (length of 700 mm in the soil). The literature suggests that ''r''<sub>e</sub> is equal to 20 times ''r''<sub>0</sub> <sup>[31]</sup>. Because the Piezometer 1 ~ 3 (i.e., P1 ~ P3, at distance of ''r'' = 90 mm) are close to the pile, the measurement data fluctuates greatly, so only the data of P4 ~ P9 are used for analysis. P4 ~P6 are located at distance of ''r'' = 210 mm and P7 ~ P9 are located at distance of ''r'' = 330 mm. According to the initial excess pore pressures of P4 ~ P9, the parameters of the initial excess pore pressure is determined as shown in Fig. 6 (b).
736
737
<div id="_Hlk76471231" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
738
 
739
{|
740
|-
741
| [[Image:Review_932178682507-image176.jpeg|240px]]
742
| [[Image:Review_932178682507-image177.jpeg|center|300px]]
743
|}
744
</div>
745
746
<div id="_Hlk58349943" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
747
Fig. 6. (a) Schematic diagram of laboratory test for a pipe pile and (b) distribution diagram of initial pore pressure by pile-driving.</div>
748
749
The calculated and measured values of the excess pore pressure are shown in Figure 7. It is observed that the calculated value is a good fit with the measured value. That indicates the proposed mathematical model has a good ability to predict the variation trend of the excess pore pressure.
750
751
<div id="_Hlk76470940" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
752
 
753
{|
754
|-
755
| [[Image:Review_932178682507-image178.jpeg|300px]]
756
| [[Image:Review_932178682507-image179.jpeg|center|300px]]
757
|}
758
</div>
759
760
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
761
Fig. 7. Data of 6 measured points and corresponding calculated values: (a) P4 ~ P6, and (b) P7 ~ P9.</div>
762
763
<span id='_Hlk30159828'></span>
764
765
===5. Conclusions===
766
767
<span id='_Hlk76423000'></span><span id='_Hlk76422546'></span>In this paper, an analytical solution to consolidation problem with disturbance effect in the soil around a pile is derived and its accuracy is verified by degradation analysis and the FDM. The influence of disturbance effect on the excess pore pressure dissipation of the soil around a pile under long and short foundation is analyzed. It was concluded that the excess pore pressure in the disturbed zone is more difficult to dissipate than that in the undisturbed zone; The dissipation rate of the average excess pore pressure gradually decreased obviously with the increase of permeability coefficient ratio,  <math>k_\mbox{d}/k_\mbox{h}</math> , on the whole dissipation period at pile-soil interface; The impact of radius ratio,  <math>r_\mbox{d}/r_\mbox{0}</math> , on the excess pore pressure is interesting. When  <math>r_\mbox{d}/r_\mbox{0}</math> is small,  <math>r_\mbox{d}/r_\mbox{0}</math> only impedes dissipation rate of excess pore pressure in the early and intermediate dissipation periods. But, with  <math>r_\mbox{d}/r_\mbox{0}</math> increases,  <math>r_\mbox{d}/r_\mbox{0}</math> can impedes dissipation rate of excess pore pressure on the whole dissipation period. Disturbance effect (e.g.,  <math>k_\mbox{d}/k_\mbox{h}</math> and  <math>r_\mbox{d}/r_\mbox{0}</math> ) has obvious negative effect on both shallow and deep foundation, and the negative effect on deep foundations is greater than that on shallow foundation. Finally, the proposed solution is used to predict a test case, which shows that the proposed solution has a good ability to predict the variation trend of the excess pore pressure. However, this model only assumes that the soil is elastic and ignores the effect of the external load, which will be the objective of subsequent research.
768
769
===Author Contributions===
770
771
Conceptualization: Ping Li; writing—original draft preparation: Ping Li and Zhijian Chen; writing—review and editing: Yi Ding.
772
773
<br/>
774
775
===Institutional Review Board Statement===
776
777
This study did not require ethical approval.<br/>
778
779
===Informed Consent Statement===
780
781
Not applicable.<br/>
782
783
===Data Availability Statement===
784
785
All data, models, and code generated or used during the study appear in the submitted article.
786
787
<br/>
788
789
===Conflict of Interest===
790
791
The authors declared that they have no conflicts of interest to this work.<br/>
792
793
===References===
794
795
[1] K T Tran, M McVay, R Herrera, P Lai. A new method for estimating driven pile static skin friction with instrumentation at the top and bottom of the pile. Soil Dynamics and Earthquake Engineering. 2011;31(9):1285-1295.
796
797
[2] M E Mabsout, J L Tassoulas. A finite element model for the simulation of pile driving. International Journal for Numerical Methods in Engineering. 1994;37(2):257-278.
798
799
[3] J H Hwang, N Liang, C H Chen. Ground response during pile driving. Journal of Geotechnical and Geoenvironmental Engineering. 2001;127(11):939-949.
800
801
[4] M Y Fattah, W H Al-Soudani, M Omar. Estimation of bearing capacity of open-ended model piles in sand. Arabian Journal of Geosciences. 2016;9(3):1-14.
802
803
[5] Pantea Azimi, M Karimpour-Fard, N Shariatmadari, C Tsuha. A new approach to estimate the bearing capacity of driven piles. Arabian Journal of Geosciences. 2021;14(13):1-12.
804
805
[6] M R Mahmood, S J A Qadir. Effect of particle size distribution of cohesionless soils on the ultimate carrying capacity of open ended pipe piles under different saturation conditions. Arabian Journal of Geosciences. 2018;11(21):1-15.
806
807
[7] J Dijkstra, W Broere, O M Heeres. Numerical simulation of pile installation. Computers and Geotechnics. 2011;38(5):612-622.
808
809
[8] X T Xu, H L Liu, B M Lehane. Pipe pile installation effects in soft clay. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering. 2006;159(4):285-296.
810
811
[9] L Li, J P Li, D A Sun, L X Zhang. Time-dependent bearing capacity of a jacked pile: An analytical approach based on effective stress method. Ocean Engineering. 2017;143:177-185.
812
813
[10] M F Randolph, C P Wroth. An analytical solution for the consolidation around a driven pile. International Journal for Numerical Analytical Methods in Geomechanics. 1979;3(3):217-229.
814
815
[11] W D Guo. Visco-elastic consolidation subsequent to pile installation. Computers and Geotechnics. 2000;26(2):113-144.
816
817
[12] Z K Gao, J Y Shi. Consolidation solution of soil around single-pile after pile sinking. Rock and Soil Mechanics. 2008;29(4):979-982.
818
819
[13] S H Wang, P P Ni, Z Chen, G X Mei. Consolidation solution of soil around a permeable pipe pile. Marine Georesources Geotechnology. 2019:1-9.
820
821
[14] Z Chen, T Xiao, J X Feng, P P Ni, D Q Chen, G X Mei, Y F Chen. Mathematical characterization of pile-soil interface boundary for consolidation analysis of soil around permeable pipe pile. Canadian Geotechnical Journal. 2020(ja).
822
823
[15] M Bozozuk, B H Fellenius, L Samson. Soil disturbance from pile driving in sensitive clay. Canadian Geotechnical Journal. 1978;15(3):346-361.
824
825
[16] T Fang, M Huang, K Tang. Cross-section piles in transparent soil under different dimensional conditions subjected to vertical load: an experimental study. Arabian Journal of Geosciences. 2020;13(21):1-8.
826
827
[17] K R Massarsch, C Wersäll. Cumulative lateral soil displacement due to pile driving in soft clay. Sound Geotechnical Research to Practice: Honoring Robert D. Holtz II; 2013: 462-479.
828
829
[18] Z Y Li, K H Wang, W B Wu, C J Leo, N Wang. Vertical vibration of a large-diameter pipe pile considering the radial inhomogeneity of soil caused by the construction disturbance effect. Computers and Geotechnics. 2017;85:90-102.
830
831
[19] Y Zhou, J C Chai. Equivalent ‘smear’effect due to non-uniform consolidation surrounding a PVD. Géotechnique. 2017;67(5):410-419.
832
833
[20] R Nazir, H Moayedi, P Subramaniam, S Ghareh. Ground improvement using SPVD and RPE. Arabian Journal of Geosciences. 2017;10(23):1-21.
834
835
[21] R D Holtz, M B Jamiolkowski, R Lancellotta, R Pedroni. Prefabricated vertical drains: design and performance; 1991.
836
837
[22] J Wang, Y L Yang, H T Fu, Y Q Cai, X Q Hu, X M Lou, Y W Jin. Improving consolidation of dredged slurry by vacuum preloading using prefabricated vertical drains (PVDs) with varying filter pore sizes. Canadian Geotechnical Journal. 2020;57(2):294-303.
838
839
[23] Y B Deng, G B Liu, B Indraratna, C Rujikiatkamjorn, K H Xie. Model test and theoretical analysis for soft soil foundations improved by prefabricated vertical drains. International Journal of Geomechanics. 2017;17(1):04016045.
840
841
[24] Z Chen, P P Ni, G X Mei, Y F Chen. Semi-analytical solution for consolidation of ground with partially penetrating PVDs under the free-strain condition. Journal of Engineering Mechanics. 2020;147(2):04020148.
842
843
[25] Y Tian, W B Wu, G S Jiang, M H El Naggar, G X Mei, P P Ni. Analytical solutions for vacuum preloading consolidation with prefabricated vertical drain based on elliptical cylinder model. Computers Geotechnics. 2019;116:103202.
844
845
[26] L O Soderberg. Consolidation theory applied to foundation pile time effects. Géotechnique. 1962;12(3):217-225.
846
847
[27] Z L Luo, F H Dong. Statistical investigation of bearing capacity of pile foundation based on Bayesian reliability theory. Advances in Civil Engineering. 2019;2019.
848
849
[28] B M Lehane, D R Gill. Displacement fields induced by penetrometer installation in an artificial soil. International Journal of Physical Modelling in Geotechnics. 2004;4(1):25-36.
850
851
[29] H de Chaunac, A Holeyman. Numerical analysis of the set-up around the shaft of a closed-ended pile driven in clay. Géotechnique. 2018;68(4):332-344.
852
853
[30] Q M Chen, M N Haque, M Abu-Farsakh, B A Fernandez. Field investigation of pile setup in mixed soil. Geotechnical Testing Journal. 2014;37(2):268-281.
854
855
[31] P P Ni, S Mangalathu, G X Mei, Y L Zhao. Laboratory investigation of pore pressure dissipation in clay around permeable piles. Canadian Geotechnical Journal. 2018;55(9):1257-1267.
856

Return to Li et al 2021d.

Back to Top

Document information

Published on 17/03/22
Accepted on 06/03/22
Submitted on 04/11/21

Volume 38, Issue 1, 2022
DOI: 10.23967/j.rimni.2022.03.008
Licence: CC BY-NC-SA license

Document Score

5

Views 518
Recommendations 1

Share this document

claim authorship

Are you one of the authors of this document?