You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
3
4
<span id='_Hlk529003922'></span>
5
6
==Analysis of damage failure in uniaxial compressive of cemented paste backfill by ultrasonic pulse velocity test==
7
8
Bingwen Wang<sup>1</sup>  Lin Li<sup>1 </sup>  Yao Yu<sup>1</sup>  Benyong Huo<sup>1</sup>  Jian Liu<sup>1</sup>  Jie Liu<sup>2</sup>
9
10
<span style="text-align: center; font-size: 75%;">1</span> <span style="text-align: center; font-size: 75%;">School of Energy and Mining Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China</span>
11
12
2 Linglong Gold Mine, Shangdong Gold Group Co.Ltd, Zhaoyuan Shangdong, 265406, China
13
-->
14
==Abstract==
15
16
Cemented paste backfill (CPB) is prepared by mixing cementitious materials, tailings and water. Uniaxial compressive strength (UCS) is one of the most commonly used indicators for evaluating the mechanical performance of CPB. Ultrasonic pulse velocity (UPV) testing which is a non-destructive measurement, can also be applied to determine the mechanical properties of cement-based materials such as CPB. In order to study the failure mechanism of CPB,144 CPB samples prepared at different mass fraction and cement-tailing ratios were subjected to the UCS and UPV tests at 7,14 and 28 days of curing age. The effect of cement-tailing ratio and mass fraction on the UCS and UPV of CPB samples were obtained, the UCS values were correlated with the corresponding UPV data. Microstructural analysis was also performed on CPB samples to understand the effect of microstructure on the UCS data. The results show that the UCS and UPV values of CPB increased with cement-tailing ratio, mass fraction and curing time. Based on the experimental results, the damage constitutive equations and the damage evolution equations of different backfills were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. The results acquired by this paper provide a scientific basis for the rational strength design of backfill mine.
17
18
'''Keywords''': Cemented paste backfill, uniaxial compressive strength, ultrasonic pulse velocity, failure mechanism
19
20
==1. Introduction==
21
22
Underground mining is a significant way to extract mineral resources from earth. Meanwhile, plenty of solid waste (e.g. waste rock, tailings) and underground gobs are created [1]. The discharge of tailings on ground may contaminate the environment or even become a potential hazard. Besides, the underground gobs can result in land surface subsidence [2]. During the underground mining, it is necessary for the underground gobs to fill timely with filling material that have a certain physical and mechanical properties. Filling mining stope with tailings has numerous advantages, such as controlling ground pressure, enhancing resource recovery and realizing sustainable development of mining industry [3-5].
23
24
As to metal mines, cemented paste backfill (CPB) is an engineered mixture of dewatered tailings, cementitious materials and water [6-9]. The UCS of CPB is one of the most significant parameters because CPB structure must remain stable during the extraction of adjacent stopes to ensure the safety of the miners and avoid ore dilution. The mechanical performance of CPB samples is commonly measured with UCS test [10,11]. Ultrasonic pulse velocity (UPV) test, a non-destructive and easy method to apply in both laboratory and in situ conditions, has increasingly been conducted to assess the geotechnical properties of rock or cement-based materials. Numerous studies have been practiced on the use of UPV test. Previous researchers used UPV test to estimate the mechanical and engineering properties of rocks and concrete. And it can also be applied to determine the cracks or defects in the material [12-15]. Wang and Li [16] reported that the cracking characteristics (i.e. crack width) of rock and earth mass can be evaluated by measuring the UPV in these media. Some others used UPV test to characterise in situ microcrack damage resulted from tunnel excavation and the state of decay of wall rock [17]. As to CPB, Diezd’Aux [18] and Galaa et al. [19] have obtained various UPV values in CPB samples with different binder dosage (3-5 wt.%), but they have not used the UPV testing results to evaluate the strength of CPB. Consequently, Yilmaz et al. [20] have conducted a study to take advantage of the UPV measurement to predict the strength of CPB samples.
25
26
The objective of this research is to analyse damage failure in uniaxial compressive of CPB samples prepared with different cement-tailing ratio and mass fraction by UPV test. The USCs of CPB samples were correlated with the UPV. As a result, this paper attempt to establish significant relationship between UCS and UPV of CPB. After the stress reaches the UCS, the UPV values of CPB rapidly decreases. On the basis of these experimental, this paper put forward damage mechanism of CPB tentatively. Besides, the relationship between damage value and strain was obtained according to the damage evolution equations. Additionally, the scanning electron microscope (SEM) analysis was performed for the determination of microstructural properties of CPB samples.
27
28
==2. Materials and methods==
29
30
===2.1 Unclassified-tailings and Cementitious materials===
31
32
Gold mining tailings, cementitious materials and water were used to prepare the CPB samples. The unclassified tailings and cementitious materials used in this study are both provided by Ling-Long gold mine in the east of China. The chemical properties of the unclassified tailings and cementitious materials are shown in [[#tab-1|Table 1]].
33
34
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;font-size: 75%;">
35
'''Table 1'''. Chemical composition of the unclassified-tailings and cementitious materials</div>
36
37
<div id='tab-1'></div>
38
{| class="wikitable" style="margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;width:auto;" 
39
|-style="text-align:center"
40
! style="text-align: left;"|Chemical component !! SiO<sub>2</sub> !! Al<sub>2</sub>O<sub>3</sub> !! K<sub>2</sub>O !! Na<sub>2</sub>O !! CaO !! Fe<sub>2</sub>O<sub>3</sub> !! MgO !! S !! TiO<sub>2</sub>
41
|-style="text-align:center"
42
|  style="text-align: center;text-align: left;"|Unclassified tailings(wt.%)
43
|  style="text-align: center;"|66.90
44
|  style="text-align: center;"|18.06
45
|  style="text-align: center;"|4.70
46
|  style="text-align: center;"|2.85
47
|  style="text-align: center;"|2.27
48
|  style="text-align: center;"|1.51
49
|  style="text-align: center;"|0.88
50
|  style="text-align: center;"|0.25
51
|  style="text-align: center;"|0.17
52
|-style="text-align:center"
53
|  style="text-align: center;text-align: left;"|Cementitious materials(wt.%)
54
|  style="text-align: center;"|20.40
55
|  style="text-align: center;"|9.33
56
|  style="text-align: center;"|0.58
57
|  style="text-align: center;"|0.28
58
|  style="text-align: center;"|53.08
59
|  style="text-align: center;"|1.27
60
|  style="text-align: center;"|4.51
61
|  style="text-align: center;"|3.21
62
|  style="text-align: center;"|1.25
63
|}
64
65
66
According to the data from [[#tab-1|Table 1]], the content of Al<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> contained in the unclassified tailings is respectively 18.06 wt.% and 66.90wt.%, indicating that the unclassified tailings samples in the test can be suitable to make cemented paste backfill (CPB). In addition, SiO<sub>2</sub> content in the unclassified tailings is high, which provides activity for the unclassified tailings to participate in hydration. [[#tab-2|Table 2]] shows the particle size composition of unclassified tailings and cementitious materials.
67
68
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
69
Table 2. Particle size composition of the unclassified-tailings and cementitious materials</div>
70
71
{| style="width: 100%;margin: 1em auto 0.1em auto;border-collapse: collapse;" 
72
|-
73
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|Element
74
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|D<sub>10</sub>(μm)
75
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|D<sub>25</sub>(μm)
76
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|D<sub>50</sub>(μm)
77
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|D<sub>75</sub>(μm)
78
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: bottom;"|D<sub>90</sub>(μm)
79
|-
80
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|Unclassified
81
82
tailings
83
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|8.46
84
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|28.06
85
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|101.52
86
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|188.99
87
|  style="border-top: 1pt solid black;text-align: center;vertical-align: bottom;"|245.32
88
|-
89
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|Cementitious materials
90
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|5.07
91
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|23.93
92
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|61.60
93
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|154.68
94
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: bottom;"|236.71
95
|}
96
97
98
===2.2 Preparation of cemented unclassified tailings backfill===
99
100
Mixing unclassified tailings and cementitious materials, a series of samples (mass fraction of 65%,68%,70% and 72%) were made at cement-tailing ratios of 0.250:1, 0.125:1, 0.100:1 and 0.083:1 respectively. The required amount of unclassified-tailings, cementitious materials and water
101
102
are mixed and homogenized in a mixer until obtaining the desired mixtures. Afterwards, the produced cemented unclassified tailings backfill mixtures are poured into curing cubes of 7.07 <math display="inline">\times</math> 7.07 <math display="inline">\times</math> 7.07cm in length <math display="inline">\times</math> width <math display="inline">\times</math> height to form cubics CPB samples. Then, these samples are cured in YH-40B standard curing chamber (Fig. 1) at temperature of 20 <math display="inline">\pm</math> 1 <math display="inline">^\circ C</math> and for period of 7,14 and 28 days.
103
104
===2.3 UCS and UPV tests ===
105
106
After the specific curing age (7,14 and 28 days), the uniaxial compressive strength (UCS)tests were conducted with MTS rigid apparatus according to ASTM C 109-02[21]. The ultrasonic pulse velocity tests were carried out simultaneously (as shown in Fig. 1). The samples are subjected to the UPV tests according to ASTM C 597 [22]. By taking advantage of the ultrasonic pulse method, the UPV testing measures longitudinal P-wave velocities in the test media. Fig.2 schematically demonstrates the UPV testing of CPB samples in this study. Before the UCS and UPV testing, the end surfaces of the test samples (face1 and 2 in Fig. 2) are made smooth and flat. And then two thin films of Vaseline are separately coated on these two surfaces (faces 3 and 4 in Fig. 2) of the transducers (transmitter and receiver), in order to ensure favorable contact of the transducers and the samples. During the UPV testing, the longitudinal P-wave velocity (''V<sub>P</sub>'') in the sample is investigated and recorded, as well as visually displayed on the screen. The longitudinal P-wave velocity is calculated by the following equation:
107
108
<div style="text-align: right; direction: ltr; margin-left: 1em;">
109
''V<sub>P</sub>=d/t ''                                (1)</div>
110
111
Where ''d'' is the distance between the transmitter and receiver, ''t ''is the travel time.
112
113
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
114
 
115
{|
116
|-
117
| [[Image:Review_156654264638-image1.jpeg|192px]]
118
| [[Image:Review_156654264638-image2.jpeg|center|264px]]
119
|}
120
</div>
121
122
(a)                                    (b)
123
124
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
125
 [[Image:Review_156654264638-image3.jpeg|282px]] </div>
126
127
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
128
(c)</div>
129
130
Fig. 1. Preparation and testing of CPB samples: (a)mixing; (b)CPB samples; (c)UPV and UCS tests.
131
132
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
133
134
{|
135
|-
136
| [[Image:Review_156654264638-picture- 1.svg|center|52px]]
137
| [[Image:Review_156654264638-picture- 2.svg|center|54px]]
138
|}
139
140
{|
141
|-
142
| [[Image:Review_156654264638-picture- 3.svg|center|51px]]
143
| [[Image:Review_156654264638-picture- 4.svg|center|52px]]
144
|}
145
146
{|
147
|-
148
| [[Image:Review_156654264638-picture- 5.svg|center|99px]]
149
| [[Image:Review_156654264638-picture- 6.svg|center|99px]]
150
|}
151
152
{|
153
|-
154
| [[Image:Review_156654264638-picture- 7.svg|center|99px]]
155
| [[Image:Review_156654264638-picture- 8.svg|center|139px]]
156
|}
157
 [[Image:Review_156654264638-image4.png|438px]] </div>
158
159
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
160
Fig. 2. Schematic diagram for UPV testing of the cubic CPB sample.</div>
161
162
==3. Results and discussions==
163
164
===3.1 Strength and ultrasonic properties of CPB samples===
165
166
The USC development of the CPB samples with different mass fraction and cement-tailing ratio is illustrated in Fig.3. From this figure, it can be found out that USC values of the CPB samples increase with the increase of the cement-tailing ratio on the condition of the same mass fraction. This is because of the physical and chemical effects of the cementitious materials. Physically, a portion of the cementitious materials fills the pores or cracks within the CPB samples. Chemically, the other portion of the cementitious materials reacts with calcium hydroxide to form hydration products. Increasing binder dosage produces more hydration products which can improve the microstructure of CPB by reducing total porosity [23]. A Scanning Electron Microscope (Hitachi S-3400N) is used to conduct SEM observations on the CPB samples. The typical examples of the results of these SEM observations is illustrated in Fig. 4. On the microscopic view, the hydration products increases the strength of CPB in microscopic scale. Therefore, a larger dosage of the cementitious materials can lead to a higher USC value of CPB (eg. when preparing the CPB at the same mass fraction (72%) and curing time (28 days), cement-tailing ratio of 0.250:1 results in 4.96 MPa USC value while cement-tailing ratio of 0.100:1 leads to 2.05 MPa).
167
168
It can also be observed from Fig. 3 that UCS values increase with the extension of curing time. This is because more and more hydration products (C-S-H and ettringite) are generated as the curing time increases. These products will fill the pore space within CPB and improve bonding between particles of tailings, leading to the increase of the strength of CPB [24].
169
170
{|style="text-align: center;"
171
|-
172
| style="text-align: center;padding:10px;"|[[Image:Review_156654264638-image5-c.png|382px]]
173
| style="text-align: center;padding:10px;"|[[Image:Review_156654264638-image6-c.png|center|394px]]
174
|-
175
| style="text-align: center;font-size: 75%;"|(a)
176
| style="text-align: center;font-size: 75%;"|(b)
177
|-
178
| colspan="2" style="text-align: center;padding:10px;"|[[Image:Review_156654264638-image7-c.png|376px]]
179
|-
180
| colspan="2" style="text-align: center;font-size: 75%;"| (c)
181
|}
182
183
Fig. 3. Uniaxial compressive strength of CPB samples (a) curing time of 7 days(b) curing time of 14 days(c) curing time of 28 days
184
185
186
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
187
188
{|style="text-align: center;"
189
|-
190
| style="text-align: center;padding:10px;"|[[Image:Review_156654264638-image8.png|222px]]
191
| style="text-align: center;padding:10px;"|[[Image:Review_156654264638-image9.png|center|228px]]
192
|-
193
|style="text-align: center;font-size: 75%;"|(a)  
194
| style="text-align: center;font-size: 75%;"|(b)
195
|-
196
| colspan="2" style="text-align: center;padding:10px;"|[[Image:Review_156654264638-image10.png|240px]]
197
|-
198
| colspan="2" style="text-align: center;font-size: 75%;"| (c)
199
|}
200
</div>
201
202
Fig. 4. SEM images of CPB samples (mass fraction of 70%, cement-tailing ratio of 0.250:1) at different curing time: (a) curing time of 7 days; (b) curing time of 14 days and (c) curing time of 28 days.
203
204
205
Figure 5 describes the stress and UPV of CPB samples prepared from different mass fraction and cement-tailing ratio on the condition of 28 days curing time. The UPV values of CPB samples increased with increasing cement-tailing ratio on the condition of the same mass fraction and the curing time. For instance, at the same mass fraction (72%), the CPB samples prepared at 0.250:1 of the cement-tailing ratio produce higher UPV values than those prepared at 0.100:1 of the cement-tailing ratio. The proportional relationship between the cement-tailing ratio and UPV can be ascribed to the fact that raising the content of cementitious materials results in generating more hydration products to fill the pore structures (UPV in air is lower than that in any mineral skeleton such as rock and cementitious materials),which in turn increases the UPV in CPB [25、26].
206
207
From Fig. 5, it can also be discovered that the UPV values of CPB varies with the increase of the load stress. Before the stress reaches the USC, the fluctuation of UPV values is very small. After the stress reaches the USC, the UPV values of CPB rapidly decreases with the "cliff type" falling Characteristics. This is because the original crack and newly generated crack in the CPB samples lead to the fluctuation of the UPV values before peak stress. While after peak stress, a large number of microcracks expand greatly and the macroscopically fractured joints are formed rapidly. These phenomenons lead to the decline of pulse velocity in CPB samples, since the UPV values in air is lower than that in any mineral skeleton.
208
209
{|style="text-align: center;"
210
|-
211
| style="text-align: center;padding:10px;"|[[Image:Review_156654264638-image11-c.png|376px]]
212
| style="text-align: center;padding:10px;"|[[Image:Review_156654264638-image12-c.png|center|376px]]
213
|-
214
|style="text-align: center;font-size: 75%;"|(a)  
215
| style="text-align: center;font-size: 75%;"|(b)
216
|-
217
| style="text-align: center;padding:10px;"|[[Image:Review_156654264638-image13-c.png|382px]]
218
| style="text-align: center;padding:10px;"|[[Image:Review_156654264638-image14-c.png|center|376px]]
219
|-
220
|style="text-align: center;font-size: 75%;"|(c)  
221
| style="text-align: center;font-size: 75%;"|(d)
222
|}
223
224
Fig. 5. Ultrasonic pulse velocity of CPB samples: (a) Ultrasound test results (0.250:1); (b) Ultrasound test results (0.125:1); (c) Ultrasound test results (0.100:1); (d) Ultrasound test results (0.083:1).
225
226
===3.2 Damage constitutive equations of different backfills===
227
228
Assuming the CPB is isotropic, according to the Lemaitre theory of strain equivalent [27], we have:
229
230
<div id="_Hlk528854603" style="text-align: right; direction: ltr; margin-left: 1em;">
231
''σ=E ε(1﹣D)''                               (2)</div>
232
233
Where ''σ'' is the effective stress; ''E'' is the elastic modulus;'' ε'' is the strain; ''D'' is the damage value. When ''D''=0, the backfill is no damage state; when ''D''=1, the backfill is in the course of absolute damage or failure.
234
235
Due to the complicated damage mechanism, the morphology and distribution of microscopic defects in the composite materials are random. The strength of the material obeys the Weibull statistical distribution [28].
236
237
From the relationship between the damage parameter ''D'' and the effective stress ''σ'', it can be seen that the damage parameter ''D'' of the CPB also obeys the Weibull statistical distribution. From the Weibull distribution of parameter ''D'', ''σ'', the statistical distribution equation of damage parameters can be obtained:
238
239
<div style="text-align: right; direction: ltr; margin-left: 1em;">
240
{| class="formulaSCP" style="width: 100%; text-align: center;" 
241
|-
242
| <math>\, D\, =1-exp\left[ -{\left( \frac{\epsilon }{n}\right) }^{m}\right] \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \, (3)</math>
243
|}
244
</div>
245
246
Where ''m'' is Weibull distribution shape parameters, ''n'' is the Weibull distribution scale parameters (where'' m, n'' <math display="inline">\geq</math>  0). Inserting Eq. (3) into Eq. (2):
247
248
<div style="text-align: right; direction: ltr; margin-left: 1em;">
249
{| class="formulaSCP" style="width: 100%; text-align: center;" 
250
|-
251
| <math>\, \sigma \, =E\, \epsilon \, exp\left[ -{\left( \frac{\epsilon }{n}\right) }^{m}\right] \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (4)</math>
252
|}
253
</div>
254
255
On the basis of stress-strain curves and considering boundary conditions, we can obtain:
256
257
<div style="text-align: right; direction: ltr; margin-left: 1em;">
258
{| class="formulaSCP" style="width: 100%; text-align: center;" 
259
|-
260
| <math>\, \left\{ \begin{matrix}{\left. \sigma \right| }_{\epsilon ={\epsilon }_{p}}={\sigma }_{p}\\d\sigma /{\left. d\epsilon \right| }_{\epsilon ={\epsilon }_{p}}=0\\{\left. D\right| }_{d\sigma /d\epsilon =E}=0\\{\left. \epsilon \right| }_{\sigma =0}=0\end{matrix}\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (5)\right.</math> 
261
|}
262
</div>
263
264
Where ''ε<sub>p</sub>'' is the corresponding peak strain when the stress reaches the highest point at ''σ<sub>p</sub>'' in the Fig.6.
265
266
There are two unknown variables in Eq. (4). By solving Eq. (5), we have:
267
268
<div style="text-align: right; direction: ltr; margin-left: 1em;">
269
{| class="formulaSCP" style="width: 100%; text-align: center;" 
270
|-
271
| <math>\, m{\left( \frac{{\epsilon }_{p}}{n}\right) }^{m}=</math><math>1\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (6)</math>
272
|}
273
</div>
274
275
<div style="text-align: right; direction: ltr; margin-left: 1em;">
276
{| class="formulaSCP" style="width: 100%; text-align: center;" 
277
|-
278
| <math>\, n=\frac{{\epsilon }_{p}}{{\left( \frac{1}{m}\right) }^{\frac{1}{m}}}\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \, (7)</math>
279
|}
280
</div>
281
282
Combining boundary conditions and inserting Eq. (7) into Eq. (6):
283
284
<div style="text-align: right; direction: ltr; margin-left: 1em;">
285
{| class="formulaSCP" style="width: 100%; text-align: center;" 
286
|-
287
| <math>\, m=\frac{1}{ln\left( \frac{E{\epsilon }_{p}}{{\sigma }_{p}}\right) }\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \, (8)</math>
288
|}
289
</div>
290
291
Inserting Eq. (7) and Eq. (8) into Eq. (3):
292
293
<div style="text-align: right; direction: ltr; margin-left: 1em;">
294
{| class="formulaSCP" style="width: 100%; text-align: center;" 
295
|-
296
| <math>\, D=1-exp\left[ -\frac{1}{m}{\left( \frac{\epsilon }{{\epsilon }_{p}}\right) }^{m}\right] \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad (9)</math>
297
|}
298
</div>
299
300
Eq. (9) is the damage evolution equation of the CPB material under uniaxial compression.
301
302
Inserting Eq. (9) into Eq. (2), we can obtain damage constitutive equations of CPB:
303
304
<div style="text-align: right; direction: ltr; margin-left: 1em;">
305
{| class="formulaSCP" style="width: 100%; text-align: center;" 
306
|-
307
| <math>\, \sigma =E\, \epsilon \, exp\left[ -\frac{1}{m}{\left( \frac{\epsilon }{{\epsilon }_{p}}\right) }^{m}\right] \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \, \, (10)</math>
308
|}
309
</div>
310
311
According to experiment data and by solving Eq.(9) and Eq.(10),we can obtain the damage constitutive equations of different backfills (Table 3)
312
313
According to the stress-strain curves above achieved by experiment, we can obtain the values of the elastic modulus'' E'', the peak stress ''σ<sub>p</sub>'' and the peak strain ''ε<sub>p</sub>'' By inserting these data into Eq (9) and Eq (10), we can obtain the damage constitutive equations (Table 3) and damage evolutions of different backfills (Table 4). And by calculating with these equations, we can obtain the stress-strain curves of different backfills (dashed lines of Fig.6). Compared with experiment curves ,the calculated results agree well with experiment data.
314
315
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
316
Table 3. Damage constitutive equation (70% mass concentration, curing 28days)</div>
317
318
{| style="width: 100%;border-collapse: collapse;" 
319
|-
320
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Cement-tailing ratio
321
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Elastic modulus
322
323
''E''/Mpa
324
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Damage constitutive equation
325
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|The range of ''ε''
326
|-
327
|  rowspan='2' style="border-top: 1pt solid black;text-align: center;"|0.250:1
328
|  rowspan='2' style="border-top: 1pt solid black;text-align: center;"|471.38
329
|  style="border-top: 1pt solid black;text-align: center;"|471.38(''ε-''0.0100) exp[-0.178((''ε''-0.0100)/0.0148)<sup>5.56</sup>]+1.26
330
|  style="border-top: 1pt solid black;text-align: center;"|''ε''≤0.0248
331
|-
332
|  style="text-align: center;"|471.38''ε ''exp[-0.502 (''ε''/0.0248)<sup>1.99</sup>]
333
|  style="text-align: center;"|''ε''<span style="text-align: center; font-size: 75%;">></span>0.0248
334
|-
335
|  style="text-align: center;"|0.125:1
336
|  style="text-align: center;"|180.15
337
|  style="text-align: center;"|180.15(''ε''-0.0028) exp[-0.543(''ε''-0.0028)/0.0205)<sup>1.84</sup>]
338
|  style="text-align: center;"|
339
|-
340
|  rowspan='2' style="border-bottom: 2pt solid black;text-align: center;"|0.100:1
341
|  rowspan='2' style="border-bottom: 2pt solid black;text-align: center;"|111.66
342
|  style="text-align: center;"|111.66(''ε''-0.0059) exp[-0.280((''ε''-0.0059)/0.0191)<sup>3.57</sup>]
343
|  style="text-align: center;"|''ε''≤0.0250
344
|-
345
|  style="border-bottom: 2pt solid black;text-align: center;"|111.66''ε ''exp[-0.549(''ε''/0.0250)<sup>1.82</sup>]
346
|  style="border-bottom: 2pt solid black;text-align: center;"|''ε''>0.0250
347
|}
348
349
350
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
351
 [[Image:Review_156654264638-image15-c.png|396px]] </div>
352
353
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
354
Fig. 6. ''τ-σ'' curve of 3 kinds of cement-tailing ratio (70% mass concentration, curing 28d)</div>
355
356
===3.3 Damage laws of different backfills===
357
358
It is manifest in Table 4 that damage peak values (''D<sub>p</sub>'') of different backfills range from 0.395 to 0.422, and it increases with the increase of cement-tailing ratio.
359
360
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
361
Table 4. Damage evolution equation (70% mass concentration, curing 28days)</div>
362
363
{| style="width: 100%;margin: 1em auto 0.1em auto;border-collapse: collapse;" 
364
|-
365
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|Cement-tailing ratio
366
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Elastic modulus
367
368
''E''/Mpa
369
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Damage evolution equation
370
371
''D=''
372
|  style="border-top: 2pt solid black;border-bottom: 1pt solid black;text-align: center;"|Damage peak value ''D<sub>p</sub>''
373
|-
374
|  style="border-top: 1pt solid black;text-align: center;vertical-align: top;"|0.250:1
375
|  style="border-top: 1pt solid black;text-align: center;"|471.38
376
|  style="border-top: 1pt solid black;text-align: center;"|1- exp[-0.50205(''ε''/0.0248)<sup>1.99182</sup>]
377
|  style="border-top: 1pt solid black;text-align: center;"|0.395
378
|-
379
|  style="text-align: center;vertical-align: top;"|0.125:1
380
|  style="text-align: center;"|180.15
381
|  style="text-align: center;"|1- exp[-0.54257(''ε''/0.0205)<sup>1.84308</sup>]
382
|  style="text-align: center;"|0.419
383
|-
384
|  style="border-bottom: 2pt solid black;text-align: center;vertical-align: top;"|0.100:1
385
|  style="border-bottom: 2pt solid black;text-align: center;"|111.66
386
|  style="border-bottom: 2pt solid black;text-align: center;"|1- exp[-0.27998(''ε''/0.0191)<sup>3.57166</sup>]
387
|  style="border-bottom: 2pt solid black;text-align: center;"|0.422
388
|}
389
390
391
According to the damage evolution equations of different backfills, we can obtain the relationship between damage value and strain (shown in Fig.7). It can be observed from Fig.7 that the damage values grow gently with the increase of strain. To be more precise, the larger the cement-tailing ratio is, the more slightly the damage value increases. While after peak stress, the damage values go up steeply with the increase of strain, and the damage peak values get large with decreasing the ratio.
392
393
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
394
 [[Image:Review_156654264638-image16-c.png|500px]] </div>
395
396
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
397
Fig. 7. Relationship between damage value(''D'') and strain </div>
398
399
<span id='_Hlk500234948'></span>
400
401
==4. Conclusions==
402
403
In this study, the effects of mass fraction and cement-tailing ratios on the mechanical performance and ultrasonic properties of CPB samples are investigated. A total of 144 CPB samples (70.7 <math display="inline">\times</math> 70.7 <math display="inline">\times</math> 70.7mm) prepared at different mass fraction and cement-tailing ratio were subjected to the UPV and UCS tests at 7,14 and 28 days of curing times. Based on the experimental results, the following conclusions can be drawn:
404
405
(1) The USC values increased with the mass fraction and cement-tailing ratio as well as the extension of curing time. Increasing contents of cementitious materials produce hydration products which in turn improve the USC values of CPB.
406
407
(2) The evolution of UPV in CPB is similar with the development of the crack in CPB during loading stress. When the stress stands at its peak, the UPV values drop rapidly. Furthermore, the ultrasonic properties of CPB samples were consistent with their respective USC properties.
408
409
(3) There are different mechanical characteristics and damage laws in different backfills. Exactly, the larger the cement-tailing ratio is, the more slightly the damage value increases before the peak stress. The damage grows faster and breakage appears more suddenly after peak stress.
410
411
(4) Considering the difficulties of taking core samples from in situ CPB stopes for the determination of CPB strength with conventional compressive strength test, UPV test will allow mine operators/ owners for the rapid estimation of their in situ CPB characteristics.
412
413
==Declarations==
414
415
==Author contribution statement==
416
417
Bingwen Wang, Jian Liu: Analyzed and interpreted the data; Wrote the paper.
418
419
Lin Li, Yao Yu, Benyong Huo: Conceived and designed the analysis; Analyzed and interpreted the data; Contributed analysis tools or data.
420
421
Jie Liu: Contributed analysis tools or data.
422
423
==Funding==
424
425
<span id='OLE_LINK3'></span><span id='OLE_LINK4'></span><span id='OLE_LINK5'></span>This work was supported by National Key Research & Development Project of China [grant number 2018YFC0808403].
426
427
==Competing interest statement==
428
429
The authors declare no conflict of interest.
430
431
==Additional information==
432
433
No additional information is available for this paper.
434
435
==Acknowledgement==
436
437
The writers are thankful to the reviewers and the editor for their valuable suggestions to improve
438
439
the quality of the manuscript.
440
441
==References==
442
443
[1] T.Grice, Underground mining with backfill, Australian mining consultants, in the 2nd Annual Summit-Mine Tailing Disposal Systems,Brisbane,Australia,pp.24-25,1998.
444
445
<span id='_GoBack'></span>[[#cite-_GoBack|[2]]] M.Fall, J.C.Celestin, M.Pokharel, M.Toure. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill. Eng.Geol,114:397-413, 2010.
446
447
[3] Mchaina, D.M.Januszewski, S.Hallam, R.L. Development of an environmental impct and mitigation assessment program for a tailings storage facility stability upgrade. International Journal of Surface Min.Recla Environ, 15: 123-140, 2001.
448
449
[4] Meggyes, T.Niederlethinger, E.Witt, K.J. Enhancing the safety of tailings management facilities. Soil and Sediment Contamination, 17: 323-345, 2008.
450
451
[5] Friedrich, L.Halden, N.M. Determining exposure history of northern pike and walleye to tailings effluence using trace metal uptake in otoliths. Environ Sci Tech,44: 1551-1558, 2010.
452
453
[6] Yilmaz E, Benzaazoua M, Belem T. Effect of curing under pressure on compressive strength development of cemented paste backfill. Miner Eng, 22: 772-785,2009.
454
455
[7] Yilmaz E., Belem T., BenzaazouaM. Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill. Eng Geol, 168: 23-37, 2014.
456
457
[8] Yilmaz E., Belem T., Benzaazoua M. Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions. Eng Geol, 185: 52-62, 2015.
458
459
[9] Yilmaz E, Fall M. Paste tailings management. Canada: Springer International, p. 103-110, 2017.
460
461
[10] Benzaazoua M, Fall M, Belem T. A contribution to understanding the hardening process of cemented pastefill. Miner Eng, 17: 141-152, 2004.
462
463
[11] Fall M, Célestin JC, Pokharel M, et al. A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill. Eng Geol, 114: 397-413, 2010.
464
465
[12] Karakuş A, Akatay M. Determination of basic physical and mechanical properties of basaltic rocks from P-wave velocity. Nondestr Test Eval, 28: 342-353, 2013.
466
467
[13] Sharma PK, Singh TN. A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ, 67: 17-22, 2008.
468
469
[14] Kahraman S, Yeken T. Determination of physical properties of carbonate rocks from P-wave velocity. Bull Eng Geol Environ, 67: 277-281, 2008.
470
471
[15] Yagiz S. P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull Mater Sci, 34: 947-953, 2011.
472
473
[16] Wang Y, Li X. Experimental study on cracking damage characteristics of a soil and rock mixture by UPV testing. Bull. Eng. Geol. Environ, 74: 775-788, 2015.
474
475
[17] Meglis IL, Chow T, Martin CD, et al. Assessing in situ microcrack damage using ultrasonic velocity tomography. Int. J. Rock Mech. Min. Sci, 42: 25-34,2005.
476
477
[18] M.Diezed’Aux. Ultrasonic Wave Measurement through Cemented Paste Backfill [MSc],Unive-Rsity of Toronto, Canada, 2008.
478
479
[19] A.M.Galaa, B.D.Thompson, M.W.Grabinsky, W.F.Bawden. Characterizing stiffness development in hydrating mine backfill using ultrasonic wave measurements, Can. Geotech.J,48: 1174-1187, 2011.
480
481
<span id='OLE_LINK6'></span>[[#cite-OLE_LINK6|[20]]] T.Yilmaz, B.Ercikdi, K.Karaman, G.Kulekci, Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test, Ultrasonics 54: 1386-1394, 2014.
482
483
[21] ASTM C 109–02, Standard test method for compressive strength of hydraulic cement mortars, in: Annual Book of ASTM Standards, American Society of Testing Material, 2003.
484
485
[22] ASTM C 597, Standard test method for pulse velocity through concrete, in Annual Book of ASTM Standards, American Society of Testing Material, 2009.
486
487
[23] M. Pokharel, M. Fall, Combined influence of sulphate and temperature on thesaturated hydraulic conductivity of hardened cemented paste backfill, Cem.Concr.Compos. 38: 21-28, 2013.
488
489
[24] K. Klein, D. Simon, Effect of specimen composition on the strength development in cemented paste backfill, Can. Geotech. J, 43: 310-324, 2006.
490
491
[25] B. Ercikdi, A. Kesimal, F. Cihangir, H. Deveci, I. Alp, Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage, Cem. Concr.Compos, 31: 268-274, 2009.
492
493
[26] S. Kahraman, The correlations between the saturated and dry P-wave velocity of rocks, Ultrasonics, 46: 341-348, 2007.
494
495
[27] LEMAITRE J. A course on damage mechanics[M]. Berlin: Springer, 1996.
496
497
[28] Ilhan Usta. An innovative estimation method regarding Weibull parameters for wind energy applications. Energy, 68: 301-314, 2016.
498

Return to Wang et al 2021c.

Back to Top