You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
== Abstract ==
2
3
Within the framework of the applied shell theory, an energetically consistent resolving system of equations is formulated and a complex numerical method is developed that allows solving both quasi-static and dynamic problems of nonlinear non-axisymmetric deformation and loss of stability of composite cylindrical shells within the framework of an explicit variational-difference scheme. The reliability and accuracy of the proposed method are justified by comparing numerical calculations with experimental data. For various reinforcement structures, the analysis of the characteristic spatial configurations and critical loads of the loss of stability of fiberglass cylindrical shells is carried out, depending on the amount of preloading by quasi-static internal pressure and subsequent loading by axial dynamic compression.
4
5
== Full document ==
6
<pdf>Media:Draft_Content_272279044p3205.pdf</pdf>
7

Return to Igumnov et al 2021a.

Back to Top
GET PDF

Document information

Published on 11/03/21
Submitted on 11/03/21

Volume 300 - Multiscale and Multiphysics Systems, 2021
DOI: 10.23967/wccm-eccomas.2020.251
Licence: CC BY-NC-SA license

Document Score

0

Views 12
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?