You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
3
4
<span id='_Hlk51705514'></span><span id='_Hlk41492253'></span><span id='_Hlk55074535'></span>
5
6
==Consolidation of soil induced by pile installation considering disturbance effect==
7
8
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
9
by</div>
10
11
==Authors: E-mail:==
12
13
<span id='_Hlk82103515'></span><span id='_Hlk82103504'></span>Ping Li<sup>1</sup> [mailto:geopingli@163.com geopingli@163.com]
14
15
Zhijian Chen<sup>1</sup> [mailto:zhijianchen_geo@163.com zhijianchen_geo@163.com]
16
17
Yi Ding<sup>2</sup> [mailto:nsscm_yiding@163.com nsscm_yiding@163.com]
18
19
==Affiliations:==
20
21
<sup>1</sup>College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China.
22
23
<span id='OLE_LINK4'></span><sup>2</sup> Nanjing Supervision Station for Construction Market, Nanjing 210098, China.
24
25
<span id='_Hlk73473327'></span>'''Corresponding author: '''Zhijian Chen<br/>
26
-->
27
28
===Abstract===
29
30
<span id='_Hlk51712226'></span><span id='_Hlk52804842'></span><span id='_Hlk55329738'></span><span id='_Hlk76474676'></span>In practice, the consolidation of soil around the pile has a great influence on the time-dependent bearing capacity of pile. However, most of the consolidation theory of soil around the pile neglects the disturbance effect of pile-driving on surrounding soil and regards the soil as homogeneous, which overestimates the consolidation efficiency of the soil, and obtains a higher pile bearing capacity. In view of this, a consolidation model of soil around a pipe pile considering soil disturbance effect is presented in this paper. Fourier transform and separation of variables are used to obtain the analytical solution, and then the solution is verified by degradation analysis and Finite Difference Method (FDM). Firstly, the radial and vertical distribution of excess pore pressure generated after pile-driving is analyzed. In the radial direction, the excess pore pressure decreases rapidly from the radius of pipe pile to the radius of the disturbed zone, then slowly decays to 0 from'' ''the radius of disturbed zone to the influencing radius of pipe pile. In the vertical direction, the excess pore pressure along the vertical direction grows linearly. Subsequently, the variation of the average excess pore pressure at the pile-soil interface with the permeability coefficient and radius of disturbance zone are analyzed. The permeability coefficient of disturbance zone has a remarkable negative effect on the excess pore pressure during the whole consolidation period. Increasing the radius of the disturbance zone will hinder the dissipation of the excess pore pressure in the intermediate and later stages. Finally, the validity of the proposed analytical solution is illustrated by comparing with the laboratory results.
31
32
<span id='_Hlk73473526'></span>Keyword: pipe pile; pile installation; disturbance effect; consolidation theory; analytical solution.<br/>
33
34
<span id='_Hlk55074542'></span>
35
36
===1. Introduction===
37
38
Coastal areas are mostly soft soil foundation, which needs to be treated before construction. Static pile technique is a common method to deal with soft soil foundation, which has been widely used in the world <sup>[1-3]</sup>. Although the bearing capacity of the foundation can be improved by pressing the static pile into the soil by the static pile pressing machine, it is inevitable to squeeze the soil in the process of pile installation, resulting in disturbance of the surrounding soil around the static pile <sup>[4-6]</sup>. Further, pile installation could produce high excess pore pressure, which results in the slow development of pile bearing capacity <sup>[7]</sup>. High excess pore pressure could also cause some negative effects on the pile and surrounding soil, including deviation of pile and ground heave <sup>[8-10]</sup>. Therefore, it is necessary to put forward a set of prediction scheme to evaluate the excess pore pressure after pile installation, so that engineers can deal with the risks in advance.
39
40
<span id='_Hlk58238552'></span>Axisymmetric consolidation model is often used to evaluate the dissipation of excess pore pressure after pile-driving. Randolph and Wroth (1979) <sup>[10]</sup> first proposed an analytical solution of axisymmetric consolidation around an impermeable pile considering radial drainage through pile-driving test. Subsequently, in the theoretical study on the axisymmetric consolidation of the soil around the impermeable pile, Guo (2000) <sup>[11]</sup> proposed the analytical solution considering viscoelastic soil, and Gao and Shi (2008) <sup>[12]</sup> proposed the analytical solution considering both radial and vertical drainage. Recently, a permeable pile technique has been developed to accelerate the consolidation rate of foundation soil. Therefore, some scholars have further studied axisymmetric consolidation around a permeable pile <sup>[13, 14]</sup>.
41
42
<span id='OLE_LINK3'></span><span id='_Hlk73534518'></span>It should be emphasized that all above-mentioned studies are limited to undisturbed soils. In fact, the existing field data and test data show that the disturbance effect on the soil around the pile is inevitable in the process of pile installation <sup>[15, 16]</sup>. In general, in the process of pile installation, radial compression will occur to the soil around the pile, leading to the decrease of the radial permeability coefficient of the disturbed soil, which will lead to the decrease of the radial drainage performance of the soil. When the vertical drainage distance is long, the soil drainage path is mainly radial. In this case, the disturbance effect of soil should not be ignored.
43
44
Similar to pile installation, the prefabricated vertical drains (i.e., PVDs) installation has been fully studied <sup>[17-20]</sup>. Compared with the smear effect by PVD installation <sup>[21-25]</sup>, the disturbance effect induced by pile installation is much more significant due to its bigger radius. Thus, it is of significance to study the consolidation of soil around the pile considering disturbance effect. Additionally, the growth rate of pile bearing capacity could be overestimated by using the current consolidation model, which leads to some unknown risks (e.g., excessive settlement and insufficient bearing capacity) and reducing the accuracy of building’s reliability analysis <sup>[9, 26, 27]</sup>. Therefore, whether it is the study of consolidation theory of soil around pile or the subsequent analysis of pile bearing capacity, the study of consolidation theory considering disturbance effect is of great significance. Unfortunately, there is no an analytical solution to axisymmetric consolidation of soil considering the disturbance effect around a pipe pile.
45
46
<span id='_Hlk73106423'></span><span id='_Hlk73000322'></span>In order to better predict the dissipation process of excess pore pressure and the increase process of pile bearing capacity after piling, it is necessary to further optimize the existing consolidation theory. On the condition that the disturbance effect cannot be ignored, this paper presents an analytical solution to axisymmetric consolidation of soil considering the disturbance effect around a pipe pile on the basis of previous studies. Fourier transform and separation of variables are used to solve the problem, and the solution is calibrated by degradation analysis and FEM. Subsequently, the distribution of excess pore pressure along vertical and radial directions are analyzed by graphical interpretation. Moreover, the concept of the dimensionless average excess pore pressure at pile-soil interface is put forward and the influence of disturbance parameters on it is analyzed. Most importantly, the validity of the solution is demonstrated by comparing with test data.
47
48
<span id='_Hlk55074582'></span>
49
50
===2. Mathematical model===
51
52
====2.1 Model description====
53
54
<span id='_Hlk73124913'></span><span id='_Hlk52039771'></span>As shown in Fig. 1, all involved parameters include the depth of foundation,  <math>H</math> , the radius of pipe pile,  <math>r_\mbox{0}</math> , the radius of the disturbed zone,  <math>r_\mbox{d}</math> , and the influencing radius of pipe pile,  <math>r_\mbox{e}</math> . In this model, the following assumptions are given:
55
56
(1) The soil around the pipe pile is elastic saturated soil, and the pipe pile is permeable pile;
57
58
(2) The soil around the pile only has disturbance effect in radial direction;
59
60
(3) The soil parameters used in the model remain unchanged during the consolidation process.
61
62
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
63
 [[Image:Review_932178682507-image5.png|246px]] </div>
64
65
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
66
Fig. 1 Schematic diagram of consolidation model for the soil around a pipe pile</div>
67
68
<span id='_Hlk51859672'></span>
69
70
====2.2 Governing equations====
71
72
<span id='_Hlk52300410'></span>According to the findings of Randolph and Wroth (1979) <sup>[10]</sup>, the excess pore pressure generated during pile-driving will dissipate in both radial and vertical directions. Therefore, the following governing equations are established:
73
74
{| class="formulaSCP" style="width: 100%; text-align: center;" 
75
|-
76
| 
77
{| style="text-align: center; margin:auto;" 
78
|-
79
| <span id='ZEqnNum571777'></span>  <math>\begin{array}{l}
80
\frac{{\partial {u_1}}}{{\partial t}} = {C_{\rm{d}}}\left( {\frac{{{\partial ^2}{u_1}}}{{\partial {r^2}}} + \frac{1}{r}\frac{{\partial {u_1}}}{{\partial r}}} \right){\rm{ + }}{C_{\rm{v}}}\frac{{{\partial ^2}{u_1}}}{{\partial {z^2}}}\\
81
\frac{{\partial {u_2}}}{{\partial t}} = {C_{\rm{h}}}\left( {\frac{{{\partial ^2}{u_2}}}{{\partial {r^2}}} + \frac{1}{r}\frac{{\partial {u_2}}}{{\partial r}}} \right){\rm{ + }}{C_{\rm{v}}}\frac{{{\partial ^2}{u_2}}}{{\partial {z^2}}}
82
\end{array}</math>
83
|}
84
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
85
|}
86
87
88
<span id='_Hlk58238881'></span><span id='_Hlk55377739'></span>where  <math>u_\mbox{1}</math> and  <math>u_\mbox{2}</math> are the excess pore pressure of disturbed zone (i.e.,  <math>r_0\leq r\leq r_\mbox{d}</math> ) and undisturbed zone  (i.e.,  <math>r_\mbox{d}\leq r\leq r_\mbox{e}</math> ), respectively;  <math>C_\mbox{h}</math> (i.e.,  <math>k_\mbox{h}/\left({\gamma }_\mbox{w}m_\mbox{v}\right)</math> ) and  <math>C_\mbox{d}</math> (i.e.,  <math>k_\mbox{d}/\left({\gamma }_\mbox{w}m_\mbox{v}\right)</math> ) represent the consolidation coefficient in radial direction of undisturbed and disturbed zones, respectively;  <math>C_\mbox{v}</math> (i.e.,  <math>k_\mbox{v}/\left({\gamma }_\mbox{w}m_\mbox{v}\right)</math> ) represent the consolidation coefficient in vertical direction of the undisturbed zone;  <math>k_\mbox{h}</math> and  <math>k_\mbox{d}</math> represent the permeability coefficient in radial direction of disturbed and undisturbed zones, respectively;  <math>k_\mbox{v}</math> represent the permeability coefficient in vertical direction of the influencing zone;  <math>m_\mbox{v}</math> is the volume compression coefficient of soil;  <math>{\gamma }_\mbox{w}</math> is the unit weight of water;  <math>r</math> and  <math>z</math> are the radial distance from the center of pile and the depth from the ground surface, respectively; and  <math>t</math> is consolidation time.
89
90
<span id='_Hlk48922923'></span>
91
92
====2.3 Initial and boundary conditions====
93
94
The initial pore pressure distribution of soil around a pile after pile-driving can generally be obtained through numerical simulation or experimental test <sup>[28-30]</sup>. Here, the initial excess pore pressure is generalized expressed as
95
96
{| class="formulaSCP" style="width: 100%; text-align: center;" 
97
|-
98
| 
99
{| style="text-align: center; margin:auto;" 
100
|-
101
| <span id='ZEqnNum823648'></span>  <math>{u_1\vert }_{t=0}={u_2\vert }_{t=0}=u_0\left(r,z\right)</math>
102
|}
103
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
104
|}
105
106
107
The pile is impermeable and the excess pore pressure outside the influencing radius  <math>r_\mbox{e}</math> affected by pipe pile is ignored, it yields
108
109
{| class="formulaSCP" style="width: 100%; text-align: center;" 
110
|-
111
| 
112
{| style="text-align: center; margin:auto;" 
113
|-
114
| <span id='ZEqnNum743846'></span>  <math>{\frac{\partial u_1}{\partial r}\vert }_{r=r_0}={u_2\vert }_{r=r_\mbox{e}}=</math><math>0</math>
115
|}
116
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
117
|}
118
119
120
<span id='OLE_LINK1'></span><span id='OLE_LINK2'></span>The interface between the disturbed and undisturbed zones needs to satisfy the flow continuity condition, that is
121
122
{| class="formulaSCP" style="width: 100%; text-align: center;" 
123
|-
124
| 
125
{| style="text-align: center; margin:auto;" 
126
|-
127
| <span id='ZEqnNum201641'></span>  <math>\begin{array}{c}
128
{u_1\vert }_{r=r_\mbox{d}}&={u_2\vert }_{r=r_\mbox{d}}\\
129
k_\mbox{d}{\frac{\partial u_1}{\partial r}\vert }_{r=r_\mbox{d}}&=k_\mbox{h}{\frac{\partial u_2}{\partial r}\vert }_{r=r_\mbox{d}}
130
\end{array}</math>
131
|}
132
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
133
|}
134
135
136
The top of the ground is permeable, while the bottom is impermeable. Therefore, the vertical boundary can be expressed as
137
138
{| class="formulaSCP" style="width: 100%; text-align: center;" 
139
|-
140
| 
141
{| style="text-align: center; margin:auto;" 
142
|-
143
| <span id='ZEqnNum798795'></span>  <math>\begin{array}{c}
144
{u_1\vert }_{z=0}={\frac{\partial u_1}{\partial z}\vert }_{z=H}=0\\
145
{u_2\vert }_{z=0}={\frac{\partial u_2}{\partial z}\vert }_{z=H}=0
146
\end{array}</math>
147
|}
148
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
149
|}
150
151
====2.4 Solving procedures====
152
153
According to the boundary condition of Eq. <span id='cite-ZEqnNum798795'></span>[[#ZEqnNum798795|(5)]], the finite Fourier sine transform is performed on the governing equation (i.e., Eq. <span id='cite-ZEqnNum571777'></span>[[#ZEqnNum571777|(1)]]) and its remaining solving conditions (i.e., Eq. <span id='cite-ZEqnNum823648'></span>[[#ZEqnNum823648|(2)]] ~ <span id='cite-ZEqnNum201641'></span>[[#ZEqnNum201641|(4)]]), which yields
154
155
{| class="formulaSCP" style="width: 100%; text-align: center;" 
156
|-
157
| 
158
{| style="text-align: center; margin:auto;" 
159
|-
160
| <span id='ZEqnNum149568'></span>  <math>\begin{array}{l}
161
\frac{{\partial {{\bar u}_1}}}{{\partial t}} = {C_{\rm{d}}}\left( {\frac{{{\partial ^2}{{\bar u}_1}}}{{\partial {r^2}}} + \frac{1}{r}\frac{{\partial {{\bar u}_1}}}{{\partial r}}} \right) - {C_{\rm{v}}}{\left( {\frac{{{N_n}}}{H}} \right)^2}{{\bar u}_1}\\
162
\frac{{\partial {{\bar u}_2}}}{{\partial t}} = {C_{\rm{h}}}\left( {\frac{{{\partial ^2}{{\bar u}_2}}}{{\partial {r^2}}} + \frac{1}{r}\frac{{\partial {{\bar u}_2}}}{{\partial r}}} \right) - {C_{\rm{v}}}{\left( {\frac{{{N_n}}}{H}} \right)^2}{{\bar u}_2}
163
\end{array}</math>
164
|}
165
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
166
|}
167
168
{| class="formulaSCP" style="width: 100%; text-align: center;" 
169
|-
170
| 
171
{| style="text-align: center; margin:auto;" 
172
|-
173
| <span id='ZEqnNum969494'></span>  <math>{{\overline{u}}_1\vert }_{t=0}={{\overline{u}}_2\vert }_{t=0}=</math><math>{\int }_0^Hu_0\left(r,z\right)sin\frac{N_nz}{H}\mbox{d}z</math>
174
|}
175
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
176
|}
177
178
{| class="formulaSCP" style="width: 100%; text-align: center;" 
179
|-
180
| 
181
{| style="text-align: center; margin:auto;" 
182
|-
183
| <span id='ZEqnNum791600'></span>  <math>{\frac{\partial {\overline{u}}_1}{\partial r}\vert }_{r=r_0}=</math><math>{{\overline{u}}_2\vert }_{r=r_\mbox{e}}=0</math>
184
|}
185
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
186
|}
187
188
{| class="formulaSCP" style="width: 100%; text-align: center;" 
189
|-
190
| 
191
{| style="text-align: center; margin:auto;" 
192
|-
193
| <span id='ZEqnNum399916'></span>  <math>\begin{array}{c}
194
{{\overline{u}}_1\vert }_{r=r_\mbox{d}}={{\overline{u}}_2\vert }_{r=r_\mbox{d}}\\
195
k_\mbox{d}{\frac{\partial {\overline{u}}_1}{\partial r}\vert }_{r=r_\mbox{d}}=k_\mbox{h}{\frac{\partial {\overline{u}}_2}{\partial r}\vert }_{r=r_\mbox{d}}
196
\end{array}</math>
197
|}
198
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
199
|}
200
201
202
where  <math>{\overline{u}}_i={\int }_0^Hu_isin\frac{N_nz}{H}\mbox{d}z,\mbox{ }i=</math><math>1,2</math> ; and  <math>N_n=\left(2n-1\right)\mbox{π}/2</math> .
203
204
According to the separation of variables method,  <math>{\overline{u}}_1</math> and  <math>{\overline{u}}_2</math> can be written as
205
206
{| class="formulaSCP" style="width: 100%; text-align: center;" 
207
|-
208
| 
209
{| style="text-align: center; margin:auto;" 
210
|-
211
| <span id='ZEqnNum108209'></span>  <math>\begin{array}{c}
212
{\overline{u}}_1=R_{1mn}\left(r\right)T_{1mn}\left(t\right)\\
213
{\overline{u}}_2=R_{2mn}\left(r\right)T_{2mn}\left(t\right)
214
\end{array}</math>
215
|}
216
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
217
|}
218
219
220
where  <math>R_{1mn}</math> and  <math>R_{2mn}</math> are functions of  <math>r</math> ;  <math>T_{1mn}</math> and  <math>T_{2mn}</math> are functions of  <math>t</math> .
221
222
Substituting Eq. (10) into Eq. (6), one can obtain
223
224
{| class="formulaSCP" style="width: 100%; text-align: center;" 
225
|-
226
| 
227
{| style="text-align: center; margin:auto;" 
228
|-
229
| <span id='ZEqnNum505543'></span>  <math>\begin{array}{c}
230
\frac{\frac{\mbox{d}T_{1mn}}{\mbox{d}t}}{C_\mbox{d}T_{1mn}}+\frac{C_\mbox{v}}{C_\mbox{d}}{\alpha }_n^2=\frac{1}{R_{1mn}}\left(\frac{\mbox{d}^2R_{1mn}}{\mbox{d}r^2}+\frac{1}{r}\frac{\mbox{d}R_{1mn}}{\mbox{d}r}\right)=-{\beta }_{1mn}^2\\
231
\frac{\frac{\mbox{d}T_{2mn}}{\mbox{d}t}}{C_\mbox{h}T_{2mn}}+\frac{C_\mbox{v}}{C_\mbox{h}}{\alpha }_n^2=\frac{1}{R_{2mn}}\left(\frac{\mbox{d}^2R_{2mn}}{\mbox{d}r^2}+\frac{1}{r}\frac{\mbox{d}R_{2mn}}{\mbox{d}r}\right)=-{\beta }_{2mn}^2
232
\end{array}</math>
233
|}
234
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
235
|}
236
237
238
where  <math>{\alpha }_n=N_n/H</math> ; and  <math>{\beta }_{1mn}</math> and  <math>{\beta }_{2mn}</math> are the separation constants.
239
240
It can be found that Eq. <span id='cite-ZEqnNum505543'></span>[[#ZEqnNum505543|(11)]] is an ordinary differential equation, and the solution to Eq. <span id='cite-ZEqnNum505543'></span>[[#ZEqnNum505543|(11)]] can be easily obtained as follows
241
242
{| class="formulaSCP" style="width: 100%; text-align: center;" 
243
|-
244
| 
245
{| style="text-align: center; margin:auto;" 
246
|-
247
| <span id='ZEqnNum188101'></span>  <math>\begin{array}{c}
248
R_{1mn}=a_{1mn}\mbox{J}_0\left({\beta }_{1mn}r\right)+b_{1mn}\mbox{Y}_0\left({\beta }_{1mn}r\right)\\
249
T_{1mn}=c_{1mn}\mbox{e}^{-\left(C_\mbox{d}{\beta }_{1mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}
250
\end{array}</math>
251
|}
252
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
253
|}
254
255
{| class="formulaSCP" style="width: 100%; text-align: center;" 
256
|-
257
| 
258
{| style="text-align: center; margin:auto;" 
259
|-
260
| <span id='ZEqnNum833305'></span>  <math>\begin{array}{c}
261
R_{2mn}=a_{2mn}\mbox{J}_0\left({\beta }_{2mn}r\right)+b_{2mn}\mbox{Y}_0\left({\beta }_{2mn}r\right)\\
262
T_{2mn}=c_{2mn}\mbox{e}^{-\left(C_\mbox{h}{\beta }_{2mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}
263
\end{array}</math>
264
|}
265
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
266
|}
267
268
269
where  <math>\mbox{J}_0</math> ,  <math>\mbox{Y}_0</math> are the zero-order Bessel functions of the first- and second- kind, respectively.
270
271
Combining Eqs. <span id='cite-ZEqnNum188101'></span>[[#ZEqnNum188101|(12)]] and <span id='cite-ZEqnNum833305'></span>[[#ZEqnNum833305|(13)]],  <math>{\overline{u}}_1</math> and  <math>{\overline{u}}_2</math> can be rewritten as
272
273
{| class="formulaSCP" style="width: 100%; text-align: center;" 
274
|-
275
| 
276
{| style="text-align: center; margin:auto;" 
277
|-
278
| <span id='ZEqnNum354201'></span>  <math>\begin{array}{c}
279
{\overline{u}}_1=\sum_{m=1}^{\infty }\left[A_{1mn}\mbox{J}_0\left({\beta }_{1mn}r\right)+B_{1mn}\mbox{Y}_0\left({\beta }_{1mn}r\right)\right]\mbox{e}^{-\left(C_\mbox{d}{\beta }_{1mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}\\
280
{\overline{u}}_2=\sum_{m=1}^{\infty }\left[A_{2mn}\mbox{J}_0\left({\beta }_{2mn}r\right)+B_{2mn}\mbox{Y}_0\left({\beta }_{2mn}r\right)\right]\mbox{e}^{-\left(C_\mbox{h}{\beta }_{2mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}
281
\end{array}</math>
282
|}
283
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
284
|}
285
286
287
Substituting Eq. <span id='cite-ZEqnNum354201'></span>[[#ZEqnNum354201|(14)]] into the boundary condition of Eq. <span id='cite-ZEqnNum791600'></span>[[#ZEqnNum791600|(8)]], it yields
288
289
{| class="formulaSCP" style="width: 100%; text-align: center;" 
290
|-
291
| 
292
{| style="text-align: center; margin:auto;" 
293
|-
294
| <span id='ZEqnNum665918'></span>  <math>\begin{array}{c}
295
{\overline{u}}_1=\sum_{m=1}^{\infty }A_{1mn}R_1\left({\beta }_{1mn}r\right)\mbox{e}^{-\left(C_\mbox{d}{\beta }_{1mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}\\
296
{\overline{u}}_2=\sum_{m=1}^{\infty }A_{2mn}R_2\left({\beta }_{2mn}r\right)\mbox{e}^{-\left(C_\mbox{h}{\beta }_{2mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}
297
\end{array}</math>
298
|}
299
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
300
|}
301
302
303
where  <math>{\chi }_1\left({\beta }_{1mn}\right)=\frac{\mbox{J}_1\left({\beta }_{1mn}r_0\right)}{\mbox{Y}_1\left({\beta }_{1mn}r_0\right)}</math> ;  <math>{\chi }_2\left({\beta }_{2mn}\right)=\frac{\mbox{J}_0\left({\beta }_{2mn}r_\mbox{e}\right)}{\mbox{Y}_0\left({\beta }_{2mn}r_\mbox{e}\right)}</math> ;  <math>R_1\left({\beta }_{1mn}r\right)=\mbox{J}_0\left({\beta }_{1mn}r\right)-</math><math>{\chi }_1\left({\beta }_{1mn}\right)\mbox{Y}_0\left({\beta }_{1mn}r\right)</math> ; and  <math>R_2\left({\beta }_{2mn}r\right)=\mbox{J}_0\left({\beta }_{2mn}r\right)-</math><math>{\chi }_2\left({\beta }_{2mn}\right)\mbox{Y}_0\left({\beta }_{2mn}r\right)</math> .
304
305
Substituting Eq. <span id='cite-ZEqnNum665918'></span>[[#ZEqnNum665918|(15)]] into the continuous boundary condition (i.e., Eq. <span id='cite-ZEqnNum399916'></span>[[#ZEqnNum399916|(9)]]), it yields
306
307
{| class="formulaSCP" style="width: 100%; text-align: center;" 
308
|-
309
| 
310
{| style="text-align: center; margin:auto;" 
311
|-
312
| <span id='ZEqnNum164985'></span>  <math>R_1\left({\beta }_{1mn}r_\mbox{d}\right)A_{1mn}=R_2\left({\beta }_{2mn}r_\mbox{d}\right)A_{2mn}</math>
313
|}
314
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
315
|}
316
317
318
and
319
320
{| class="formulaSCP" style="width: 100%; text-align: center;" 
321
|-
322
| 
323
{| style="text-align: center; margin:auto;" 
324
|-
325
| <span id='ZEqnNum741519'></span>  <math>\lbrace \begin{array}{c}
326
C_\mbox{d}{\beta }_{1mn}^2=C_\mbox{h}{\beta }_{2mn}^2\\
327
\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}=\frac{k_\mbox{h}{\beta }_{2mn}P_2\left({\beta }_{2mn}r_\mbox{d}\right)}{k_\mbox{d}{\beta }_{1mn}P_1\left({\beta }_{1mn}r_\mbox{d}\right)}
328
\end{array}</math>
329
|}
330
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
331
|}
332
333
334
where  <math>P_1\left({\beta }_{1mn}r\right)=\mbox{J}_1\left({\beta }_{1mn}r\right)-</math><math>{\chi }_1\left({\beta }_{1mn}\right)\mbox{Y}_1\left({\beta }_{1mn}r\right)</math> ; and  <math>P_2\left({\beta }_{2mn}r\right)=\mbox{J}_1\left({\beta }_{2mn}r\right)-</math><math>{\chi }_2\left({\beta }_{2mn}\right)\mbox{Y}_1\left({\beta }_{2mn}r\right)</math> .
335
336
Combined with Eq. <span id='cite-ZEqnNum164985'></span>[[#ZEqnNum164985|(16)]], Eq. <span id='cite-ZEqnNum665918'></span>[[#ZEqnNum665918|(15)]] can be rewritten as
337
338
{| class="formulaSCP" style="width: 100%; text-align: center;" 
339
|-
340
| 
341
{| style="text-align: center; margin:auto;" 
342
|-
343
| <span id='ZEqnNum775505'></span>  <math>\begin{array}{c}
344
{\overline{u}}_1=\sum_{m=1}^{\infty }A_{2mn}\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}R_1\left({\beta }_{1mn}r\right)\mbox{e}^{-\left(C_\mbox{d}{\beta }_{1mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}\\
345
{\overline{u}}_2=\sum_{m=1}^{\infty }A_{2mn}R_2\left({\beta }_{2mn}r\right)\mbox{e}^{-\left(C_\mbox{h}{\beta }_{2mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}
346
\end{array}</math>
347
|}
348
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
349
|}
350
351
352
<math>{\beta }_{1mn}</math> and  <math>{\beta }_{2mn}</math> can be solved with Eq. <span id='cite-ZEqnNum741519'></span>[[#ZEqnNum741519|(17)]]. Then, using the initial condition of Eq. <span id='cite-ZEqnNum969494'></span>[[#ZEqnNum969494|(7)]] and orthogonality of eigenfunctions, one can obtain
353
354
{| class="formulaSCP" style="width: 100%; text-align: center;" 
355
|-
356
| 
357
{| style="text-align: center; margin:auto;" 
358
|-
359
| <span id='ZEqnNum753186'></span>  <math>\begin{array}{c}
360
A_{2mn}{\int }_{r_0}^{r_\mbox{d}}r{\left[\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}R_1\left({\beta }_{1mn}r\right)\right]}^2\mbox{d}r+A_{2mn}{\int }_{r_\mbox{d}}^{r_\mbox{e}}rR_2^2\left({\beta }_{2mn}r\right)\mbox{d}r\\
361
={\int }_{r_0}^{r_\mbox{d}}r\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}R_1\left({\beta }_{1mn}r\right){\int }_0^Hu_0\left(r,z\right)sin{\alpha }_nz\mbox{d}z\mbox{d}r+{\int }_{r_\mbox{d}}^{r_\mbox{e}}rR_2\left({\beta }_{2mn}r\right){\int }_0^Hu_0\left(r,z\right)sin{\alpha }_nz\mbox{d}z\mbox{d}r
362
\end{array}</math>
363
|}
364
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
365
|}
366
367
368
According to Eq. <span id='cite-ZEqnNum753186'></span>[[#ZEqnNum753186|(19)]], the coefficient  <math>A_{2mn}</math> can be obtained. Applying finite Fourier inverse transform to Eq. <span id='cite-ZEqnNum775505'></span>[[#ZEqnNum775505|(18)]], the general solutions can be written as
369
370
{| class="formulaSCP" style="width: 100%; text-align: center;" 
371
|-
372
| 
373
{| style="text-align: center; margin:auto;" 
374
|-
375
| <math>\begin{array}{c}
376
{u_1} = \frac{2}{H}\sum\limits_{m = 1}^\infty  {\sum\limits_{n = 1}^\infty  {{A_{2mn}}\frac{{{R_2}\left( {{\beta _{2mn}}{r_{\rm{d}}}} \right)}}{{{R_1}\left( {{\beta _{1mn}}{r_{\rm{d}}}} \right)}}{R_1}\left( {{\beta _{1mn}}r} \right)\sin {\alpha _n}z{{\rm{e}}^{ - \left( {{C_{\rm{d}}}\beta _{1mn}^2 + {C_{\rm{v}}}\alpha _n^2} \right)t}}} } \\
377
{u_2} = \frac{2}{H}\sum\limits_{m = 1}^\infty  {\sum\limits_{n = 1}^\infty  {{A_{2mn}}{R_2}\left( {{\beta _{2mn}}r} \right)\sin {\alpha _n}z{{\rm{e}}^{ - \left( {{C_{\rm{h}}}\beta _{2mn}^2 + {C_{\rm{v}}}\alpha _n^2} \right)t}}} } 
378
\end{array}</math>
379
|}
380
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
381
|}
382
383
384
The initial excess pore pressure is mainly distributed in the plastic zone. It decays along the radius direction and increases along the depth. It is also worthy to highlight the fact that the initial excess pore pressure is calculated after pile-driving, at which time the excess pore pressure of the upper part of surface soil has been completely dissipated <sup>[14]</sup>. So, the specific expression form of the initial excess pore pressure is given as follows
385
386
{| class="formulaSCP" style="width: 100%; text-align: center;" 
387
|-
388
| 
389
{| style="text-align: center; margin:auto;" 
390
|-
391
| <span id='ZEqnNum163277'></span>  <math>u_0\left(r,z\right)=a_1\left(z-h_0\right)ln\frac{r_\mbox{p}}{r}</math>
392
|}
393
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
394
|}
395
396
397
where  <math>r_\mbox{p}</math> is the radius of plastic zone; <math>a_1</math> and  <math>h_0</math> are constant to be determined. The distribution range of the initial excess pore pressure is  <math>\left\{z\geq h_0;r_0\leq r\leq r_\mbox{p}\right\}</math> .
398
399
Then, the coefficient  <math>A_{2mn}</math> can be specified as
400
401
{| class="formulaSCP" style="width: 100%; text-align: center;" 
402
|-
403
| 
404
{| style="text-align: center; margin:auto;" 
405
|-
406
| <math>A_{2mn}=\frac{a_1\left(\mbox{sin}{\alpha }_nH-\mbox{sin}{\alpha }_nh_0\right)}{{\alpha }_n{}^2}\frac{\frac{R_2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1\left({\beta }_{1mn}r_\mbox{d}\right)}{\delta }_1+{\delta }_2}{\frac{R_2^2\left({\beta }_{2mn}r_\mbox{d}\right)}{R_1^2\left({\beta }_{1mn}r_\mbox{d}\right)}{\delta }_3+{\delta }_4}</math>
407
|}
408
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
409
|}
410
411
412
where
413
414
<math>{\delta }_1=\frac{1}{{\beta }_{1mn}}\left\{\frac{1}{{\beta }_{1mn}}\left[R_1\left({\beta }_{1mn}r_\mbox{0}\right)-\right. \right. </math><math>\left. \left. R_1\left({\beta }_{1mn}r_\mbox{d}\right)\right]+\right. </math><math>\left. r_\mbox{d}ln\frac{r_\mbox{p}}{r_\mbox{d}}P_1\left({\beta }_{1mn}r_\mbox{d}\right)-\right. </math><math>\left. r_0ln\frac{r_\mbox{p}}{r_0}P_1\left({\beta }_{1mn}r_\mbox{0}\right)\right\}</math> ;
415
416
<math>{\delta }_2=\frac{1}{{\beta }_{2mn}}\left\{\frac{1}{{\beta }_{2mn}}\left[R_2\left({\beta }_{2mn}r_\mbox{d}\right)-\right. \right. </math><math>\left. \left. R_2\left({\beta }_{2mn}r_\mbox{p}\right)\right]+\right. </math><math>\left. r_\mbox{p}ln\frac{r_\mbox{p}}{r_\mbox{p}}P_2\left({\beta }_{2mn}r_\mbox{p}\right)-\right. </math><math>\left. r_\mbox{d}ln\frac{r_\mbox{p}}{r_\mbox{d}}P_2\left({\beta }_{2mn}r_\mbox{d}\right)\right\}</math> ;
417
418
<math>{\delta }_3=\frac{r_\mbox{d}{}^2}{2}\left[P_1^2\left({\beta }_{1mn}r_\mbox{d}\right)+\right. </math><math>\left. R_1^2\left({\beta }_{1mn}r_\mbox{d}\right)\right]-</math><math>\frac{r_\mbox{0}{}^2}{2}\left[P_1^2\left(m,n,r_\mbox{0}\right)+\right. </math><math>\left. R_1^2\left(m,n,r_\mbox{0}\right)\right]</math> ;
419
420
<math>{\delta }_4=\frac{r_\mbox{e}{}^2}{2}\left[P_2{\left({\beta }_{2mn}r_\mbox{e}\right)}^2+\right. </math><math>\left. R_2^2\left({\beta }_{2mn}r_\mbox{e}\right)\right]-</math><math>\frac{r_\mbox{d}{}^2}{2}\left[P_2^2\left({\beta }_{2mn}r_\mbox{d}\right)+\right. </math><math>\left. R_2^2\left({\beta }_{2mn}r_\mbox{d}\right)\right]</math> .
421
422
===3. Degradation analysis and verification by FEM===
423
424
The verification and subsequent parameter sensitivity analysis using the parameters defined below. The parameters not mentioned can be obtained in the graphical analysis.
425
426
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
427
 <math>\begin{array}{ccc}
428
m_\mbox{v}={10}^{-2}\mbox{ }\mbox{m}^2/\mbox{kN} & {\gamma }_\mbox{w}=10\mbox{kN}/\mbox{m}^3 & k_\mbox{v}=2\times {10}^{-9}\mbox{m}/\mbox{s}\\
429
r_0=0.25\mbox{ m} & r_\mbox{p}=1.2\times r_\mbox{d} & r_\mbox{e}=20\times r_\mbox{0}\\
430
H=20\mbox{ m} & h_0=0.5\mbox{ m} & a_1=5\mbox{kPa}/\mbox{m}
431
\end{array}</math> </div>
432
433
<span id='_Hlk52459816'></span><span id='_Hlk52481419'></span>
434
435
====3.1 Degradation analysis====
436
437
<span id='_Hlk58346120'></span><span id='_Hlk51712381'></span><span id='_Hlk50932241'></span>When  <math>k_\mbox{h}</math> and  <math>k_\mbox{d}</math> are equal, it can be seen from Eq. <span id='cite-ZEqnNum741519'></span>[[#ZEqnNum741519|(17)]] that
438
439
{| class="formulaSCP" style="width: 100%; text-align: center;" 
440
|-
441
| 
442
{| style="text-align: center; margin:auto;" 
443
|-
444
| <span id='ZEqnNum989253'></span>  <math>{\beta }_{1mn}={\beta }_{2mn}</math>
445
|}
446
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
447
|}
448
449
450
and
451
452
{| class="formulaSCP" style="width: 100%; text-align: center;" 
453
|-
454
| 
455
{| style="text-align: center; margin:auto;" 
456
|-
457
| <span id='ZEqnNum808683'></span>  <math>{\chi }_1\left({\beta }_{1mn}\right)={\chi }_2\left({\beta }_{2mn}\right)</math>
458
|}
459
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
460
|}
461
462
463
<math>{\beta }_{1mn}</math> and  <math>{\beta }_{2mn}</math> are obtained by solving Eq. <span id='cite-ZEqnNum808683'></span>[[#ZEqnNum808683|(24)]]. Substituting Eq. <span id='cite-ZEqnNum989253'></span>[[#ZEqnNum989253|(23)]] and Eq. <span id='cite-ZEqnNum808683'></span>[[#ZEqnNum808683|(24)]] back into  <math>R_1\left({\beta }_{1mn}r\right)</math> ,  <math>R_2\left({\beta }_{2mn}r\right)</math> ,  <math>P_1\left({\beta }_{1mn}r\right)</math> and  <math>P_2\left({\beta }_{2mn}r\right)</math> , it yields
464
465
{| class="formulaSCP" style="width: 100%; text-align: center;" 
466
|-
467
| 
468
{| style="text-align: center; margin:auto;" 
469
|-
470
| <span id='ZEqnNum350685'></span>  <math>\lbrace \begin{array}{c}
471
R_1\left({\beta }_{1mn}r\right)=R_2\left({\beta }_{2mn}r\right)\\
472
P_1\left({\beta }_{1mn}r\right)=P_2\left({\beta }_{2mn}r\right)
473
\end{array}</math>
474
|}
475
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
476
|}
477
478
479
Combining Eq. <span id='cite-ZEqnNum164985'></span>[[#ZEqnNum164985|(16)]] with Eq. <span id='cite-ZEqnNum350685'></span>[[#ZEqnNum350685|(25)]], one can obtain
480
481
{| class="formulaSCP" style="width: 100%; text-align: center;" 
482
|-
483
| 
484
{| style="text-align: center; margin:auto;" 
485
|-
486
| <math>A_{1mn}=A_{2mn}</math>
487
|}
488
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
489
|}
490
491
492
So, it is found that  <math>{\overline{u}}_1</math> and  <math>{\overline{u}}_2</math> in Eq. <span id='cite-ZEqnNum665918'></span>[[#ZEqnNum665918|(15)]] are equal. Write them together as
493
494
{| class="formulaSCP" style="width: 100%; text-align: center;" 
495
|-
496
| 
497
{| style="text-align: center; margin:auto;" 
498
|-
499
| <math>\overline{u}=\sum_{m=1}^{\infty }A_{mn}R\left({\beta }_{mn}r\right)\mbox{e}^{-\left(C_\mbox{h}{\beta }_{mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}</math>
500
|}
501
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
502
|}
503
504
505
where  <math>A_{mn}=A_{1mn}=A_{2mn}</math> ;  <math>{\beta }_{mn}={\beta }_{1mn}={\beta }_{2mn}</math> ;  <math>\chi \left({\beta }_{mn}\right)={\chi }_1\left({\beta }_{1mn}\right)=</math><math>{\chi }_2\left({\beta }_{2mn}\right)</math> ; and <math>P\left({\beta }_{mn}r\right)=P_1\left({\beta }_{1mn}r\right)=</math><math>P_2\left({\beta }_{2mn}r\right)</math> .
506
507
After finite Fourier inverse transform, the final general solution without considering disturbance effect can be obtained as
508
509
{| class="formulaSCP" style="width: 100%; text-align: center;" 
510
|-
511
| 
512
{| style="text-align: center; margin:auto;" 
513
|-
514
| <math>u=\frac{2}{H}\sum_{m=1}^{\infty }\sum_{n=1}^{\infty }A_{mn}R\left({\beta }_{mn}r\right)sin{\alpha }_nz\mbox{e}^{-\left(C_\mbox{h}{\beta }_{mn}^2+C_\mbox{v}{\alpha }_n^2\right)t}</math>
515
|}
516
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
517
|}
518
519
520
which is consistent with of the solution proposed by Gao and Shi (2008) <sup>[12]</sup>.
521
522
<span id='_Hlk52481937'></span>
523
524
====3.2 Verification by FDM====
525
526
<span id='_Hlk73027317'></span>In order to further verify the correctness of the proposed solution, the FDM is used for comparison. First, the solution domain  <math display="inline">\left\{\begin{array}{cc}
527
r_0\leq r\leq r_\mbox{e}; & 0\leq z\leq H
528
\end{array}\right\}</math> is discretized, as follow
529
530
{| class="formulaSCP" style="width: 100%; text-align: center;" 
531
|-
532
| 
533
{| style="text-align: center; margin:auto;" 
534
|-
535
| <math>\lbrace \begin{array}{lll}
536
r_i=r_0+i\Delta r & \Delta r=\frac{r_\mbox{e}-r_0}{I} & i=0,1...,I\\
537
z_j=j\Delta z & \Delta z=\frac{H}{J} & j=0,1...,J
538
\end{array}</math>
539
|}
540
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
541
|}
542
543
544
where  <math display="inline">r_i</math> and  <math display="inline">z_j</math> are respectively the radial distance and depth corresponding to point'' i ''or ''j'';  <math display="inline">\Delta r</math> and  <math display="inline">\Delta z</math> are respectively radial mesh and depth mesh.
545
546
The governing equation (i.e., Eq. <span id='cite-ZEqnNum571777'></span>[[#ZEqnNum571777|(1)]]) and solving conditions (i.e., Eqs. <span id='cite-ZEqnNum823648'></span>[[#ZEqnNum823648|(2)]] - <span id='cite-ZEqnNum798795'></span>[[#ZEqnNum798795|(5)]]) are discretized by using the forward-backward implicit difference scheme as shown below
547
548
{| class="formulaSCP" style="width: 100%; text-align: center;" 
549
|-
550
| 
551
{| style="text-align: center; margin:auto;" 
552
|-
553
| <math>\frac{u_{i,j}^k-u_{i,j}^{k-1}}{\Delta t}=C_{\mbox{h}i}\left[\frac{u_{i-1,j}^{k-1}-2u_{i,j}^{k-1}+u_{i+1,j}^{k-1}}{{\left(\Delta r\right)}^2}+\right. </math><math>\left. \frac{1}{r_i}\frac{u_{i+1,j}^{k-1}-u_{i-1,j}^{k-1}}{2\Delta r}\right]+</math><math>C_\mbox{v}\frac{u_{i,j-1}^{k-1}-2u_{i,j}^{k-1}+u_{i,j+1}^{k-1}}{{\left(\Delta z\right)}^2}</math>
554
|}
555
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
556
|}
557
558
{| class="formulaSCP" style="width: 100%; text-align: center;" 
559
|-
560
| 
561
{| style="text-align: center; margin:auto;" 
562
|-
563
| <math>u_{i,j}^0=u_0\left(r_i,z_j\right)</math>
564
|}
565
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
566
|}
567
568
{| class="formulaSCP" style="width: 100%; text-align: center;" 
569
|-
570
| 
571
{| style="text-align: center; margin:auto;" 
572
|-
573
| <math>\begin{array}{c}
574
u_{-1,j}^k=u_{1,j}^k\\
575
u_{I,j}^k=0
576
\end{array}</math>
577
|}
578
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
579
|}
580
581
{| class="formulaSCP" style="width: 100%; text-align: center;" 
582
|-
583
| 
584
{| style="text-align: center; margin:auto;" 
585
|-
586
| <math>k_{\mbox{h}I_\mbox{d}}\frac{u_{I_\mbox{d},j}^k-u_{I_\mbox{d}-1,j}^k}{\Delta r}=</math><math>k_{\mbox{h}I_\mbox{d}+1}\frac{u_{I_\mbox{d}+1,j}^k-u_{I_\mbox{d},j}^k}{\Delta r}</math>
587
|}
588
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
589
|}
590
591
{| class="formulaSCP" style="width: 100%; text-align: center;" 
592
|-
593
| 
594
{| style="text-align: center; margin:auto;" 
595
|-
596
| <math>\begin{array}{c}
597
u_{i,0}^k=0\\
598
u_{i,J-1}^k=u_{i,J+1}^k
599
\end{array}</math>
600
|}
601
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
602
|}
603
604
605
where  <math>k_{\mbox{h}i}=\lbrace \begin{array}{cc}
606
k_\mbox{d}, & 0\leq i\leq I_\mbox{d}\\
607
k_\mbox{h}, & I_\mbox{d}<i\leq I
608
\end{array}</math> and  <math>C_{\mbox{h}i}=\lbrace \begin{array}{cc}
609
C_\mbox{d}, & 0\leq i\leq I_\mbox{d}\\
610
C_\mbox{h}, & I_\mbox{d}<i\leq I
611
\end{array}</math> . The above FDM solution is programmed with MATLAB, and the specific programming steps are as follows:
612
613
For  <math display="inline">i\in \left[0,I\right],j=0</math>
614
615
{| class="formulaSCP" style="width: 100%; text-align: center;" 
616
|-
617
| 
618
{| style="text-align: center; margin:auto;" 
619
|-
620
| <math>u_{i,0}^k=0</math>
621
|}
622
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
623
|}
624
625
626
For  <math display="inline">i=I,j\in \left[1,J\right]</math>
627
628
{| class="formulaSCP" style="width: 100%; text-align: center;" 
629
|-
630
| 
631
{| style="text-align: center; margin:auto;" 
632
|-
633
| <math>u_{I,j}^k=0</math>
634
|}
635
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
636
|}
637
638
639
For  <math display="inline">i=0,j\in \left[1,J\right]</math>
640
641
{| class="formulaSCP" style="width: 100%; text-align: center;" 
642
|-
643
| 
644
{| style="text-align: center; margin:auto;" 
645
|-
646
| <math>u_{0,j}^k=\left\{1-2\Delta t\left[\frac{C_{\mbox{h}0}}{{\left(\Delta r\right)}^2}+\right. \right. </math><math>\left. \left. \frac{C_\mbox{v}}{{\left(\Delta z\right)}^2}\right]\right\}u_{0,j}^{k-1}+</math><math>\frac{2C_{\mbox{h}0}\Delta t}{{\left(\Delta r\right)}^2}u_{1,j}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{0,j-1}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{0,j+1}^{k-1}</math>
647
|}
648
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
649
|}
650
651
652
For  <math display="inline">i\in \left[1,I-1\right],j=J</math>
653
654
{| class="formulaSCP" style="width: 100%; text-align: center;" 
655
|-
656
| 
657
{| style="text-align: center; margin:auto;" 
658
|-
659
| <math>u_{i,J}^k=\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}-\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i-1,J}^{k-1}+</math><math>\left\{1-2\Delta t\left[\frac{C_{\mbox{h}i}}{{\left(\Delta r\right)}^2}+\right. \right. </math><math>\left. \left. \frac{C_\mbox{v}}{{\left(\Delta z\right)}^2}\right]\right\}u_{i,J}^{k-1}+</math><math>\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}+\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i+1,J}^{k-1}+</math><math>\frac{2C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{i,J-1}^{k-1}</math>
660
|}
661
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
662
|}
663
664
665
For  <math display="inline">i\in \left[1,I-1\right],\mbox{ }j\in \left[1,J-1\right]</math>
666
667
{| class="formulaSCP" style="width: 100%; text-align: center;" 
668
|-
669
| 
670
{| style="text-align: center; margin:auto;" 
671
|-
672
| <math>u_{i,j}^k=\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}-\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i-1,j}^{k-1}+</math><math>\left\{1-2\Delta t\left[\frac{C_{\mbox{h}i}}{{\left(\Delta r\right)}^2}+\right. \right. </math><math>\left. \left. \frac{C_\mbox{v}}{{\left(\Delta z\right)}^2}\right]\right\}u_{i,j}^{k-1}+</math><math>\frac{C_{\mbox{h}i}\Delta t\left(2r_{i,j}+\Delta r\right)}{2{\left(\Delta r\right)}^2r_i}u_{i+1,j}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{i,j-1}^{k-1}+</math><math>\frac{C_\mbox{v}\Delta t}{{\left(\Delta z\right)}^2}u_{i,j+1}^{k-1},\mbox{ }\begin{array}{c}
673
I=1,\mbox{ }2,\mbox{ }\cdots \mbox{ }I-1\\
674
j=1,\mbox{ }2,\mbox{ }\cdots \mbox{ }J-1
675
\end{array}</math>
676
|}
677
| style="width: 5px;text-align: right;white-space: nowrap;" | (39)
678
|}
679
680
681
The time step is divided into 90 segments uniformly by the time of each order of magnitude (e.g., the time step is  <math>{10}^1\mbox{ s}</math> when  <math>t</math> between  <math>{10}^2\mbox{ s}</math> and  <math>{10}^3\mbox{ s}</math> ). The grid of the model is uniform, and the grid size is  <math display="inline">\Delta r</math> (0.25m) ×  <math display="inline">\Delta z</math> (0.25m) (Fig. 2(a)). Three positions (i.e., Point 1 at  <math>\left(r_0,H\right)</math> , Point 2 at  <math>\left(3r_0,\mbox{0}\mbox{.8}H\right)</math> and Point 3 at  <math>\left(5r_0,\mbox{0}\mbox{.6}H\right)</math> ) of the excess pore pressure are selected to compare the FDM solution and the analytical solution. As shown in Fig. 2(b), the proposed solution coincides with the FDM solution almost completely, which indicates the correctness of the proposed solution.
682
683
<div id="_Hlk76470900" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
684
 
685
{|
686
|-
687
| [[Image:Review_932178682507-image135.png|90px]]
688
| [[Image:Review_932178682507-image136.png|center|300px]]
689
|}
690
</div>
691
692
(a)                      (b)
693
694
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
695
Fig. 2 (a) mesh of the model, and (b) curves of relation between time and excess pore pressure.</div>
696
697
===4. Results and Discussion===
698
699
For convenience of analysis, the time factor,  <math>T_\mbox{v}</math> , and the dimensionless excess pore pressure,  <math>\overline{u}</math> are defined as follows
700
701
{| class="formulaSCP" style="width: 100%; text-align: center;" 
702
|-
703
| 
704
{| style="text-align: center; margin:auto;" 
705
|-
706
| <math>T_\mbox{v}=C_\mbox{v}t/H^2,\mbox{ }\overline{u}=</math><math>u/u_0\left(r_0,H\right)</math>
707
|}
708
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
709
|}
710
711
==4.1 Parameter analysis==
712
713
Fig. 3(a) illustrates the distribution of excess pore pressure along the depth. The excess pore pressure increases with the increase in depth. After consolidation for a period of time (i.e.,  <math>T_\mbox{v}={10}^{-3}</math> ), the excess pore pressure at different depths in the disturbed zone was still higher than that in the undisturbed zone (i.e.,  <math>r>r_\mbox{d}</math> ). Fig. 3(b) shows that the excess pore pressure increases linearly with depth direction under different ''r''. The growth rate of the excess pore pressure with depth is large in the disturbed zone (i.e.,  <math>r\leq r_\mbox{d}</math> ), while the growth rate of the excess pore pressure with depth is small in the undisturbed zone (i.e.,  <math>r>r_\mbox{d}</math> ).
714
715
<div id="_Hlk76470911" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
716
 
717
{|
718
|-
719
| [[Image:Review_932178682507-image144.png|300px]]
720
| [[Image:Review_932178682507-image145.png|center|300px]]
721
|}
722
</div>
723
724
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
725
Fig. 3 (a) Distribution of  <math>\overline{u}</math> along  <math>r</math> direction under different  <math>z</math> and (b) distribution of  <math>\overline{u}</math> along  <math>z</math> direction under different  <math>r</math> .</div>
726
727
<span id='_Hlk58959226'></span>According to the research works proposed by Li et al. (2017) <sup>[9]</sup>, time-dependent bearing capacity is mainly affected by the dissipation of the excess pore pressure at the pile-soil interface. In order to study the influence of the soil disturbance induced by pile installation on the excess pore pressure at pile-soil interface, this paper introduces the dimensionless average excess pore pressure at pile-soil interface ( <math>u_{\mbox{ave}}\left(t\right)</math> ) for analysis:
728
729
{| class="formulaSCP" style="width: 100%; text-align: center;" 
730
|-
731
| 
732
{| style="text-align: center; margin:auto;" 
733
|-
734
| <math>u_{\mbox{ave}}\left(t\right)=\frac{{\int }_\mbox{0}^H2\mbox{π}r_0u_1\left(t,r_0,z\right)\mbox{d}z}{{\int }_\mbox{0}^H2\mbox{π}r_0u_0\left(r_0,z\right)\mbox{d}z}</math>
735
|}
736
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
737
|}
738
739
740
In Fig. 4, the influence of permeability coefficient ratio  <math>k_\mbox{d}/k_\mbox{h}</math> on the excess pore pressure under deep and shallow foundations, where  <math>k_\mbox{d}/k_\mbox{h}</math> reflects the disturbance degree of pile installation. When  <math>k_\mbox{d}/k_\mbox{h}\mbox{=1}</math> , this solution can degenerate into the solution of homogeneous soil around a pile <sup>[12]</sup>. Whether it's Case of shallow foundation (i.e., Case of  <math>H=5\mbox{ m}</math> ) or Case of deep foundation (i.e., Case of  <math>H=20\mbox{ m}</math> ), the dissipation rate of the excess pore pressure gradually decreases with decreases in  <math>k_\mbox{d}/k_\mbox{h}</math> , which indicates that  <math>u_{\mbox{ave}}\left(t\right)</math> could be overestimated at the anytime without considering the disturbance effect. The dissipation rate of the average excess pore pressure at pile-soil interface decreases obviously with the increase of  <math>k_\mbox{d}/k_\mbox{h}</math> , which indicated that soil disturbance has a significant hindering effect on  <math>u_{\mbox{ave}}\left(t\right)</math> . By comparing Case of shallow foundation and Case of deep foundation, it is clearly known that the disturbance effect has a greater influence on deep foundation than on shallow foundation. Moreover, the difference of drainage performance of deep and shallow foundations is gradually obvious with the increase of  <math>k_\mbox{d}/k_\mbox{h}</math> .
741
742
<div id="_Hlk76470922" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
743
 [[Image:Review_932178682507-image164.png|300px]] </div>
744
745
<div id="_Hlk76471195" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
746
Fig 4. Influence of permeability coefficient ratio  <math>k_\mbox{d}/k_\mbox{h}</math> on the excess pore pressure.</div>
747
748
Unlike  <math>k_\mbox{d}/k_\mbox{h}</math> which reflect the degree of disturbance, the radius of the disturbed zone,  <math>r_\mbox{d}</math> , reflects the disturbance range. The impact of  <math>r_\mbox{d}/r_\mbox{0}</math> on the excess pore pressure is introduced in Fig. 5. This solution can degenerate into the solution of homogeneous soil around a pile when  <math>r_\mbox{d}/r_\mbox{0}\mbox{=1}</math> <sup>[12]</sup>. Additionally, compared with the case without disturbed zone (i.e.,  <math>r_\mbox{d}/r_\mbox{0}\mbox{=1}</math> ), the dissipation rate of  <math>u_{\mbox{ave}}\left(t\right)</math> decreases gradually with the increase of  <math>r_\mbox{d}</math> in the intermediate and later stages. Moreover, it is found that the consolidation rate of the deep foundation is smaller than that of the shallow foundation with the increase of  <math>r_\mbox{d}/r_\mbox{0}</math> .
749
750
<div id="_Hlk76470928" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
751
 [[Image:Review_932178682507-image174.png|300px]] </div>
752
753
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
754
Fig 5. Influence of the disturbance radius ratio  <math>r_\mbox{d}/r_\mbox{0}</math> on the excess pore pressure.</div>
755
756
==4.2 Test analysis==
757
758
To demonstrate the validity of the proposed solution, a set of published laboratory test data is used for comparison <sup>[31]</sup>. As shown in Figure 6 (a), the test box is a cube with a side length of 1000 mm, and the test pile is a PVC pipe with a radius of 30 mm and length of 900 mm (length of 700 mm in the soil). The literature suggests that ''r''<sub>e</sub> is equal to 20 times ''r''<sub>0</sub> <sup>[31]</sup>. Because the Piezometer 1 ~ 3 (i.e., P1 ~ P3, at distance of ''r'' = 90 mm) are close to the pile, the measurement data fluctuates greatly, so only the data of P4 ~ P9 are used for analysis. P4 ~P6 are located at distance of ''r'' = 210 mm and P7 ~ P9 are located at distance of ''r'' = 330 mm. According to the initial excess pore pressures of P4 ~ P9, the parameters of the initial excess pore pressure is determined as shown in Fig. 6 (b).
759
760
<div id="_Hlk76471231" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
761
 
762
{|
763
|-
764
| [[Image:Review_932178682507-image176.png|240px]]
765
| [[Image:Review_932178682507-image177-c.png|center|300px]]
766
|}
767
</div>
768
769
<div id="_Hlk58349943" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
770
Fig. 6. (a) Schematic diagram of laboratory test for a pipe pile and (b) distribution diagram of initial pore pressure by pile-driving.</div>
771
772
The calculated and measured values of the excess pore pressure are shown in Figure 7. It is observed that the calculated value is a good fit with the measured value. That indicates the proposed mathematical model has a good ability to predict the variation trend of the excess pore pressure.
773
774
<div id="_Hlk76470940" class="center" style="width: auto; margin-left: auto; margin-right: auto;">
775
 
776
{|
777
|-
778
| [[Image:Review_932178682507-image178.png|300px]]
779
| [[Image:Review_932178682507-image179.png|center|300px]]
780
|}
781
</div>
782
783
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
784
Fig. 7. Data of 6 measured points and corresponding calculated values: (a) P4 ~ P6, and (b) P7 ~ P9.</div>
785
786
<span id='_Hlk30159828'></span>
787
788
===5. Conclusions===
789
790
<span id='_Hlk76423000'></span><span id='_Hlk76422546'></span>In this paper, an analytical solution to consolidation problem with disturbance effect in the soil around a pile is derived and its accuracy is verified by degradation analysis and the FDM. The influence of disturbance effect on the excess pore pressure dissipation of the soil around a pile under long and short foundation is analyzed. It was concluded that the excess pore pressure in the disturbed zone is more difficult to dissipate than that in the undisturbed zone; The dissipation rate of the average excess pore pressure gradually decreased obviously with the increase of permeability coefficient ratio,  <math>k_\mbox{d}/k_\mbox{h}</math> , on the whole dissipation period at pile-soil interface; The impact of radius ratio,  <math>r_\mbox{d}/r_\mbox{0}</math> , on the excess pore pressure is interesting. When  <math>r_\mbox{d}/r_\mbox{0}</math> is small,  <math>r_\mbox{d}/r_\mbox{0}</math> only impedes dissipation rate of excess pore pressure in the early and intermediate dissipation periods. But, with  <math>r_\mbox{d}/r_\mbox{0}</math> increases,  <math>r_\mbox{d}/r_\mbox{0}</math> can impedes dissipation rate of excess pore pressure on the whole dissipation period. Disturbance effect (e.g.,  <math>k_\mbox{d}/k_\mbox{h}</math> and  <math>r_\mbox{d}/r_\mbox{0}</math> ) has obvious negative effect on both shallow and deep foundation, and the negative effect on deep foundations is greater than that on shallow foundation. Finally, the proposed solution is used to predict a test case, which shows that the proposed solution has a good ability to predict the variation trend of the excess pore pressure. However, this model only assumes that the soil is elastic and ignores the effect of the external load, which will be the objective of subsequent research.
791
792
===Author Contributions===
793
794
Conceptualization: Ping Li; writing—original draft preparation: Ping Li and Zhijian Chen; writing—review and editing: Yi Ding.
795
796
<br/>
797
798
===Institutional Review Board Statement===
799
800
This study did not require ethical approval.<br/>
801
802
===Informed Consent Statement===
803
804
Not applicable.<br/>
805
806
===Data Availability Statement===
807
808
All data, models, and code generated or used during the study appear in the submitted article.
809
810
<br/>
811
812
===Conflict of Interest===
813
814
The authors declared that they have no conflicts of interest to this work.<br/>
815
816
===References===
817
818
[1] K T Tran, M McVay, R Herrera, P Lai. A new method for estimating driven pile static skin friction with instrumentation at the top and bottom of the pile. Soil Dynamics and Earthquake Engineering. 2011;31(9):1285-1295.
819
820
[2] M E Mabsout, J L Tassoulas. A finite element model for the simulation of pile driving. International Journal for Numerical Methods in Engineering. 1994;37(2):257-278.
821
822
[3] J H Hwang, N Liang, C H Chen. Ground response during pile driving. Journal of Geotechnical and Geoenvironmental Engineering. 2001;127(11):939-949.
823
824
[4] M Y Fattah, W H Al-Soudani, M Omar. Estimation of bearing capacity of open-ended model piles in sand. Arabian Journal of Geosciences. 2016;9(3):1-14.
825
826
[5] Pantea Azimi, M Karimpour-Fard, N Shariatmadari, C Tsuha. A new approach to estimate the bearing capacity of driven piles. Arabian Journal of Geosciences. 2021;14(13):1-12.
827
828
[6] M R Mahmood, S J A Qadir. Effect of particle size distribution of cohesionless soils on the ultimate carrying capacity of open ended pipe piles under different saturation conditions. Arabian Journal of Geosciences. 2018;11(21):1-15.
829
830
[7] J Dijkstra, W Broere, O M Heeres. Numerical simulation of pile installation. Computers and Geotechnics. 2011;38(5):612-622.
831
832
[8] X T Xu, H L Liu, B M Lehane. Pipe pile installation effects in soft clay. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering. 2006;159(4):285-296.
833
834
[9] L Li, J P Li, D A Sun, L X Zhang. Time-dependent bearing capacity of a jacked pile: An analytical approach based on effective stress method. Ocean Engineering. 2017;143:177-185.
835
836
[10] M F Randolph, C P Wroth. An analytical solution for the consolidation around a driven pile. International Journal for Numerical Analytical Methods in Geomechanics. 1979;3(3):217-229.
837
838
[11] W D Guo. Visco-elastic consolidation subsequent to pile installation. Computers and Geotechnics. 2000;26(2):113-144.
839
840
[12] Z K Gao, J Y Shi. Consolidation solution of soil around single-pile after pile sinking. Rock and Soil Mechanics. 2008;29(4):979-982.
841
842
[13] S H Wang, P P Ni, Z Chen, G X Mei. Consolidation solution of soil around a permeable pipe pile. Marine Georesources Geotechnology. 2019:1-9.
843
844
[14] Z Chen, T Xiao, J X Feng, P P Ni, D Q Chen, G X Mei, Y F Chen. Mathematical characterization of pile-soil interface boundary for consolidation analysis of soil around permeable pipe pile. Canadian Geotechnical Journal. 2020(ja).
845
846
[15] M Bozozuk, B H Fellenius, L Samson. Soil disturbance from pile driving in sensitive clay. Canadian Geotechnical Journal. 1978;15(3):346-361.
847
848
[16] T Fang, M Huang, K Tang. Cross-section piles in transparent soil under different dimensional conditions subjected to vertical load: an experimental study. Arabian Journal of Geosciences. 2020;13(21):1-8.
849
850
[17] K R Massarsch, C Wersäll. Cumulative lateral soil displacement due to pile driving in soft clay. Sound Geotechnical Research to Practice: Honoring Robert D. Holtz II; 2013: 462-479.
851
852
[18] Z Y Li, K H Wang, W B Wu, C J Leo, N Wang. Vertical vibration of a large-diameter pipe pile considering the radial inhomogeneity of soil caused by the construction disturbance effect. Computers and Geotechnics. 2017;85:90-102.
853
854
[19] Y Zhou, J C Chai. Equivalent ‘smear’effect due to non-uniform consolidation surrounding a PVD. Géotechnique. 2017;67(5):410-419.
855
856
[20] R Nazir, H Moayedi, P Subramaniam, S Ghareh. Ground improvement using SPVD and RPE. Arabian Journal of Geosciences. 2017;10(23):1-21.
857
858
[21] R D Holtz, M B Jamiolkowski, R Lancellotta, R Pedroni. Prefabricated vertical drains: design and performance; 1991.
859
860
[22] J Wang, Y L Yang, H T Fu, Y Q Cai, X Q Hu, X M Lou, Y W Jin. Improving consolidation of dredged slurry by vacuum preloading using prefabricated vertical drains (PVDs) with varying filter pore sizes. Canadian Geotechnical Journal. 2020;57(2):294-303.
861
862
[23] Y B Deng, G B Liu, B Indraratna, C Rujikiatkamjorn, K H Xie. Model test and theoretical analysis for soft soil foundations improved by prefabricated vertical drains. International Journal of Geomechanics. 2017;17(1):04016045.
863
864
[24] Z Chen, P P Ni, G X Mei, Y F Chen. Semi-analytical solution for consolidation of ground with partially penetrating PVDs under the free-strain condition. Journal of Engineering Mechanics. 2020;147(2):04020148.
865
866
[25] Y Tian, W B Wu, G S Jiang, M H El Naggar, G X Mei, P P Ni. Analytical solutions for vacuum preloading consolidation with prefabricated vertical drain based on elliptical cylinder model. Computers Geotechnics. 2019;116:103202.
867
868
[26] L O Soderberg. Consolidation theory applied to foundation pile time effects. Géotechnique. 1962;12(3):217-225.
869
870
[27] Z L Luo, F H Dong. Statistical investigation of bearing capacity of pile foundation based on Bayesian reliability theory. Advances in Civil Engineering. 2019;2019.
871
872
[28] B M Lehane, D R Gill. Displacement fields induced by penetrometer installation in an artificial soil. International Journal of Physical Modelling in Geotechnics. 2004;4(1):25-36.
873
874
[29] H de Chaunac, A Holeyman. Numerical analysis of the set-up around the shaft of a closed-ended pile driven in clay. Géotechnique. 2018;68(4):332-344.
875
876
[30] Q M Chen, M N Haque, M Abu-Farsakh, B A Fernandez. Field investigation of pile setup in mixed soil. Geotechnical Testing Journal. 2014;37(2):268-281.
877
878
[31] P P Ni, S Mangalathu, G X Mei, Y L Zhao. Laboratory investigation of pore pressure dissipation in clay around permeable piles. Canadian Geotechnical Journal. 2018;55(9):1257-1267.
879

Return to Li et al 2021d.

Back to Top

Document information

Published on 17/03/22
Accepted on 06/03/22
Submitted on 04/11/21

Volume 38, Issue 1, 2022
DOI: 10.23967/j.rimni.2022.03.008
Licence: CC BY-NC-SA license

Document Score

5

Views 518
Recommendations 1

Share this document

claim authorship

Are you one of the authors of this document?