You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
== Abstract ==
2
3
Modern electronic systems, computer hardware and navigation equipment on board moving objects can be subjected to significant mechanical impulse and vibrational impacts. These impacts can introduce additional errors in readings of devices, and sometimes lead to their mechanical failure. One of the effective ways to solve the problem is to apply the method of passive vibration protection, which makes it possible to reduce vibrations due to the use of damping elements. This paper examines the vibration response of a device mounted on a moving platform. The device is protected against vibration by 4 dampers. The platform is subjected to translational motions in three mutually orthogonal directions. This leads to the appearance of coupled translational and rotational vibrations of the protected unit. The problem is solved within the framework of the general theory of the dynamic of a rigid body. The paper presents the results of numerical experiments, in which the intensity of rotational vibrations of the protected unit is investigated depending on various mechanical characteristics of the system. Admissible variation of these characteristics, at which the angular acceleration of the protected unit remains below a limit value, has been determined.
4
5
== Full document ==
6
<pdf>Media:Draft_Content_281717632p2364.pdf</pdf>
7

Return to Shardakov et al 2021a.

Back to Top
GET PDF

Document information

Published on 11/03/21
Submitted on 11/03/21

Volume 900 - Structural Mechanics, Dynamics and Engineering, 2021
DOI: 10.23967/wccm-eccomas.2020.361
Licence: CC BY-NC-SA license

Document Score

0

Views 18
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?