You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
====
3
4
''', , Rainald Löhner <math>\cdot </math>Harbir Antil <math>\cdot </math>Sergio Idelsohn <math>\cdot </math>         Eugenio Oñate'''
5
-->
6
7
==Abstract==
8
9
A summary is given of the mechanical characteristics of virus contaminants and the transmission via droplets and aerosols. The ordinary and partial differential equations describing the physics of these processes with high fidelity are presented, as well as appropriate numerical schemes to solve them. Several examples taken from recent evaluations of the built environment are shown, as well as the optimal placement of sensors.
10
11
'''keywords''' Covid-19 <math>\cdot </math>Particle Methods <math>\cdot </math>Finite Elements <math>\cdot </math>           Computational Fluid Dynamics
12
13
==1 The Covid-19 Crisis==
14
15
Starting in Wuhan, China, in the fall of 2019, the Covid-19 pandemic has claimed and will continue to claim millions of infected patients and hundreds of thousands of deaths. The lockdowns that followed its outbreak have led to mass unemployment, stalled economic development and loss of productivity that will take years to recover. Some changes in habits and lifestyles may be permanent: in the future, working from home or in a `socially distanced manner' may be the prevalent modus operandi for large segments of society. 
16
17
The present paper gives a short description of computational techniques that can elucidate the flow and propagation of viruses or other contaminants in built environments in order to mitigate or avoid infections.
18
19
==2 Virus Infection==
20
21
Before addressing the requirements for the numerical simulation of virus propagation a brief description of virus propagation and lifetime are given. Covid-19 is one of many corona-viruses. The virus is usually present in the air or some surface, and makes its way into the body either via inhalation (nose, mouth), ingestion (mouth) or attachment (eyes, hands, clothes). In many cases the victim inadvertedly touches an infected surface or viruses are deposited on its hands, and then the hands touch either the nose, the eyes or the mouth, thus allowing the virus to enter the body. 
22
23
An open question of great importance for all that will follow is how many viruses it takes to overwhelm the body's natural defense mechanism and trigger an infection. This number, which is sometimes called the ''viral load'' or the ''infectious dose'' will depend on numerous factors, among them the state of immune defenses of the individual, the timing of viral entry (all at once, piece by piece), and the amount of hair and mucous in the nasal vessels. In principle, a single organism in a favourable environment may replicate sufficiently to cause disease <span id='citeF-98'></span>[[#cite-98|[98]]]. Data from research performed on biological warfare agents <span id='citeF-37'></span>[[#cite-37|[37]]] suggests that both bacteria and viruses can produce disease with as few as 1-100 organisms (e.g. brucellosis 10-100, Q fever 1-10, tularaemia 10-50, smallpox 10-100, viral haemorrhagic fevers 1-10 organisms, tuberculosis 1). Compare these numbers and consider that as many as 3,000 organisms can be produced by talking for 5&nbsp;minutes or a single cough, with sneezing producing many more <span id='citeF-80'></span><span id='citeF-55'></span><span id='citeF-102'></span><span id='citeF-87'></span><span id='citeF-108'></span>[[#cite-80|[80,55,102,87,108]]]. Figure&nbsp;1, reproduced from <span id='citeF-102'></span>[[#cite-102|[102]]], shows a typical number and size distribution.
24
25
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-droplet_distribution.png|500px|figures/general/droplet_distribution.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 1&nbsp;&nbsp; Counts of Particles of Various Diameters in Air Expelled by (90) Coughs <span id='citeF-80'></span>[[#cite-80|[80]]] </div>
26
27
==3 Virus Lifetime Outside the Body==
28
29
Current evidence points to lifetimes outside the body that can range from 1-2 hours in air to several days on particular surfaces <span id='citeF-51'></span><span id='citeF-106'></span>[[#cite-51|[51,106]]]. There has also been some documentation of lifetime variation depending on humidity.
30
31
==4 Virus Transmission==
32
33
===4.1 Human Sneezing and Coughing===
34
35
In the sequel, we consider human sneezing and coughing as the main conduits of virus transmission. Clearly, breathing and talking will lead to the exhalation of air, and, consequently the exhalation of viruses for infected victims <span id='citeF-3'></span><span id='citeF-4'></span>[[#cite-3|[3,4]]]. However, it stands to reason that the size and amount of particles released -&nbsp;and hence the amount of viruses in them&nbsp;- is much higher and much more concentrated when sneezing or coughing <span id='citeF-36'></span><span id='citeF-102'></span><span id='citeF-50'></span><span id='citeF-56'></span><span id='citeF-3'></span><span id='citeF-4'></span>[[#cite-36|[36,102,50,56,3,4]]]. 
36
37
The velocity of air at a person's mouth during sneezing and coughing has been a source of heated debate, particularly in the media. The experimental evidence points to exit velocities of the order of 2-14&nbsp;m/sec <span id='citeF-40'></span><span id='citeF-41'></span><span id='citeF-100'></span><span id='citeF-101'></span>[[#cite-40|[40,41,100,101]]]. A typical amount and size of particles can be seen in Figure&nbsp;1.
38
39
===4.2 Sink Velocities===
40
41
If, for the sake of argument, we consider Stoke's law for the drag of spherical particles, valid below Reynolds numbers of <math display="inline">Re=1</math>, the terminal sink velocity (also known as the settling velocity) of particles will be given by:
42
43
{| class="formulaSCP" style="width: 100%; text-align: left;" 
44
|-
45
| 
46
{| style="text-align: left; margin:auto;width: 100%;" 
47
|-
48
| style="text-align: center;" | <math> v_s = {{(\rho _p - \rho _g) g \cdot d^2 } \over {18 \mu }}  ~~, </math>
49
|}
50
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
51
|}
52
53
where <math display="inline">\rho _p, \rho _g, g, \mu , d</math> denote the density of the particles (essentially water in the present case), density of the gas (air), gravity, dynamic viscosity of the gas and diameter of the particle respectively. The equivalent Reynolds' number is:
54
55
{| class="formulaSCP" style="width: 100%; text-align: left;" 
56
|-
57
| 
58
{| style="text-align: left; margin:auto;width: 100%;" 
59
|-
60
| style="text-align: center;" | <math> Re = {{\rho _g v_s d } \over {\mu }}       = {{\rho _g (\rho _p - \rho _g) g d^3 } \over {18 \mu ^2}} </math>
61
|}
62
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
63
|}
64
65
With <math display="inline">\rho _p=1~gr/cc, \rho _g=0.0012~gr/cc, g=981~cm/sec^2, \mu=1.81 \cdot 10^{-4}~gr/(cm \cdot sec)</math> this yields a limiting diameter for <math display="inline">Re=1</math> of
66
67
{| class="formulaSCP" style="width: 100%; text-align: left;" 
68
|-
69
| 
70
{| style="text-align: left; margin:auto;width: 100%;" 
71
|-
72
| style="text-align: center;" | <math> d_{Re=1} = 0.0079~cm ~~, </math>
73
|}
74
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
75
|}
76
77
i.e. approximately 1/10th of a millimeter in diameter -&nbsp;a particle size that would still be perceived by the human eye. The corresponding sink velocity is given by:
78
79
{| class="formulaSCP" style="width: 100%; text-align: left;" 
80
|-
81
| 
82
{| style="text-align: left; margin:auto;width: 100%;" 
83
|-
84
| style="text-align: center;" | <math> v_s = 3 \cdot 10^{5} d^2 cm/sec ~~, </math>
85
|}
86
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
87
|}
88
89
with <math display="inline">d</math> in <math display="inline">cm</math>, i.e. for <math display="inline">Re=1</math>
90
91
{| class="formulaSCP" style="width: 100%; text-align: left;" 
92
|-
93
| 
94
{| style="text-align: left; margin:auto;width: 100%;" 
95
|-
96
| style="text-align: center;" | <math> v_s(Re=1) = 18~cm/sec ~~. </math>
97
|}
98
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
99
|}
100
101
Note the quadratic dependency of the sink velocity with diameter. Table&nbsp;1 lists the sink velocities for water droplets of different diameters in air. One can see that below diameters of <math display="inline">O(0.1~mm)</math> the sink velocity is very low, implying that these particles remain in and move with the air for considerable time (and possibly distances).
102
103
104
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
105
|+ style="font-size: 75%;" |<span id='table-1'></span>Table. 1 Sink Velocities and Reynolds Number For Water Particles in Air
106
|- style="border-top: 2px solid;"
107
| style="border-right: 2px solid;" |  Diameter [mm] 
108
| style="border-left: 2px solid;border-right: 2px solid;" | sink velocity [m/sec] 
109
| style="border-left: 2px solid;" | Re 
110
|- style="border-top: 2px solid;"
111
| style="border-right: 2px solid;" |  1.00E-00      
112
| style="border-left: 2px solid;border-right: 2px solid;" | 3.01E+01      
113
| style="border-left: 2px solid;" | 1.99E+03 
114
|-
115
| style="border-right: 2px solid;" | 1.00E-01      
116
| style="border-left: 2px solid;border-right: 2px solid;" | 3.01E-01      
117
| style="border-left: 2px solid;" | 1.99E+00 
118
|-
119
| style="border-right: 2px solid;" | 1.00E-02      
120
| style="border-left: 2px solid;border-right: 2px solid;" | 3.01E-03      
121
| style="border-left: 2px solid;" | 1.99E-03 
122
|-
123
| style="border-right: 2px solid;" | 1.00E-03      
124
| style="border-left: 2px solid;border-right: 2px solid;" | 3.01E-05      
125
| style="border-left: 2px solid;" | 1.99E-06 
126
|- style="border-bottom: 2px solid;"
127
| style="border-right: 2px solid;" | 1.00E-04      
128
| style="border-left: 2px solid;border-right: 2px solid;" | 3.01E-07      
129
| style="border-left: 2px solid;" | 1.99E-09 
130
131
|}
132
133
===4.3 Evaporation===
134
135
Depending on the relative humidity and the temperature of the ambient air, the smaller particles can evaporate in milliseconds. However, as the mucous and saliva evaporate, they build a gel-like structure that surrounds the virus, allowing it to survive. This implies that extremely small particles with possible viruses will remain infectious for extended periods of times - up to an hour according to some studies. 
136
137
An important question is then whether a particle/droplet will first reach the ground or evaporate. Figure&nbsp;2, taken from <span id='citeF-109'></span>[[#cite-109|[109]]], shows that below 120&nbsp;<math display="inline">\mu m</math> the particles evaporate before falling 2&nbsp;m (i.e. reaching the ground).
138
139
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-evap_fall_droplets.png|300px|figures/general/evap_fall_droplets.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 2&nbsp;&nbsp; Evaporation Time and Falling Time of Droplets of Varying Diameter</div>
140
141
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">(<math>T_{p0}=33^oC, T_{\infty }=18^oC, RH=0%</math>) From <span id='citeF-109'></span>[[#cite-109|[109]]] </div>
142
143
===4.4 Viral Load===
144
145
A central question that requires an answer is then: how many viruses are in these small particles&nbsp;? An approximate answer may be obtained from the experiments that are being carried out on animals to trace and monitor infections. For ferrets <span id='citeF-53'></span>[[#cite-53|[53]]] <math display="inline">O(10^5-10^6)</math> have been used to infect via intranasal swabs, while for mice <span id='citeF-104'></span>[[#cite-104|[104]]] <math display="inline">O(10^4)</math> seem to suffice. Viral titers can vary a lot, but one may assume on the order of <math display="inline">O(10^6)</math> viruses/ml for a nasopharyngeal swab <span id='citeF-53'></span><span id='citeF-104'></span>[[#cite-53|[53,104]]]. Table&nbsp;2 lists the number of viruses per droplet and the number of droplets needed to contain just 1&nbsp;virus. Note that while for a droplet with a diameter of 1&nbsp;mm one can expect <math display="inline">O(500)</math> viruses, only every 2,000th particle of diameter 10&nbsp;<math display="inline">\mu m</math> does contain a single virus.
146
147
148
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
149
|+ style="font-size: 75%;" |<span id='table-2'></span>Table. 2 Estimated Number of Viruses For Different Particle Diameters
150
|- style="border-top: 2px solid;"
151
| style="border-right: 2px solid;" |  Droplet Diameter [mm] 
152
| style="border-left: 2px solid;border-right: 2px solid;" | Volume [mm<math display="inline">^3</math>] 
153
| style="border-left: 2px solid;border-right: 2px solid;" | Viruses/droplet                       
154
| style="border-left: 2px solid;" | Droplets Needed for 1 Virus 
155
|- style="border-top: 2px solid;"
156
| style="border-right: 2px solid;" |  1.00E+00 
157
| style="border-left: 2px solid;border-right: 2px solid;" | 5.24E-01 
158
| style="border-left: 2px solid;border-right: 2px solid;" | 5.24E+02 
159
| style="border-left: 2px solid;" | 1.00E+00 
160
|-
161
| style="border-right: 2px solid;" | 1.00E-01 
162
| style="border-left: 2px solid;border-right: 2px solid;" | 5.24E-04 
163
| style="border-left: 2px solid;border-right: 2px solid;" | 5.24E-01 
164
| style="border-left: 2px solid;" | 1.91E+00 
165
|-
166
| style="border-right: 2px solid;" | 1.00E-02 
167
| style="border-left: 2px solid;border-right: 2px solid;" | 5.24E-07 
168
| style="border-left: 2px solid;border-right: 2px solid;" | 5.24E-04 
169
| style="border-left: 2px solid;" | 1.91E+03 
170
|- style="border-bottom: 2px solid;"
171
| style="border-right: 2px solid;" | 1.00E-03 
172
| style="border-left: 2px solid;border-right: 2px solid;" | 5.24E-10 
173
| style="border-left: 2px solid;border-right: 2px solid;" | 5.24E-07 
174
| style="border-left: 2px solid;" | 1.91E+06 
175
176
|}
177
178
Similar numbers are seen in field studies as well. The size of viruses varies from 0.02-0.3 <math display="inline">\mu m</math>, while the size of bacteria varies from 0.5-10 <math display="inline">\mu m</math>. The influenza virus RNA detected by quantitative polymerase chain reaction in human exhaled breath suggests that it may be contained in fine particles generated during tidal breathing and not only coughs <span id='citeF-36'></span><span id='citeF-55'></span><span id='citeF-56'></span><span id='citeF-87'></span>[[#cite-36|[36,55,56,87]]]. Influenza RNA and Mycobacterium tuberculosis have been reported in particles that range in size from 0.5-4.0 <math display="inline">\mu m</math> (<span id='citeF-36'></span><span id='citeF-55'></span><span id='citeF-56'></span><span id='citeF-87'></span>[[#cite-36|[36,55,56,87]]] and references cited therein).
179
180
==5 Physical Modeling of Aerosol Propagation==
181
182
When solving the two-phase equations, the air, as a continuum, is best represented by a set of partial differential equations (the Navier-Stokes equations) that are numerically solved on a mesh. Thus, the gas characteristics are calculated at the mesh points within the flowfield. However, as the droplets/particles may be relatively sparse in the flowfield, they can be modeled by either:
183
184
<br />a) A continuum description, i.e. in the same manner as the fluid flow, or
185
<br />b) A particle (or Lagrangian) description, where individual particles (or groups of particles) are monitored and tracked in the flow.
186
187
Although the continuum (so-called multi-fluid) method has been used for some applications, the inherent assumptions of the continuum approach lead to several disadvantages which may be countered with a Lagrangian treatment for dilute flows. The continuum assumption cannot robustly account for local differences in particle characteristics, particularly if the particles are polydispersed. In addition, the only boundary conditions that can be considered in a straightforward manner are slipping and sticking, whereas reflection boundary conditions, such as specular and diffuse reflection, may be additionally considered with a Lagrangian approach. Numerical diffusion of the particle density is eliminated by employing Lagrangian particles due to their pointwise spatial accuracy. 
188
189
While a Lagrangian approach offers many potential advantages, this method also creates problems that need to be addressed. For instance, large numbers of particles may cause a Lagrangian analysis to be memory intensive. This problem is circumvented by treating parcels of particles, i.e. doing the detailed analysis for one particle and then applying the effect to many. In addition, continuous mapping and remapping of particles to their respective elements may increase computational requirements, particularly for unstructured grids.
190
191
===5.1 Equations Describing the Motion of the Air===
192
193
As seen from the experimental evidence, the velocities of air encountered during coughing and sneezing never exceed a Mach-number of <math display="inline">Ma=0.1</math>. Therefore, the air may be assumed as a Newtonian, incompressible liquid, where buoyancy effects are modeled via the Boussinesq approximation. The equations describing the conservation of momentum, mass and energy for incompressible, Newtonian flows may be written as
194
195
{| class="formulaSCP" style="width: 100%; text-align: left;" 
196
|-
197
| 
198
{| style="text-align: left; margin:auto;width: 100%;" 
199
|-
200
| style="text-align: center;" | <math> \rho {\boldsymbol v}_{,t} + \rho {\boldsymbol v}\cdot \nabla {\boldsymbol v}+ \nabla p =    \nabla \cdot \mu \nabla {\boldsymbol v}+ \rho {\boldsymbol g}+ \beta \rho {\boldsymbol g}(T - T_0)       + {\boldsymbol s}_v   ~~,                                                              </math>
201
|}
202
| style="width: 5px;text-align: right;white-space: nowrap;" | (6.1)
203
|}
204
205
{| class="formulaSCP" style="width: 100%; text-align: left;" 
206
|-
207
| 
208
{| style="text-align: left; margin:auto;width: 100%;" 
209
|-
210
| style="text-align: center;" | <math>                             \nabla \cdot {\boldsymbol v}= 0      ~~.       </math>
211
|}
212
| style="width: 5px;text-align: right;white-space: nowrap;" | (6.2)
213
|}
214
215
{| class="formulaSCP" style="width: 100%; text-align: left;" 
216
|-
217
| 
218
{| style="text-align: left; margin:auto;width: 100%;" 
219
|-
220
| style="text-align: center;" | <math> \rho c_p T_{,t} + \rho c_p {\boldsymbol v}\cdot \nabla T =        \nabla \cdot k \nabla T + s_e ~~,                                                              </math>
221
|}
222
| style="width: 5px;text-align: right;white-space: nowrap;" | (6.3)
223
|}
224
225
Here <math display="inline">\rho , {\boldsymbol v}, p, \mu , {\boldsymbol g}, \beta , T, T_0, c_p, k</math> denote the density, velocity vector, pressure, viscosity, gravity vector, coefficient of thermal expansion, temperature, reference temperature, specific heat coefficient and conductivity respectively, and <math display="inline">{\boldsymbol s}_v, s_e</math> momentum and energy source terms (e.g. due to particles or external forces/heat sources). For turbulent flows both the viscosity and the conductivity are obtained either from additional equations or directly via a large eddy simulation (LES) assumption through monotonicity induced LES (MILES) <span id='citeF-20'></span><span id='citeF-38'></span><span id='citeF-39'></span><span id='citeF-47'></span>[[#cite-20|[20,38,39,47]]].
226
227
===5.2 Equations Describing the Motion of Particles/Droplets===
228
229
In order to describe the interaction of particles/droplets with the flow, the mass, forces and energy/work exchanged between the flowfield and the particles must be defined. As before, we denote for '''fluid (air)''' by <math display="inline">\rho , p, T, k, v_i, \mu </math> and <math display="inline">c_p</math> the density, pressure, temperature, conductivity, velocity in direction <math display="inline">x_i</math>, viscosity, and the specific heat at constant pressure. For the '''particles''', we denote by <math display="inline">\rho _p, T_p, v_{pi}, d, c_{pp}</math> and <math display="inline">Q</math> the density, temperature, velocity in direction <math display="inline">x_i</math>, equivalent diameter, and heat transferred per unit volume. In what follows, we will refer to droplet and particles, collectively as particles. 
230
231
Making the classical assumptions that the particles may be represented by an equivalent sphere of diameter <math display="inline">d</math>, the drag forces <math display="inline">{\boldsymbol D}</math> acting on the particles will be due to the difference of fluid and particle velocity:
232
233
{| class="formulaSCP" style="width: 100%; text-align: left;" 
234
|-
235
| 
236
{| style="text-align: left; margin:auto;width: 100%;" 
237
|-
238
| style="text-align: center;" | <math> {\boldsymbol D}= {{\pi d^2} \over 4} \cdot c_D \cdot           { 1 \over 2} \rho | {\boldsymbol v}- {\boldsymbol v}_p | ( {\boldsymbol v}- {\boldsymbol v}_p )                                                   ~~.  </math>
239
|}
240
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
241
|}
242
243
The '''drag coefficient''' <math display="inline">c_D</math> is obtained empirically from the Reynolds-number <math display="inline">Re</math>:
244
245
{| class="formulaSCP" style="width: 100%; text-align: left;" 
246
|-
247
| 
248
{| style="text-align: left; margin:auto;width: 100%;" 
249
|-
250
| style="text-align: center;" | <math> Re = {{\rho | {\boldsymbol v}- {\boldsymbol v}_p | d } \over { \mu }}   </math>
251
|}
252
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
253
|}
254
255
as (see, e.g. <span id='citeF-95'></span>[[#cite-95|[95]]]):
256
257
{| class="formulaSCP" style="width: 100%; text-align: left;" 
258
|-
259
| 
260
{| style="text-align: left; margin:auto;width: 100%;" 
261
|-
262
| style="text-align: center;" | <math> c_D = max\left(0.1 , {24 \over Re} \left(1 + 0.15 Re^{0.687} \right)\right) </math>
263
|}
264
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
265
|}
266
267
The lower bound of <math display="inline">c_D=0.1</math> is required to obtain the proper limit for the Euler equations, when <math display="inline">Re \rightarrow \infty </math>.  The heat transferred between the particles and the fluid is given by
268
269
{| class="formulaSCP" style="width: 100%; text-align: left;" 
270
|-
271
| 
272
{| style="text-align: left; margin:auto;width: 100%;" 
273
|-
274
| style="text-align: center;" | <math> Q = {{\pi d^2} \over 4} \cdot        \left[h_f      \cdot ( T   - T_p   )            + \sigma ^* \cdot ( T^4 - T_p^4 ) \right]                                                         ~~,  </math>
275
|}
276
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
277
|}
278
279
where <math display="inline">h_f</math> is the film coefficient and <math display="inline">\sigma ^*</math> the radiation coefficient. For the class of problems considered here, the particle temperature and kinetic energy are such that the radiation coefficient <math display="inline">\sigma ^*</math> may be ignored. The film coefficient <math display="inline">h_f</math> is obtained from the Nusselt-Number <math display="inline">Nu</math>:
280
281
{| class="formulaSCP" style="width: 100%; text-align: left;" 
282
|-
283
| 
284
{| style="text-align: left; margin:auto;width: 100%;" 
285
|-
286
| style="text-align: center;" | <math> Nu = 2 + 0.459 Pr^{0.333} Re^{0.55} ~~,  </math>
287
|}
288
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
289
|}
290
291
where <math display="inline">Pr</math> is the Prandtl-number of the gas
292
293
{| class="formulaSCP" style="width: 100%; text-align: left;" 
294
|-
295
| 
296
{| style="text-align: left; margin:auto;width: 100%;" 
297
|-
298
| style="text-align: center;" | <math> Pr = {k \over \mu } ~~,  </math>
299
|}
300
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
301
|}
302
303
as
304
305
{| class="formulaSCP" style="width: 100%; text-align: left;" 
306
|-
307
| 
308
{| style="text-align: left; margin:auto;width: 100%;" 
309
|-
310
| style="text-align: center;" | <math> h_f = {{ Nu \cdot k }\over d} ~~.      </math>
311
|}
312
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
313
|}
314
315
Having established the forces and heat flux, the particle motion and temperature are obtained from Newton's law and the first law of thermodynamics. For the particle velocities, we have:
316
317
{| class="formulaSCP" style="width: 100%; text-align: left;" 
318
|-
319
| 
320
{| style="text-align: left; margin:auto;width: 100%;" 
321
|-
322
| style="text-align: center;" | <math> \rho _p {{\pi d^3} \over 6 } \cdot {{ d{\boldsymbol v}_p} \over {dt}} = {\boldsymbol D}    + \rho _p {{\pi d^3} \over 6 } {\boldsymbol g}~~.                                                         </math>
323
|}
324
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
325
|}
326
327
This implies that:
328
329
{| class="formulaSCP" style="width: 100%; text-align: left;" 
330
|-
331
| 
332
{| style="text-align: left; margin:auto;width: 100%;" 
333
|-
334
| style="text-align: center;" | <math> {{ d{\boldsymbol v}_p} \over {dt}} = {{3 \rho } \over {4 \rho _p d}} \cdot c_d                                | {\boldsymbol v}- {\boldsymbol v}_p | ( {\boldsymbol v}- {\boldsymbol v}_p )                     + {\boldsymbol g}                     = \alpha _v | {\boldsymbol v}- {\boldsymbol v}_p | ( {\boldsymbol v}- {\boldsymbol v}_p )                     + {\boldsymbol g} ~~.                                                          </math>
335
|}
336
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
337
|}
338
339
where <math display="inline">\alpha _v=3\rho c_d / (4 \rho _p d)</math>. The particle positions are obtained from:
340
341
{| class="formulaSCP" style="width: 100%; text-align: left;" 
342
|-
343
| 
344
{| style="text-align: left; margin:auto;width: 100%;" 
345
|-
346
| style="text-align: center;" | <math> {{ d{\boldsymbol x}_p} \over {dt}} = {\boldsymbol v}_p ~~.     </math>
347
|}
348
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
349
|}
350
351
The temperature change in a particle is given by:
352
353
{| class="formulaSCP" style="width: 100%; text-align: left;" 
354
|-
355
| 
356
{| style="text-align: left; margin:auto;width: 100%;" 
357
|-
358
| style="text-align: center;" | <math> \rho _p c_{pp} {{\pi d^3} \over 6 } \cdot {{ dT_p} \over {dt}} = Q ~~,                                                          </math>
359
|}
360
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
361
|}
362
363
which may be expressed as:
364
365
{| class="formulaSCP" style="width: 100%; text-align: left;" 
366
|-
367
| 
368
{| style="text-align: left; margin:auto;width: 100%;" 
369
|-
370
| style="text-align: center;" | <math> {{ dT_p} \over {dt}} = {{3 k}\over 4 c_{pp} \rho _p d^2} \cdot Nu \cdot                            ( T - T_p )                         = \alpha _T ( T - T_p ) ~~,     </math>
371
|}
372
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
373
|}
374
375
with <math display="inline">\alpha _T=3 k/(4 c_{pp} \rho _p d^2)</math>. Equations (15, 16, 18) may be formulated as a system of Ordinary Differential Equations (ODEs) of the form:
376
377
{| class="formulaSCP" style="width: 100%; text-align: left;" 
378
|-
379
| 
380
{| style="text-align: left; margin:auto;width: 100%;" 
381
|-
382
| style="text-align: center;" | <math> {{d{\boldsymbol u}_p} \over {dt}} = {\boldsymbol r}({\boldsymbol u}_p, {\boldsymbol x}, {\boldsymbol u}_f) ~~,                                                          </math>
383
|}
384
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
385
|}
386
387
where <math display="inline">{\boldsymbol u}_p, {\boldsymbol x}, {\boldsymbol u}_f</math> denote the particle unknowns, the position of the particle and the fluid unknowns at the position of the particle.
388
389
===5.3 Numerical Integration of the Motion of the Air===
390
391
The last six decades have seen a large number of schemes that may be used to solve numerically the incompressible Navier-Stokes equations given by Eqns.(6.1-6.3). In the present case, the following design criteria were implemented:
392
393
<br />- Spatial discretization using '''unstructured grids''' (in order to allow for arbitrary geometries and adaptive refinement);
394
<br />- Spatial approximation of unknowns with '''simple linear finite elements''' (in order to have a simple input/output and code structure);
395
<br />- Edge-based data structures (for reduced access to memory and indirect addressing);
396
<br />- Temporal approximation using '''implicit integration of viscous terms and pressure''' (the interesting scales are the ones associated with advection);
397
<br />- Temporal approximation using '''explicit, high-order integration of advective terms''';
398
<br />- Low-storage, iterative solvers for the resulting systems of equations (in order to solve large 3-D problems); and
399
<br />- Steady results that are '''independent from the timestep''' chosen (in order to have confidence in convergence studies).
400
401
The resulting discretization in time is given by the following projection scheme <span id='citeF-68'></span><span id='citeF-71'></span>[[#cite-68|[68,71]]]:
402
403
<br />- Advective-Diffusive Prediction: <math display="inline">{\boldsymbol v}^n, p^n \rightarrow {\boldsymbol v}^{*}</math>
404
405
{| class="formulaSCP" style="width: 100%; text-align: left;" 
406
|-
407
| 
408
{| style="text-align: left; margin:auto;width: 100%;" 
409
|-
410
| style="text-align: center;" | <math> {\boldsymbol s}' = - \nabla p^n + \rho {\boldsymbol g}           + \beta \rho {\boldsymbol g}(T^n - T_0) + {\boldsymbol s}_v ~~, </math>
411
|}
412
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
413
|}
414
415
{| class="formulaSCP" style="width: 100%; text-align: left;" 
416
|-
417
| 
418
{| style="text-align: left; margin:auto;width: 100%;" 
419
|-
420
| style="text-align: center;" | <math> {\boldsymbol v}^i = {\boldsymbol v}^n + \alpha ^i \gamma {\Delta t}\left(  - {\boldsymbol v}^{i-1} \cdot \nabla {\boldsymbol v}^{i-1}    \nabla \cdot \mu \nabla {\boldsymbol v}^{i-1} + {\boldsymbol s}' \right) ~~; ~~i=1,k-1~~; </math>
421
|}
422
| style="width: 5px;text-align: right;white-space: nowrap;" | (21a)
423
|}
424
425
{| class="formulaSCP" style="width: 100%; text-align: left;" 
426
|-
427
| 
428
{| style="text-align: left; margin:auto;width: 100%;" 
429
|-
430
| style="text-align: center;" | <math>  \left[{ 1 \over {\Delta t}} - \theta \nabla \cdot \mu \nabla \right]    \left({\boldsymbol v}^{k} - {\boldsymbol v}^n \right)  + {\boldsymbol v}^{k-1} \cdot \nabla {\boldsymbol v}^{k-1} =    \nabla \cdot \mu \nabla {\boldsymbol v}^{k-1} + {\boldsymbol s}' ~~.  </math>
431
|}
432
| style="width: 5px;text-align: right;white-space: nowrap;" | (21b)
433
|}
434
435
<br />- Pressure Correction: <math display="inline">p^n \rightarrow p^{n+1}</math>
436
437
{| class="formulaSCP" style="width: 100%; text-align: left;" 
438
|-
439
| 
440
{| style="text-align: left; margin:auto;width: 100%;" 
441
|-
442
| style="text-align: center;" | <math>  \nabla \cdot {\boldsymbol v}^{n+1} = 0                          ~~; </math>
443
|}
444
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
445
|}
446
447
{| class="formulaSCP" style="width: 100%; text-align: left;" 
448
|-
449
| 
450
{| style="text-align: left; margin:auto;width: 100%;" 
451
|-
452
| style="text-align: center;" | <math>  {{ {\boldsymbol v}^{n+1} - {\boldsymbol v}^{*} }\over {\Delta t}} + \nabla ( p^{n+1} - p^n )    = 0                                           ~~; </math>
453
|}
454
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
455
|}
456
457
<br />  which results in
458
459
{| class="formulaSCP" style="width: 100%; text-align: left;" 
460
|-
461
| 
462
{| style="text-align: left; margin:auto;width: 100%;" 
463
|-
464
| style="text-align: center;" | <math>  \nabla ^2 ( p^{n+1} - p^n ) = {{\nabla \cdot {\boldsymbol v}^{*} }\over {\Delta t}} ~~; </math>
465
|}
466
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
467
|}
468
469
<br />- Velocity Correction: <math display="inline">{\boldsymbol v}^{*} \rightarrow {\boldsymbol v}^{n+1}</math>
470
471
{| class="formulaSCP" style="width: 100%; text-align: left;" 
472
|-
473
| 
474
{| style="text-align: left; margin:auto;width: 100%;" 
475
|-
476
| style="text-align: center;" | <math>  {\boldsymbol v}^{n+1} = {\boldsymbol v}^{*} - {\Delta t}\nabla ( p^{n+1} - p^n ) ~~. </math>
477
|}
478
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
479
|}
480
481
<math display="inline">\theta </math> denotes the implicitness-factor for the viscous terms (<math display="inline">\theta=1</math>: 1st order, fully implicit, <math display="inline">\theta=0.5</math>: 2nd order, Crank-Nicholson). <math display="inline">\alpha ^i</math> are the standard low-storage Runge-Kutta coefficients <math display="inline">\alpha ^i=1/(k+1-i)</math>. The <math display="inline">k-1</math> stages of Eqn.(21a) may be seen as a predictor (or replacement) of <math display="inline">{\boldsymbol v}^n</math> by <math display="inline">{\boldsymbol v}^{k-1}</math>. The original right-hand side has not been modified, so that at steady-state <math display="inline">{\boldsymbol v}^n={\boldsymbol v}^{k-1}</math>, preserving the requirement that the steady-state be independent of the timestep <math display="inline">{\Delta t}</math>. The factor <math display="inline">\gamma </math> denotes the local ratio of the stability limit for explicit timestepping for the viscous terms versus the timestep chosen. Given that the advective and viscous timestep limits are proportional to:
482
483
{| class="formulaSCP" style="width: 100%; text-align: left;" 
484
|-
485
| 
486
{| style="text-align: left; margin:auto;width: 100%;" 
487
|-
488
| style="text-align: center;" | <math> {\Delta t}_a \approx {h \over {|{\boldsymbol v}|}} ~~;~~    {\Delta t}_v \approx {{\rho h^2} \over \mu } ~~, </math>
489
|}
490
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
491
|}
492
493
we immediately obtain
494
495
{| class="formulaSCP" style="width: 100%; text-align: left;" 
496
|-
497
| 
498
{| style="text-align: left; margin:auto;width: 100%;" 
499
|-
500
| style="text-align: center;" | <math> \gamma = {{{\Delta t}_v} \over {{\Delta t}_a}}     \approx {{\rho |{\boldsymbol v}| h }\over \mu } \approx Re_h  ~~, </math>
501
|}
502
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
503
|}
504
505
or, in its final form:
506
507
{| class="formulaSCP" style="width: 100%; text-align: left;" 
508
|-
509
| 
510
{| style="text-align: left; margin:auto;width: 100%;" 
511
|-
512
| style="text-align: center;" | <math> \gamma = min(1,Re_h) ~~. </math>
513
|}
514
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
515
|}
516
517
In regions away from boundary layers, this factor is <math display="inline">O(1)</math>, implying that a high-order Runge-Kutta scheme is recovered. Conversely, for regions where <math display="inline">Re_h=O(0)</math>, the scheme reverts back to the usual 1-stage Crank-Nicholson scheme. Besides higher accuracy, an important benefit of explicit multistage advection schemes is the larger timestep one can employ. The increase in allowable timestep is roughly proportional to the number of stages used (and has been exploited extensively for compressible flow simulations <span id='citeF-49'></span>[[#cite-49|[49]]]). Given that for an incompressible solver of the projection type given by Eqns.(20-25) most of the CPU time is spent solving the pressure-Poisson system Eqn.(24), the speedup achieved is also roughly proportional to the number of stages used. 
518
519
At steady state, <math display="inline">{\boldsymbol v}^{*}={\boldsymbol v}^n={\boldsymbol v}^{n+1}</math> and the residuals of the pressure correction vanish, implying that the result does not depend on the timestep <math display="inline">{\Delta t}</math>. 
520
521
The spatial discretization of these equations is carried out via linear finite elements. The resulting matrix system is re-written as an edge-based solver, allowing the use of consistent numerical fluxes to stabilize the advection and divergence operators <span id='citeF-71'></span>[[#cite-71|[71]]]. 
522
523
The energy (temperature) equation (Eqn.(6.3)) is integrated in a manner similar to the advective-diffusive prediction (Eqn(21)), i.e. with an explicit, high order Runge-Kutta scheme for the advective parts and an implicit, 2nd order Crank-Nicholson scheme for the conductivity.
524
525
===5.4 Numerical Integration of the Motion of Particles/Droplets===
526
527
The equations describing the position, velocity and temperature of a particle (Eqns. 15-19) may be formulated as a system of nonlinear Ordinary Differential Equations of the form:
528
529
{| class="formulaSCP" style="width: 100%; text-align: left;" 
530
|-
531
| 
532
{| style="text-align: left; margin:auto;width: 100%;" 
533
|-
534
| style="text-align: center;" | <math> {{d{\boldsymbol u}_p} \over {dt}} = {\boldsymbol r}({\boldsymbol u}_p, {\boldsymbol x}, {\boldsymbol u}_f) ~~.                                                          </math>
535
|}
536
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
537
|}
538
539
They can be integrated numerically in a variety of ways. Due to its speed, low memory requirements and simplicity, we have chosen the following k-step low-storage Runge-Kutta procedure to integrate them:
540
541
{| class="formulaSCP" style="width: 100%; text-align: left;" 
542
|-
543
| 
544
{| style="text-align: left; margin:auto;width: 100%;" 
545
|-
546
| style="text-align: center;" | <math> {\boldsymbol u}^{n+i}_p = {\boldsymbol u}^n_p + \alpha ^i \Delta t \cdot     {\boldsymbol r}({\boldsymbol u}^{n+i-1}_p, {\boldsymbol x}^{n+i-1}, {\boldsymbol u}^{n+i-1}_f) ~~, ~~ i=1,k  ~~. </math>
547
|}
548
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
549
|}
550
551
For linear ODEs the choice
552
553
{| class="formulaSCP" style="width: 100%; text-align: left;" 
554
|-
555
| 
556
{| style="text-align: left; margin:auto;width: 100%;" 
557
|-
558
| style="text-align: center;" | <math> \alpha ^i= {1 \over {k+1-i}} ~~,~~ i=1,k  </math>
559
|}
560
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
561
|}
562
563
leads to a scheme that is <math display="inline">k</math>-th order accurate in time. Note that in each step the location of the particle with respect to the fluid mesh needs to be updated in order to obtain the proper values for the fluid unknowns. The default number of stages used is <math display="inline">k=4</math>. This would seem unnecessarily high, given that the flow solver is of second-order accuracy, and that the particles are integrated separately from the flow solver before the next (flow) timestep, i.e. in a staggered manner. However, it was found that the 4-stage particle integration preserves very well the motion in vortical structures and leads to less `wall sliding' close to the boundaries of the domain <span id='citeF-78'></span>[[#cite-78|[78]]]. The stability/ accuracy of the particle integrator should not be a problem as the particle motion will always be slower than the maximum wave speed of the fluid (fluid velocity). 
564
565
The transfer of forces and heat flux between the fluid and the particles must be accomplished in a conservative way, i.e. whatever is added to the fluid must be subtracted from the particles and vice-versa. The finite element discretization of the fluid equations will lead to a system of ODE's of the form:
566
567
{| class="formulaSCP" style="width: 100%; text-align: left;" 
568
|-
569
| 
570
{| style="text-align: left; margin:auto;width: 100%;" 
571
|-
572
| style="text-align: center;" | <math> {\boldsymbol M}\Delta {\boldsymbol u}= {\boldsymbol r}~~,    </math>
573
|}
574
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
575
|}
576
577
where <math display="inline">{\boldsymbol M}, \Delta {\boldsymbol u}</math> and <math display="inline">{\boldsymbol r}</math> denote, respectively, the consistent mass matrix, increment of the unknowns vector and right-hand side vector. Given the `host element' of each particle, i.e. the fluid mesh element that contains the particle, the forces and heat transferred to <math display="inline">{\boldsymbol r}</math> are added as follows:
578
579
{| class="formulaSCP" style="width: 100%; text-align: left;" 
580
|-
581
| 
582
{| style="text-align: left; margin:auto;width: 100%;" 
583
|-
584
| style="text-align: center;" | <math> {\boldsymbol r}^i_D = \sum _{el~surr~i} N^i({\boldsymbol x}_p) {\boldsymbol D}_p ~~.  </math>
585
|}
586
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
587
|}
588
589
Here <math display="inline">N^i({\boldsymbol x}_p)</math> denotes the shape-function values of the host element for the point coordinates <math display="inline">{\boldsymbol x}_p</math>, and the sum extends over all elements that surround node <math display="inline">i</math>. As the sum of all shape-function values is unity at every point:
590
591
{| class="formulaSCP" style="width: 100%; text-align: left;" 
592
|-
593
| 
594
{| style="text-align: left; margin:auto;width: 100%;" 
595
|-
596
| style="text-align: center;" | <math> \sum N^i({\boldsymbol x}) = 1 ~~\forall {\boldsymbol x}~~,    </math>
597
|}
598
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
599
|}
600
601
this procedure is strictly conservative. 
602
603
From Eqns.(15-18) and their equivalent numerical integration via Eqn.(30), the change in momentum and energy for one particle is given by:
604
605
{| class="formulaSCP" style="width: 100%; text-align: left;" 
606
|-
607
| 
608
{| style="text-align: left; margin:auto;width: 100%;" 
609
|-
610
| style="text-align: center;" | <math> {\boldsymbol f}_p =  \rho _p {{\pi d^3}\over 6}              {{\left({\boldsymbol v}^{n+1}_p - {\boldsymbol v}^n_p \right)} \over {\Delta t}}                                            ~~,    </math>
611
|}
612
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
613
|}
614
615
{| class="formulaSCP" style="width: 100%; text-align: left;" 
616
|-
617
| 
618
{| style="text-align: left; margin:auto;width: 100%;" 
619
|-
620
| style="text-align: center;" | <math> q_p =  \rho _p c_{pp} {{\pi d^3}\over 6}              {{\left(T^{n+1}_p - T^n_p \right)} \over {\Delta t}}                                            ~~.    </math>
621
|}
622
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
623
|}
624
625
These quantities are multiplied by the number of particles in a packet in order to obtain the final values transmitted to the fluid. Before going on, we summarize the basic steps required in order to update the particles one timestep:
626
627
<br />- Initialize Fluid Source-Terms: <math display="inline">{\boldsymbol r}=0</math>
628
<br />- '''DO''' : For Each Particle:
629
<br />  - DO: For Each Runge-Kutta Stage:
630
<br />  ~&nbsp;&nbsp;- Find Host Element of Particle: IELEM, <math display="inline">N^i({\boldsymbol x})</math>
631
<br />  ~&nbsp;&nbsp;- Obtain Fluid Variables Required
632
<br />  ~&nbsp;&nbsp;- Update Particle: Velocities, Position, Temperature, ...
633
<br />- - ENDDO
634
<br />  - Transfer Loads to Element Nodes
635
<br />- '''ENDDO'''
636
637
====5.4.1 Particle Parcels====
638
639
For a large number of very small particles, it becomes impossible to carry every individual particle in a simulation. The solution is to:
640
641
<br />a) Agglomerate the particles into so-called packets of <math display="inline">N_p</math> particles;
642
<br />b) Integrate the governing equations for one individual particle; and
643
<br />c) Transfer back to the fluid <math display="inline">N_p</math> times the effect of one particle.
644
645
Beyond a reasonable number of particles per element (typically <math display="inline">> 8</math>), this procedure produces accurate results without any deterioration in physical fidelity.
646
647
====5.4.2 Other Numerics====
648
649
In order to achieve a robust particle integrator, a number of additional precautions and algorithms need to be implemented. The most important of these are:
650
651
<br />- Agglomeration/Subdivision of Particle Parcels: As the fluid mesh may be adaptively refined and coarsened in time, or the particle traverses elements of different sizes, it may be important to adapt the parcel concentrations as well. This is necessary to ensure that there is sufficient parcel representation in each element and yet, that there are not too many parcels as to constitute an inefficient use of CPU and memory.
652
<br />- Limiting During Particle Updates: As the particles are integrated independently from the flow solver, it is not difficult to envision situations where for the extreme cases of very light or very heavy particles physically meaningless or unstable results may be obtained. In order to prevent this, the changes in particle velocities and temperatures are limited in order not to exceed the differences in velocities and temperature between the particles and the fluid <span id='citeF-78'></span>[[#cite-78|[78]]].
653
<br />- Particle Contact/Merging: In some situations, particles may collide or merge in a certain region of space.
654
<br />-  Particle Tracking: A common feature of all particle-grid applications is that the particles do not move far between timesteps. This makes physical sense: if a particle jumped ten gridpoints during one timestep, it would have no chance to exchange information with the points along the way, leading to serious errors. Therefore, the assumption that the new host elements of the particles are in the vicinity of the current ones is a valid one. For this reason, the most efficient way to search for the new host elements is via the vectorized neighbour-to-neighbour algorithm described in <span id='citeF-59'></span><span id='citeF-71'></span>[[#cite-59|[59,71]]].
655
656
==6 Examples==
657
658
The techniques described above were implemented in FEFLO, a general-purpose computational fluid dynamics (CFD) code based on the following general principles:
659
660
<br />- Use of unstructured grids (automatic grid generation and mesh refinement);
661
<br />- Finite element discretization of space;
662
<br />- Separate flow modules for compressible and incompressible flows;
663
<br />- Edge-based data structures for speed;
664
<br />- Optimal data structures for different architectures;
665
<br />- Bottom-up coding from the subroutine level to assure an open-ended, expandable architecture.
666
667
The code has had a long history of relevant applications involving compressible flow simulations in the areas of transonic flow <span id='citeF-81'></span><span id='citeF-82'></span><span id='citeF-83'></span><span id='citeF-84'></span><span id='citeF-63'></span><span id='citeF-85'></span>[[#cite-81|[81,82,83,84,63,85]]], store separation <span id='citeF-7'></span><span id='citeF-10'></span><span id='citeF-12'></span><span id='citeF-14'></span><span id='citeF-15'></span>[[#cite-7|[7,10,12,14,15]]], blast-structure interaction <span id='citeF-6'></span><span id='citeF-8'></span><span id='citeF-11'></span><span id='citeF-13'></span><span id='citeF-16'></span>[[#cite-6|[6,8,11,13,16]]], <span id='citeF-66'></span><span id='citeF-72'></span><span id='citeF-94'></span><span id='citeF-105'></span><span id='citeF-97'></span>[[#cite-66|[66,72,94,105,97]]], incompressible flows <span id='citeF-91'></span><span id='citeF-93'></span><span id='citeF-65'></span><span id='citeF-68'></span><span id='citeF-5'></span><span id='citeF-76'></span>[[#cite-91|[91,93,65,68,5,76]]], free-surface hydrodynamics <span id='citeF-62'></span><span id='citeF-69'></span><span id='citeF-70'></span>[[#cite-62|[62,69,70]]], dispersion <span id='citeF-22'></span><span id='citeF-23'></span><span id='citeF-67'></span><span id='citeF-24'></span>[[#cite-22|[22,23,67,24]]], patient-based haemodynamics <span id='citeF-26'></span><span id='citeF-63'></span><span id='citeF-27'></span><span id='citeF-1'></span><span id='citeF-73'></span>[[#cite-26|[26,63,27,1,73]]] and aeroacoustics <span id='citeF-57'></span>[[#cite-57|[57]]]. The code has been ported to vector <span id='citeF-64'></span>[[#cite-64|[64]]], shared memory <span id='citeF-61'></span><span id='citeF-96'></span>[[#cite-61|[61,96]]], distributed memory <span id='citeF-91'></span><span id='citeF-60'></span><span id='citeF-92'></span><span id='citeF-74'></span>[[#cite-91|[91,60,92,74]]] and GPU-based <span id='citeF-30'></span><span id='citeF-31'></span><span id='citeF-32'></span><span id='citeF-33'></span><span id='citeF-75'></span>[[#cite-30|[30,31,32,33,75]]] machines.
668
669
The cases shown all simulate sneezing/coughing in different environments. The ambient temperature was assumed to be <math display="inline">20^o</math>C. In order to simulate a sneeze/cough, the velocity and temperature in a spherical region of radius (<math display="inline">r=5~cm</math>) near the patient's mouth was reset at the beginning of each timestep according to the following triangular function:
670
671
{| class="formulaSCP" style="width: 100%; text-align: left;" 
672
|-
673
| 
674
{| style="text-align: left; margin:auto;width: 100%;" 
675
|-
676
| style="text-align: center;" | <math> f(t)= 
677
\begin{cases}    
678
{t \over t_{mid}} & ~~if:         0 \le t \le   t_{mid} \\
679
1 - {{t-t_{mid}}\over t_{mid}} & ~~if:   t_{mid} \le t \le 2 t_{mid}  ~~. \\
680
0                  & ~~if: 2 t_{mid} \le t
681
\end{cases}</math>
682
|}
683
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
684
|}
685
686
{| class="formulaSCP" style="width: 100%; text-align: left;" 
687
|-
688
| 
689
{| style="text-align: left; margin:auto;width: 100%;" 
690
|-
691
| style="text-align: center;" | <math> v(t) = 5 f(t) ~[m/sec] ~~,~~ T(t) = 20 + f(t) ( 37 - 20 ) ~~.     </math>
692
|}
693
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
694
|}
695
696
The droplets were initialized with 4 different sizes and different velocities, and released every <math display="inline">0.005</math> seconds during <math display="inline">0.1</math> seconds. This resulted in a final number of particle packets of <math display="inline">n_p=25,662</math>. The temperature was set to <math display="inline">T_p=37^oC</math> and the velocity to <math display="inline">v=5~m/sec</math>. Table&nbsp;3 summarizes the diameters and resulting mass distribution.
697
698
699
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
700
|+ style="font-size: 75%;" |<span id='table-3'></span>Table. 3 Initial Conditions for Particles
701
|- style="border-top: 2px solid;"
702
| style="border-right: 2px solid;" |  Droplet Diameter [mm] 
703
| style="border-left: 2px solid;border-right: 2px solid;" | Mass [gr<math display="inline">^3</math>]                       
704
| style="border-left: 2px solid;border-right: 2px solid;" | Nr. of Packets 
705
| style="border-left: 2px solid;" | Nr. of Particles 
706
|- style="border-top: 2px solid;"
707
| style="border-right: 2px solid;" |  1.00E+00 
708
| style="border-left: 2px solid;border-right: 2px solid;" | 5.50E+00 
709
| style="border-left: 2px solid;border-right: 2px solid;" | 1.05E+03 
710
| style="border-left: 2px solid;" | 1.05E+04 
711
|-
712
| style="border-right: 2px solid;" | 1.00E-01 
713
| style="border-left: 2px solid;border-right: 2px solid;" | 0.11E+00 
714
| style="border-left: 2px solid;border-right: 2px solid;" | 2.10E+03 
715
| style="border-left: 2px solid;" | 2.10E+05 
716
|-
717
| style="border-right: 2px solid;" | 1.00E-02 
718
| style="border-left: 2px solid;border-right: 2px solid;" | 0.58E-02 
719
| style="border-left: 2px solid;border-right: 2px solid;" | 1.12E+04 
720
| style="border-left: 2px solid;" | 1.12E+07 
721
|- style="border-bottom: 2px solid;"
722
| style="border-right: 2px solid;" | 1.00E-03 
723
| style="border-left: 2px solid;border-right: 2px solid;" | 0.58E-05 
724
| style="border-left: 2px solid;border-right: 2px solid;" | 1.12E+04 
725
| style="border-left: 2px solid;" | 1.12E+08 
726
727
|}
728
729
In the cases shown different temporal scales appear:
730
731
<br />- The fast, ballistic drop of the larger (<math display="inline">d=1~mm</math>) particles, occurring in the range of <math display="inline">O(1)~sec</math>;
732
<br />- The slower drop of particles of diameter <math display="inline">d=O(0.1)~mm</math>, occurring in the range of <math display="inline">O(10)~sec</math>; and
733
<br />- The transport of the even smaller particles through the air, occurring in the range of <math display="inline">O(100)~sec</math>.
734
735
We have attempted to show these phases in the results, and for this reason the results are not displayed at equal time intervals. Unless otherwise noted, the particles have been colored according to the '''logarithm''' of the diameter, with red colors representing the largest and blue the smallest particles. 
736
737
The examples given show clearly the dangers of droplet- and aerosol- based infections in the built environment.
738
739
===6.1 Sneezing in Transportation Security Agency (TSA) Queues===
740
741
One of the obvious vectors for viral contamination and spread are security and passport examination queues in airports. Air flow is moderate, passengers are in very close proximity, and in some airports queues wind back and forth in narrow lanes. Figure&nbsp;3a,b show the arrangement of pedestrians, as well as the discretization chosen. Note the smaller elements close to the bodies and in the region of interest between the two pedestrians in the middle row. This particular mesh had 12.74Mels. The distribution of particles and the absolute value of the velocity in the centerplane over time can be discerned from Figures&nbsp;3c-e. One can see that the large (red) particles follow a ballistic path and have some influence on the flow (e.g. at time <math display="inline">t=0.20</math>). This `ballistic phase' ends at about <math display="inline">t=1~sec</math>. The (green) particles of size <math display="inline">d=0.1~mm</math> are quickly stopped by the air, and then sink slowly towards the floor in close proximity to the individual sneezing. The even smaller (cyan, blue) particles rise with the cloud of warmer air exhaled by the sneezing individual, and disperse much further at later times.
742
743
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-wire_far.png|600px|figures/tsa_queue/wire_far.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 3a&nbsp;&nbsp;TSA Queue: Arrangement of Pedestrians and Surface Mesh</div>
744
745
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-wire_close.png|600px|figures/tsa_queue/wire_close.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 3b&nbsp;&nbsp;TSA Queue: Surface Mesh and Cut Plane</div>
746
747
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-que2_0.02.png|600px|figures/tsa_queue/que2_0.02.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 3c&nbsp;&nbsp;TSA Queue: Particle Distribution at <math>t=0.02~sec</math></div>
748
749
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-que2_0.10.png|600px|figures/tsa_queue/que2_0.10.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 3d&nbsp;&nbsp;TSA Queue: Particle Distribution at <math>t=0.10~sec</math></div>
750
751
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-que2_0.20.png|600px|figures/tsa_queue/que2_0.20.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 3e&nbsp;&nbsp;TSA Queue: Particle Distribution at <math>t=0.20~sec</math></div>
752
753
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-que2_0.40.png|600px|figures/tsa_queue/que2_0.40.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 3f&nbsp;&nbsp;TSA Queue: Particle Distribution at <math>t=0.40~sec</math></div>
754
755
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-que2_0.80.png|600px|figures/tsa_queue/que2_0.80.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 3g&nbsp;&nbsp;TSA Queue: Particle Distribution at <math>t=0.80~sec</math></div>
756
757
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-que2_1.60.png|600px|figures/tsa_queue/que2_1.60.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 3h&nbsp;&nbsp;TSA Queue: Particle Distribution at <math>t=1.60~sec</math></div>
758
759
===6.2 Sneezing in a Generic Hospital Room===
760
761
This case considers a typical hospital room. Of interest here was the dispersion of particles in the '''first minute''' after coughing, in particular the reach into neighbouring halls and the amount of `negative pressure' needed to keep all contaminants in the room. Figure&nbsp;4a shows the arrangement of the room, with patient and caregiver clearly visible. This particular mesh had 2.25Mels. The distribution of particles over time can be discerned from Figures&nbsp;4c-l. As before, one can see that the large (red) particles follow a ballistic path. This `ballistic phase' ends at about <math display="inline">t=1~sec</math>. The (green) particles of size <math display="inline">d=0.1~mm</math> are quickly stopped by the air, and then sink slowly towards the patient. The even smaller (cyan, blue) particles rise with the cloud of warmer air exhaled by the sneezing individual, and disperse much further at later times, covering almost the entire room. The velocity distribution in the room may be inferred from Figure&nbsp;4m.
762
763
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-wire.png|600px|figures/hospital_room/wire.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4a&nbsp;&nbsp;Hospital Room: Surface Mesh</div>
764
765
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0000.png|600px|figures/hospital_room/just_parts.0000.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4b&nbsp;&nbsp;Hospital Room: Particle Distribution at t=0.0 sec</div>
766
767
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0001.png|600px|figures/hospital_room/just_parts.0001.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4c&nbsp;&nbsp;Hospital Room: Particle Distribution at t=0.2 sec</div>
768
769
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0002.png|600px|figures/hospital_room/just_parts.0002.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4d&nbsp;&nbsp;Hospital Room: Particle Distribution at t=0.4 sec</div>
770
771
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0003.png|600px|figures/hospital_room/just_parts.0003.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4e&nbsp;&nbsp;Hospital Room: Particle Distribution at t=0.6 sec</div>
772
773
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0005.png|600px|figures/hospital_room/just_parts.0005.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4f&nbsp;&nbsp;Hospital Room: Particle Distribution at t=1.0 sec</div>
774
775
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0010.png|600px|figures/hospital_room/just_parts.0010.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4g&nbsp;&nbsp;Hospital Room: Particle Distribution at t=2.0 sec</div>
776
777
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0020.png|600px|figures/hospital_room/just_parts.0020.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4h&nbsp;&nbsp;Hospital Room: Particle Distribution at t=4.0 sec</div>
778
779
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0032.png|600px|figures/hospital_room/just_parts.0032.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4i&nbsp;&nbsp;Hospital Room: Particle Distribution at t=10.0 sec</div>
780
781
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0052.png|600px|figures/hospital_room/just_parts.0052.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4j&nbsp;&nbsp;Hospital Room: Particle Distribution at t=20.0 sec</div>
782
783
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0072.png|600px|figures/hospital_room/just_parts.0072.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4k&nbsp;&nbsp;Hospital Room: Particle Distribution at t=30.0 sec</div>
784
785
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-just_parts.0112.png|600px|figures/hospital_room/just_parts.0112.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4l&nbsp;&nbsp;Hospital Room: Particle Distribution at t=50.0 sec</div>
786
787
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-velo_and_parts.0132.png|600px|figures/hospital_room/velo_and_parts.0132.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 4m&nbsp;&nbsp;Hospital Room: Surface Velocities at t=60.0 sec</div>
788
789
==7 Reopening After the Crisis==
790
791
A lingering question facing all levels of society is how and when to reopen facilities where people congregate in close proximity. One key technology that would allow opening is testing and sensing. We consider sensing in the sequel. Several vendors have announced measuring devices for Covid-19 in the next half year. Given that these sensors are expensive, and that a hospital or university many need hundreds of these, the question becomes how best to deploy them. In other words: given an arbitrary number of contamination or infection scenarios, which is the minimum number of sensors needed to detect them, and where should they be placed&nbsp;? A partial answer to this non-trivial question was given in <span id='citeF-67'></span><span id='citeF-110'></span>[[#cite-67|[67,110]]]. If we assume a given number of sensors, every contaminant/infection scenario (location and amount of release, flow conditions, etc.) will lead to a sensor input. The data recorded from all the possible release scenarios at all possible sensor locations allows the identification of the best or optimal sensor locations. Clearly, if only one sensor is to be placed, it should be at the location that recorded the highest number of releases. This argument can be used recursively by removing from further consideration all releases already recorded by sensors previously placed. The procedure is repeated recursively until no undetected release cases are left, or the available sensors have been exhausted.  
792
793
See <span id='citeF-21'></span><span id='citeF-45'></span>[[#cite-21|[21,45]]] for an in-depth analysis of robust sensor placement under uncertainty.
794
795
===7.1 Hospital Room===
796
797
This case considers the same hospital room as shown before. The boundary conditions determining the flow are assumed as steady, with air entering the room through vents&nbsp;1-3 and exiting the room through the bathroom exhaust or the door. Figures&nbsp;5a-c show the outlay of the room, average velocities and the `age of air' after 5&nbsp;minutes. Note the high values for the age of air in the corners and the back of the room. This particular mesh had 2.2Mels. Four contaminant release scenarios were considered: cases&nbsp;1-3 assumed contaminant coming in through each of the vents (separately) during the first minute, while case&nbsp;4 assumed virus production from the patient for a period of 10&nbsp;seconds. The case was run for 5&nbsp;minutes of real time, and the contaminant concentration was measured on all walls/ceilings. The maximum concentrations measured have been summarized in Figure&nbsp;5d. Note the different areas covered depending on the release scenario. It was assumed that sensors should only be allowed above a certain height, and should be located on a wall or the ceiling. Table&nbsp;4 summarizes the points that measured data above a set threshold. As one can see, none of the possible sensor locations is able to measure/detect all 4&nbsp;cases, and many possible sensor locations do not detect even a single case. There are many possible pairs of sensors that can detect all 4&nbsp;cases. The pair selected is the one that achieves the highest relative measurement values, and is shown in Figure&nbsp;5e. Note that this makes good sense: one sensor close the HVAC exits, and one close to the patient.
798
799
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-room_outlay.png|300px|figures/sensor_placement/room_outlay.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 5a&nbsp;&nbsp;Hospital Room: Outlay of Room and Boundary Conditions</div>
800
801
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-absvelo.png|300px|figures/sensor_placement/absvelo.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 5b&nbsp;&nbsp;Hospital Room: Average Velocities (5&nbsp;mins)</div>
802
803
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-ageofair.png|300px|figures/sensor_placement/ageofair.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 5c&nbsp;&nbsp;Hospital Room: Age of Air (5&nbsp;mins)</div>
804
805
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-maxvalues5mins.png|300px|figures/sensor_placement/maxvalues5mins.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 5d&nbsp;&nbsp;Hospital Room: Maximum Contaminant Concentration Over 5 Minutes</div>
806
807
808
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
809
|+ style="font-size: 75%;" |<span id='table-4'></span>Table. 4 Data Measurement Summary
810
|- style="border-top: 2px solid;"
811
| style="border-right: 2px solid;" |  Cases Measured 
812
| style="border-left: 2px solid;" | Number 
813
|- style="border-top: 2px solid;"
814
| style="border-right: 2px solid;" |  0 
815
| style="border-left: 2px solid;" | 4308 
816
|-
817
| style="border-right: 2px solid;" | 1 
818
| style="border-left: 2px solid;" | 3377 
819
|-
820
| style="border-right: 2px solid;" | 2 
821
| style="border-left: 2px solid;" | 1010 
822
|-
823
| style="border-right: 2px solid;" | 3 
824
| style="border-left: 2px solid;" | 0 
825
|- style="border-bottom: 2px solid;"
826
| style="border-right: 2px solid;" | 4 
827
| style="border-left: 2px solid;" | 0 
828
829
|}
830
831
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">  [[Image:Draft_Samper_514971305-test-optimal_place.png|300px|figures/sensor_placement/optimal_place.eps]]</div> <div class="center" style="width: auto; margin-left: auto; margin-right: auto;">Figure 5e&nbsp;&nbsp;Hospital Room: Optimal Sensor Locations</div>
832
833
==8 Conclusions and Outlook==
834
835
The present paper has summarized some of the mechanical characteristics of virus contaminants and the transmission via droplets and aerosols. The ordinary and partial differential equations describing the physics of these processes with high fidelity were given, as well as appropriate numerical schemes to solve them. Several examples taken from recent evaluations of the built environment were given, as well as the optimal placement of sensors.
836
837
Current efforts are directed at increasing the realism of the physical processes modeled (e.g. by adding the effect of moving pedestrians <span id='citeF-79'></span>[[#cite-79|[79]]]), streamlining the simulation toolbox and workflow, and fielding these tools so that the post-pandemic opening can occur as smoothly as possible.
838
839
==Acknowledgements==
840
841
H. Antil is partially supported by NSF grants DMS-1818772, DMS-1913004, the Air Force Office of Scientific Research (AFOSR) under Award NO: FA9550-19-1-0036, and Department of Navy, Naval PostGraduate School under Award NO: N00244-20-1-0005
842
843
===BIBLIOGRAPHY===
844
845
<div id="cite-1"></div>
846
'''[[#citeF-1|[1]]]'''  S. Appanaboyina, F. Mut, R. Löhner, C. M. Putman and J. R. Cebral - Computational Fluid Dynamics of Stented Intracranial Aneurysms Using Adaptive Embedded Unstructured Grids; ''Int. J. Num. Meth. Fluids '' 57, 5, 475-493 (2008).
847
848
<div id="cite-2"></div>
849
'''[2]'''  S. Asadi, A.S. Wexler, C.D. Cappa, S. Barreda, N.M. Bouvier and W. Ristenpart - Aerosol Emission and Superemission During Human Speech Increase with Voice Loudness; ''Nature Scientific Reports ''9, (1):2348 (2019). www.nature.com/scientificreports/ https://doi.org/10.1038/s41598-019-38808-z
850
851
<div id="cite-3"></div>
852
'''[[#citeF-3|[3]]]'''  S. Asadi, A.S. Wexler, C.D. Cappa, S. Barreda, N.M. Bouvier and W. Ristenpart - Effect of Voicing and Articulation Manner on Aerosol Particle Emission During Human Speech ''PLoS ONE'' 15(1):e0227699 (2020). https://doi.org/10.1371/journal.pone.0227699
853
854
<div id="cite-4"></div>
855
'''[[#citeF-4|[4]]]'''  S. Asadi, N.M. Bouvier, A.S. Wexler and W. Ristenpart - The Coronavirus Pandemic and Aerosols: Does COVID-19 Transmit via Expiratory Particles ? ''Aerosol Science and Technology '' (2020). https://doi.org/10.1080/02786826.2020.1749229
856
857
<div id="cite-5"></div>
858
'''[[#citeF-5|[5]]]'''  R. Aubry, F. Mut, R. Löhner and J. R. Cebral - Deflated Preconditioned Conjugate Gradient Solvers for the Pressure-Poisson Equation; ''J. Comp. Phys. ''227, 24, 10196-10208 (2008).
859
860
<div id="cite-6"></div>
861
'''[[#citeF-6|[6]]]'''  J.D. Baum and R. Löhner - Numerical Simulation of Shock Interaction with a Modern Main Battlefield Tank; ''AIAA''-91-1666 (1991).
862
863
<div id="cite-7"></div>
864
'''[[#citeF-7|[7]]]'''  J.D. Baum and R. Löhner - Numerical Simulation of Pilot/Seat Ejection from an F-16; ''AIAA''-93-0783 (1993).
865
866
<div id="cite-8"></div>
867
'''[[#citeF-8|[8]]]'''  J.D. Baum. H. Luo and R. Löhner - Numerical Simulation of a Blast Inside a Boeing 747; ''AIAA''-93-3091 (1993).
868
869
<div id="cite-9"></div>
870
'''[9]'''  J.D. Baum, H. Luo and R. Löhner - Numerical Simulation of a Blast Withing a Multi-Room Shelter; pp. 451-463 in ''Proc. MABS-13 Conf.'' The Hague, Netherlands, September (1993).
871
872
<div id="cite-10"></div>
873
'''[[#citeF-10|[10]]]'''  J.D. Baum, H. Luo and R. Löhner - A New ALE Adaptive Unstructured Methodology for the Simulation of Moving Bodies; ''AIAA''-94-0414 (1994).
874
875
<div id="cite-11"></div>
876
'''[[#citeF-11|[11]]]'''  J.D. Baum, H. Luo and R. Löhner - Numerical Simulation of Blast in the World Trade Center; ''AIAA''-95-0085 (1995).
877
878
<div id="cite-12"></div>
879
'''[[#citeF-12|[12]]]'''  J.D. Baum, H. Luo and R. Löhner - Validation of a New ALE, Adaptive Unstructured Moving Body Methodology for Multi-Store Ejection Simulations; ''AIAA''-95-1792 (1995).
880
881
<div id="cite-13"></div>
882
'''[[#citeF-13|[13]]]'''  J.D. Baum, H. Luo, R. Löhner, C. Yang, D. Pelessone and C. Charman - Coupled Fluid/Structure Modeling of Shock Interaction with a Truck; ''AIAA''-96-0795 (1996).
883
884
<div id="cite-14"></div>
885
'''[[#citeF-14|[14]]]'''  J.D. Baum, H. Luo, R. Löhner, E. Goldberg and A. Feldhun - Application of Unstructured Adaptive Moving Body Methodology to the Simulation of Fuel Tank Separation from an F-16 c/d Fighter; ''AIAA''-97-0166 (1997).
886
887
<div id="cite-15"></div>
888
'''[[#citeF-15|[15]]]'''  J.D. Baum, R. Löhner, T.J. Marquette and H. Luo - Numerical Simulation of Aircraft Canopy Trajectory; ''AIAA''-97-1885 (1997).
889
890
<div id="cite-16"></div>
891
'''[[#citeF-16|[16]]]'''  J.D. Baum, H. Luo, E. Mestreau, R. Löhner, D. Pelessone and C. Charman - Coupled CFD/CSD Methodology for Modeling Weapon Detonation and Fragmentation; AIAA-99-0794 (1999).
892
893
<div id="cite-17"></div>
894
'''[17]'''  J.D. Baum, E. Mestreau, H. Luo, R. Löhner, D. Pelessone, M.E. Giltrud and J.K. Gran - Modeling of Near-Field Blast Wave Evolution; ''AIAA''-06-0191 (2006).
895
896
<div id="cite-18"></div>
897
'''[18]'''  K. Balakrishnan and S. Menon - On the Role of Ambient Reactive Particles in the Mixing and Afterburn Behind Explosive Blast Waves; ''Combust. Sci. and Tech. '' 182, 186–214 (2010).
898
899
<div id="cite-19"></div>
900
'''[19]'''  K. Benkiewicz and K. Hayashi - Two-Dimensional Numerical Simulations of Multi-Headed Detonations in Oxygen-Aluminum Mixtures Using an Adaptive Mesh Refinement; ''Shock Waves '', 12, 5, 385-402 (2003).
901
902
<div id="cite-20"></div>
903
'''[[#citeF-20|[20]]]'''  J.P. Boris, F.F. Grinstein, E.S. Oran, and R.J. Kolbe - New Insights Into Large Eddy Simulation; ''Fluid Dynamics Research ''10, 199-228 (1992).
904
905
<div id="cite-21"></div>
906
'''[[#citeF-21|[21]]]'''  J.A. Burns and C.N. Rautenberg - The Infinite-Dimensional Optimal Filtering Problem with Mobile and Stationary Sensor Networks; ''Numerical Functional Analysis and Optimization ''36, 2, 181-224 (2015). https://doi.org/10.1080/01630563.2014.970647
907
908
<div id="cite-22"></div>
909
'''[[#citeF-22|[22]]]'''  F. Camelli and R. Löhner - Assessing Maximum Possible Damage for Contaminant Release Events; ''Engineering Computations '' 21, 7, 748-760 (2004).
910
911
<div id="cite-23"></div>
912
'''[[#citeF-23|[23]]]'''  F. Camelli, R. Löhner, W.C. Sandberg and R. Ramamurti - VLES Study of Ship Stack Gas Dynamics; ''AIAA''-04-0072 (2004).
913
914
<div id="cite-24"></div>
915
'''[[#citeF-24|[24]]]'''  F. Camelli and R. Löhner - VLES Study of Flow and Dispersion Patterns in Heterogeneous Urban Areas; ''AIAA''-06-1419 (2006).
916
917
<div id="cite-25"></div>
918
'''[25]'''  F. Camelli, J. Lien, D. Dayong, D. W. Wong, M. Rice, R. Löhner and C. Yang - Generating Seamless Surfaces for Transport and Dispersion Modeling in GIS; submitted to ''GeoInformatica '' 16, 2, 207-327 (2012).
919
920
<div id="cite-26"></div>
921
'''[[#citeF-26|[26]]]'''  J.R. Cebral and R. Löhner - From Medical Images to Anatomically Accurate Finite Element Grids; ''Int. J. Num. Meth. Eng. ''51, 985-1008 (2001).
922
923
<div id="cite-27"></div>
924
'''[[#citeF-27|[27]]]'''  J.R. Cebral and R. Löhner - Efficient Simulation of Blood Flow Past Complex Endovascular Devices Using an Adaptive Embedding Technique; ''IEEE Transactions on Medical Imaging ''24, 4, 468-476 (2005).
925
926
<div id="cite-28"></div>
927
'''[28]'''  C. Chao, M.P. Wan, L. Morawska, G. Johnson, R. Graham, Z. Ristovski M. Hargreaves, K. Mengersen, L. Kerrie C. Steve, Y. Li, X. Xie and S. Katoshevski - Characterization of Expiration Air Jets and Droplet Size Distributions Immediately at the Mouth Opening; ''J. of Aerosol Science ''40, 2, 122-133 (2009).
928
929
<div id="cite-29"></div>
930
'''[29]'''  R. Clift, J.R. Grace and M.E. Weber - ''Bubbles, Drops and Particles''; Academic Press, New York (1978).
931
932
<div id="cite-30"></div>
933
'''[[#citeF-30|[30]]]'''  A. Corrigan, F. Camelli and R. Löhner - Porting Of An Edge-Based CFD Solver to GPUs; ''AIAA''-10-0523 (2010).
934
935
<div id="cite-31"></div>
936
'''[[#citeF-31|[31]]]'''  A. Corrigan, F. Camelli, R. Löhner and F. Mut - Porting of FEFLO to GPUs; ''Proc. ECCOMAS CFD 2010 Conf.'' Lisbon, Portugal, June 14-17 (2010).
937
938
<div id="cite-32"></div>
939
'''[[#citeF-32|[32]]]'''  A. Corrigan, F.F. Camelli, R. Löhner and J. Wallin - Running Unstructured Grid Based CFD Solvers on Modern Graphics Hardware; ''Int. J. Num. Meth. Fluids ''66, 221-229 (2011).
940
941
<div id="cite-33"></div>
942
'''[[#citeF-33|[33]]]'''  A. Corrigan and R. Löhner - Porting of FEFLO to Multi-GPU Clusters; ''AIAA''-11-0948 (2011).
943
944
<div id="cite-34"></div>
945
'''[34]'''  N.G. Deen, M. v.Sint Annaland and J.A.M. Kuipers - Direct Numerical Simulation of Particle Mixing in Dispersed Gas-Liquid-Solid Flows Using a Combined Volume of Fluid and Discrete Particle Approach; ''Proc. Fifth Int. Conf. on CFD in the Process Industries'', CSIRO, Melbourne, Australia, 13-15 December (2006).
946
947
<div id="cite-35"></div>
948
'''[35]'''  L. Dietz, P.F. Horve, D.A. Coil, M. Fretz, J.A. Eisen  and L. van den Wymelenberg - 2019 Novel Coronavirus (COVID-19) Pandemic: Built Environment Considerations to Reduce Transmission; ''mSystems ''5:e00245-20 (2020). doi:10.1128/mSystems.00245-20.
949
950
<div id="cite-36"></div>
951
'''[[#citeF-36|[36]]]'''  P. Fabian, J.J. McDevitt, W.H. Dehaan, R.O.P. Fung, B.J. Cowling, K.H. Chan, et al. - Influenza Virus in Human Exhaled Breath: An Observational Study; ''PLoS ONE ''3:e2691 (2008).
952
953
<div id="cite-37"></div>
954
'''[[#citeF-37|[37]]]'''  D.R. Franz, P.B. Jahrling, A.M. Friedlander, et al. - Clinical Recognition and Management of Patients Exposed to Biological Warfare Agents; ''JAMA ''278:399e411 (1997).
955
956
<div id="cite-38"></div>
957
'''[[#citeF-38|[38]]]'''  C. Fureby and F. Grinstein - Monotonically Integrated Large Eddy Simulation of Free Shear Flows; ''AIAA J. ''37, 5, 544-556 (1999).
958
959
<div id="cite-39"></div>
960
'''[[#citeF-39|[39]]]'''  F.F. Grinstein and C. Fureby - Recent Progress on MILES for High-Reynolds-Number Flows; ''J. Fluids Engineering ''124, 848-861 (2002).
961
962
<div id="cite-40"></div>
963
'''[[#citeF-40|[40]]]'''  J.K. Gupta, C-H. Lin and Q. Chen - Flow Dynamics and Characterization of a Cough; ''Indoor Air ''19, 517–525 (2009).
964
965
<div id="cite-41"></div>
966
'''[[#citeF-41|[41]]]'''  J.K. Gupta, C-H. Lin and Q. Chen - Characterizing Exhaled Airflow from Breathing and Talking; ''Indoor Air '' 20, 31-39 (2010).
967
968
<div id="cite-42"></div>
969
'''[42]'''  J.K. Gupta, C-H. Lin and Q. Chen - Inhalation of Expiratory Droplets in Aircraft Cabins; ''Indoor Air ''21, 341-350 (2011). doi:10.1111/j.1600-0668.2011.00709.x
970
971
<div id="cite-43"></div>
972
'''[43]'''  J.K. Gupta, C-H. Lin and Q. Chen - Transport of Expiratory Droplets in an Aircraft Cabin; ''Indoor Air '' 21, 3-11 (2011).
973
974
<div id="cite-44"></div>
975
'''[44]'''  S.K. Halloran, A.S. Wexler and W.D. Ristenpart - A Comprehensive Breath Plume Model for Disease Transmission via Expiratory Aerosols; ''PLoS ONE ''7(5):e37088 (2012). https://doi.org/10.1371/journal.pone.0037088
976
977
<div id="cite-45"></div>
978
'''[[#citeF-45|[45]]]'''  M. Hintermüller, C.N. Rautenberg, M. Mohammadi and M. Kanitsar - Optimal Sensor Placement: A Robust Approach; ''SIAM J. Control Optim. ''55(6), 3609-3639 (2017). https://doi.org/10.1137/16M1088867
979
980
<div id="cite-46"></div>
981
'''[46]'''  J. Hoberock and N. Bell - Thrust: Parallel Template Library, Version 1.3 (2010).
982
983
<div id="cite-47"></div>
984
'''[[#citeF-47|[47]]]'''  S.R. Idelsohn, N. Nigro, A. Larreteguy, J.M. Gimenez and P. Ryshakov - A Pseudo-DNS Method for the Simulation of Incompressible Fluid Flows with Instabilities at Different Scales; '' Int. J. Comp. Particle Mechanics'' (2019). https://doi.org/10.1007/s40571-019-00264-x
985
986
<div id="cite-48"></div>
987
'''[48]'''  M. Ip, J.W. Tang, D.S.C. Hui, A.L.N. Wong, M.T.V. Chan, G.M. Joynt, A.T.P. So, S.D. Hall, P.K.S. Chan and J.J.Y. Sung - Airflow and Droplet Spreading Around Oxygen Masks: A Simulation Model for Infection Control Research; ''AJIC '' 35, 10, 684-689 (2007).
988
989
<div id="cite-49"></div>
990
'''[[#citeF-49|[49]]]'''  A. Jameson, W. Schmidt and E. Turkel - Numerical Solution of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes; ''AIAA''-81-1259 (1981).
991
992
<div id="cite-50"></div>
993
'''[[#citeF-50|[50]]]'''  G.R. Johnson, L. Morawska, Z.D. Ristovski, M. Hargreaves, K. Mengersen, C.Y.H. Chao, M.P. Wan, Y. Li , X. Xie, D. Katoshevski, S. Corbette - Modality of Human Expired Aerosol Size Distributions ''J. of Aerosol Science ''42, 839-851 (2011).
994
995
<div id="cite-51"></div>
996
'''[[#citeF-51|[51]]]'''  G. Kampf, D. Todt, S. Pfaender, E. Steinmann - Persistence of Coronaviruses on Inanimate Surfaces and Their Inactivation With Biocidal Agents; ''J. of Hospital Infection'' 104, 3, 246-251, March 01 (2020). https://doi.org/10.1016/j.jhin.2020.01.022
997
998
<div id="cite-52"></div>
999
'''[52]'''  C.K. Kim, J.G. Moon, J.S. Hwang, M.C. Lai and K.S. Im - Afterburning of TNT Explosive Products in Air With Aluminum Particles; ''AIAA''-2008-1029 (2008).
1000
1001
<div id="cite-53"></div>
1002
'''[[#citeF-53|[53]]]'''  Y.-I. Kim et al. - Infection and Rapid Transmission of SARS-CoV-2 in Ferrets; ''Cell Host and Microbe ''27, 1-6 (2020). https://doi.org/10.1016/j.chom.2020.03.023
1003
1004
<div id="cite-54"></div>
1005
'''[54]'''  Y. Li et al. - Role of Ventilation in Airborne Transmission of Infactious Agents in the Built Environment - A Multidisciplinary Systematic Review; ''Indoor Air ''17, 2-18 (2007).
1006
1007
<div id="cite-55"></div>
1008
'''[[#citeF-55|[55]]]'''  W.G. Lindsley, F.M. Blachere, R.E. Thewlis, A. Vishnu, K.A. Davis, G. Cao, et al. - Measurements of Airborne Influenza Virus in Aerosol Particles from Human Coughs; ''PLoS ONE ''5:e15100 (2010).
1009
1010
<div id="cite-56"></div>
1011
'''[[#citeF-56|[56]]]'''  W.G. Lindsley, T.A. Pearce, J.B. Hudnall, K.A. Davis, S.M. Davis, M.A. Fisher, et al. - Quantity and Size Distribution of Cough-Generated Aerosol Particles Produced by Influenza Patients During and After Illness; ''J. Occup. Environ. Hyg. '' 9, 443-9. (2012).
1012
1013
<div id="cite-57"></div>
1014
'''[[#citeF-57|[57]]]'''  J. Liu, K. Kailasanath, R. Ramamurti, D. Munday, E. Gutmark and R. Löhner - Large-Eddy Simulations of a Supersonic Jet and Its Near-Field Acoustic Properties; ''AIAA J. ''47, 8, 1849-1864 (2009).
1015
1016
<div id="cite-58"></div>
1017
'''[58]'''  R. Löhner, K. Morgan, J. Peraire and M. Vahdati - Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes Equations; ''Int. J. Num. Meth. Fluids ''7, 1093-1109 (1987).
1018
1019
<div id="cite-59"></div>
1020
'''[[#citeF-59|[59]]]'''  R. Löhner and J. Ambrosiano - A Vectorized Particle Tracer for Unstructured Grids; ''J. Comp. Phys. ''91, 1, 22-31 (1990).
1021
1022
<div id="cite-60"></div>
1023
'''[[#citeF-60|[60]]]'''  R. Löhner and R. Ramamurti - A Load Balancing Algorithm for Unstructured Grids; ''Comp. Fluid Dyn. ''5, 39-58 (1995).
1024
1025
<div id="cite-61"></div>
1026
'''[[#citeF-61|[61]]]'''  R. Löhner - Renumbering Strategies for Unstructured-Grid Solvers Operating on Shared-Memory, Cache-Based Parallel Machines; ''Comp. Meth. Appl. Mech. Eng. ''163, 95-109 (1998).
1027
1028
<div id="cite-62"></div>
1029
'''[[#citeF-62|[62]]]'''  R. Löhner, C. Yang and E. Oñate - Viscous Free Surface Hydrodynamics Using Unstructured Grids; ''Proc. 22nd Symp. Naval Hydrodynamics'', Washington, D.C., August (1998).
1030
1031
<div id="cite-63"></div>
1032
'''[[#citeF-63|[63]]]'''  R. Löhner, Chi Yang, J. Cebral, O. Soto, F. Camelli, J.D. Baum, H. Luo, E. Mestreau, D. Sharov, R. Ramamurti, W. Sandberg and Ch. Oh - Advances in FEFLO; ''AIAA''-01-0592 (2001).
1033
1034
<div id="cite-64"></div>
1035
'''[[#citeF-64|[64]]]'''  R. Löhner and M. Galle - Minimization of Indirect Addressing for Edge-Based Field Solvers; ''Comm. Num. Meth. Eng. ''18, 335-343 (2002).
1036
1037
<div id="cite-65"></div>
1038
'''[[#citeF-65|[65]]]'''  R. Löhner - Multistage Explicit Advective Prediction for Projection-Type Incompressible Flow Solvers; ''J. Comp. Phys. ''195, 143-152 (2004).
1039
1040
<div id="cite-66"></div>
1041
'''[[#citeF-66|[66]]]'''  R. Löhner, J.D. Baum and D. Rice - Comparison of Coarse and Fine Mesh 3-D Euler Predictions for Blast Loads on Generic Building Configurations; ''Proc. MABS-18 Conf.'', Bad Reichenhall, Germany, September (2004).
1042
1043
<div id="cite-67"></div>
1044
'''[[#citeF-67|[67]]]'''  R. Löhner and F. Camelli - Optimal Placement of Sensors for Contaminant Detection Based on Detailed 3-D CFD Simulations; ''Engineering Computations ''22, 3, 260-273 (2005).
1045
1046
<div id="cite-68"></div>
1047
'''[[#citeF-68|[68]]]'''  R. Löhner, Chi Yang, J.R. Cebral, F. Camelli, O. Soto and J. Waltz - Improving the Speed and Accuracy of Projection-Type Incompressible Flow Solvers; ''Comp. Meth. Appl. Mech. Eng. ''195, 23-24, 3087-3109 (2006).
1048
1049
<div id="cite-69"></div>
1050
'''[[#citeF-69|[69]]]'''  R. Löhner, Chi Yang and E. Oñate - On the Simulation of Flows with Violent Free Surface Motion; ''Comp. Meth. Appl. Mech. Eng. ''195, 5597-5620 (2006).
1051
1052
<div id="cite-70"></div>
1053
'''[[#citeF-70|[70]]]'''  R. Löhner, Chi Yang and E. Oñate - Simulation of Flows With Violent Free Surface Motion and Moving Objects Using Unstructured Grids; ''Int. J. Num. Meth. Fluids '' 53, 1315-1338 (2007).
1054
1055
<div id="cite-71"></div>
1056
'''[[#citeF-71|[71]]]'''  R. Löhner - ''Applied CFD Techniques, Second Edition''; J. Wiley & Sons (2008).
1057
1058
<div id="cite-72"></div>
1059
'''[[#citeF-72|[72]]]'''  R. Löhner, H. Luo, J.D. Baum and D. Rice - Improvements in Speed for Explicit, Transient Compressible Flow Solvers; ''Int. J. Num. Meth. Fluids '' 56, 12, 2229-2244 (2008).
1060
1061
<div id="cite-73"></div>
1062
'''[[#citeF-73|[73]]]'''  R. Löhner, J.R. Cebral, F.F. Camelli, S. Appanaboyina, J.D. Baum, E.L. Mestreau and O. Soto - Adaptive Embedded and Immersed Unstructured Grid Techniques; ''Comp. Meth. Appl. Mech. Eng. ''197, 2173-2197 (2008).
1063
1064
<div id="cite-74"></div>
1065
'''[[#citeF-74|[74]]]'''  R. Löhner, F. Mut and F.F. Camelli - Timings OF FEFLO on the SGI-ICE Machines; ''AIAA''-11-1064 (2011).
1066
1067
<div id="cite-75"></div>
1068
'''[[#citeF-75|[75]]]'''  R. Löhner and A. Corrigan - Semi-Automatic Porting if a General Fortran CFD Code to GPUs: The Difficult Modules; ''AIAA''-11-3219 (2011).
1069
1070
<div id="cite-76"></div>
1071
'''[[#citeF-76|[76]]]'''  R. Löhner, F. Mut, J.R. Cebral, R. Aubry and G. Houzeaux; Deflated Preconditioned Conjugate Gradient Solvers for the Pressure-Poisson Equation: Extensions and Improvements; ''Int. J. Num. Meth. Eng. ''87, 1-5, 2-14 (2011).
1072
1073
<div id="cite-77"></div>
1074
'''[77]'''  R. Löhner - F2GPU - A General Fortran to GPU Translator; ''Proc. NVIDIA GTC Conf. '', San Jose, CA, May (2012).
1075
1076
<div id="cite-78"></div>
1077
'''[[#citeF-78|[78]]]'''  R. Löhner, F. Camelli, J.D. Baum, F. Togashi and O. Soto - On Mesh-Particle Techniques; ''Comp. Part. Mech. ''1, 199-209 (2014).
1078
1079
<div id="cite-79"></div>
1080
'''[[#citeF-79|[79]]]'''  R. Löhner and F. Camelli - Tightly Coupled Computational Fluid and Crowd Dynamics; pp. 505-509 in ''Proc. Pedestrian and Evacuation Dynamics 2016 (PED&nbsp;2016)'', (W. Song, J. Ma and L. Fu eds.), University of Science and Technology Press, Hefei, China, Oct 17-21 (2016).
1081
1082
<div id="cite-80"></div>
1083
'''[[#citeF-80|[80]]]'''  R.G. Loudon and R.M. Roberts - Droplet Expulsion from the Respiratory Tract; ''Am. Rev. Respir. Dis. '' 95, 3, 435–442 (1967).
1084
1085
<div id="cite-81"></div>
1086
'''[[#citeF-81|[81]]]'''  H. Luo, J.D. Baum and R. Löhner - Edge-Based Finite Element Scheme for the Euler Equations; ''AIAA J. ''32, 6, 1183-1190 (1994).
1087
1088
<div id="cite-82"></div>
1089
'''[[#citeF-82|[82]]]'''  H. Luo, J.D. Baum, R. Löhner and J. Cabello - Implicit Finite Element Schemes and Boundary Conditions for Compressible Flows on Unstructured Grids; ''AIAA''-94-0816 (1994).
1090
1091
<div id="cite-83"></div>
1092
'''[[#citeF-83|[83]]]'''  H. Luo, J.D. Baum and R. Löhner - An Accurate, Fast, Matrix-Free Implicit Method for Computing Unsteady Flows on Unstructured Grids; ''AIAA''-99-0937 (1999).
1093
1094
<div id="cite-84"></div>
1095
'''[[#citeF-84|[84]]]'''  H. Luo, D. Sharov, J.D. Baum and R. Löhner - A Class of Matrix-free Implicit Methods for Compressible Flows on Unstructured Grids; ''First International Conference on Computational Fluid Dynamics'', Kyoto, Japan, July 10-14 (2000).
1096
1097
<div id="cite-85"></div>
1098
'''[[#citeF-85|[85]]]'''  H. Luo, J.D. Baum and R. Löhner - A Fast, Matrix-Free Implicit Method for Computing Low Mach Number Flows on Unstructured Grids; ''Int. J.  CFD ''14, 133-157 (2001).
1099
1100
<div id="cite-86"></div>
1101
'''[86]'''  D. Merrill and A. Grimshaw - Revisiting Sorting for GPGPU Stream Architectures; ''UVA CS Rep. CS2010-03'', Charlottesville, VA (2010).
1102
1103
<div id="cite-87"></div>
1104
'''[[#citeF-87|[87]]]'''  D.K. Milton, M.P. Fabian, B.J. Cowling, M.L. Grantham, J.J. McDevitt - Influenza Virus Aerosols in Human Exhaled Breath: Particle Size, Culturability, and Effect of Surgical Masks; ''PLoS Pathog. '' 9:e1003205 (2013).
1105
1106
<div id="cite-88"></div>
1107
'''[88]'''  NVIDIA Corporation. NVIDIA CUDA 3.2 Programming Guide (2010).
1108
1109
<div id="cite-89"></div>
1110
'''[89]'''  J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz - Adaptive Remeshing for Compressible Flow Computations; ''J. Comp. Phys. ''72, 449-466 (1987).
1111
1112
<div id="cite-90"></div>
1113
'''[90]'''  P. Peterson - F2PY: Tool for Connecting Fortran and Python Programs; ''Int. J. Computational Science and Engineering ''4, 296-305 (2009).
1114
1115
<div id="cite-91"></div>
1116
'''[[#citeF-91|[91]]]'''  R. Ramamurti and R. Löhner - Simulation of Flow Past Complex Geometries Using a Parallel Implicit Incompressible Flow Solver; pp. 1049,1050 in ''Proc. 11th AIAA CFD Conf. '', Orlando, FL, July (1993).
1117
1118
<div id="cite-92"></div>
1119
'''[[#citeF-92|[92]]]'''  R. Ramamurti and R. Löhner - A Parallel Implicit Incompressible Flow Solver Using Unstructured Meshes; ''Computers and Fluids '' 5, 119-132 (1996).
1120
1121
<div id="cite-93"></div>
1122
'''[[#citeF-93|[93]]]'''  R. Ramamurti, W.C. Sandberg and R. Löhner - Computation of Unsteady Flow Past Deforming Geometries; ''Int. J. Comp. Fluid Dyn. '', 83-99 (1999).
1123
1124
<div id="cite-94"></div>
1125
'''[[#citeF-94|[94]]]'''  D.L. Rice, J.D. Baum, F. Togashi, R. Löhner and A. Amini - First-Principles Blast Diffraction Simulations on a Notebook: Accuracy, Resolution and Turn-Around Issues; ''Proc. MABS-20 Conf.'', Oslo, Norway, September (2008).
1126
1127
<div id="cite-95"></div>
1128
'''[[#citeF-95|[95]]]'''  H. Schlichting - ''Boundary Layer Theory''; McGraw-Hill (1979).
1129
1130
<div id="cite-96"></div>
1131
'''[[#citeF-96|[96]]]'''  D. Sharov, H. Luo, J.D. Baum and R. Löhner - Implementation of Untructured Grid GMRES+LU-SGS Method on Shared-Memory, Cache-Based Parallel Computers; ''AIAA''-00-0927 (2000).
1132
1133
<div id="cite-97"></div>
1134
'''[[#citeF-97|[97]]]'''  A. Stück, F. Camelli and R. Löhner - Adjoint-Based Design of Shock Mitigation Devices; ''Int. J. Num. Meth. Fluids '' 64, 443-472 (2010).
1135
1136
<div id="cite-98"></div>
1137
'''[[#citeF-98|[98]]]'''  J.W. Tang, Y. Li, I. Eames, P.K.S. Chan and G.L. Ridgway Factors Involved in the Aerosol Transmission of Infection and Control of Ventilation in Healthcare Premises; ''J. of Hospital Infection ''64, 100-114 (2006).
1138
1139
<div id="cite-99"></div>
1140
'''[99]'''  J.W. Tang, C.J. Noakes, P.V. Nielsen, I. Eames, A. Nicolle, Y. Li and G.S. Settles - Observing and Quantifying Airflows in the Infection Control of Aerosol- and Airborne-Transmitted Diseases: An Overview of Approaches; ''J. of Hospital Infection ''77 213-222 (2011).
1141
1142
<div id="cite-100"></div>
1143
'''[[#citeF-100|[100]]]'''  J.W. Tang, A.D. Nicolle, J. Pantelic, G.C. Koh, L. Wang, M. Amin, C.A. Klettner, D.K.W. Cheong, C. Sekhar and K.W. Tham - Airflow Dynamics of Coughing in Healthy Human Volunteers by Shadowgraph Imaging: An Aid to Aerosol Infection Control; ''PLoS ONE ''7, 4: e34818 (2012). doi:10.1371/journal.pone.0034818
1144
1145
<div id="cite-101"></div>
1146
'''[[#citeF-101|[101]]]'''  J.W. Tang, A.D. Nicolle, C.A. Klettner, J. Pantelic, L. Wang, A. Bin Suhaimi, A.Y.L. Tan, G.W.X. Ong, R. Su, C. Sekhar, D.K.W. Cheong and K.W. Tham - Airflow Dynamics of Human Jets: Sneezing and Breathing - Potential Sources of Infectious Aerosols; ''PLoS ONE ''8, 4: e59970 (2013). doi:10.1371/journal.pone.0059970
1147
1148
<div id="cite-102"></div>
1149
'''[[#citeF-102|[102]]]'''  P.F.M. Teunis, N. Brienen, M.E.E. Kretzschmar - High Infectivity and Pathogenicity of Influenza A Virus Via Aerosol and Droplet Transmission; ''Epidemics ''2, 215–222 (2010).
1150
1151
<div id="cite-103"></div>
1152
'''[103]'''  R. Tilch, A. Tabbal, M. Zhu, F. Decker and R. Löhner - Combination of Body-Fitted and Embedded Grids for External Vehicle Aerodynamics; ''Engineering Computations ''25, 1, 28-41 (2008).
1153
1154
<div id="cite-104"></div>
1155
'''[[#citeF-104|[104]]]'''  K. K.-W. To et al. - Temporal Profiles of Viral Load in Posterior Oropharyngeal Saliva Samples and Serum Antibody Responses During Infection by SARS-CoV-2: An Observational Cohort Study; ''Lancet Infect. Dis. '' (online) (2020). https://doi.org/10.1016/S1473-3099(20)30196-1
1156
1157
<div id="cite-105"></div>
1158
'''[[#citeF-105|[105]]]'''  F. Togashi, J.D. Baum, E. Mestreau, R. Löhner, and D. Sunshine; Numerical Modeling of Long-Duration Blast Wave Evolution in Confined Facilities; ''AIAA''-09-1531 (2009).
1159
1160
<div id="cite-106"></div>
1161
'''[[#citeF-106|[106]]]'''  N. van Doremalen, T. Bushmaker, D.H. Morris, M.G. Holbrook, A. Gamble, B.N. Williamson, A. Tamin, J.L. Harcourt, N.J. Thornburg, S.I. Gerber, J.O. Lloyd-Smith, E. de Wit, V.J. Munster - Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1; ''The New England Journal of Medicine ''382, 16, April 16 (2020). DOI: 10.1056/NEJMc2004973
1162
1163
<div id="cite-107"></div>
1164
'''[107]'''  A.W. Vreman, B.J. Geurts, N.G. Deen and J.A.M. Kuipers - Large-Eddy Simulation of a Particle Laden Turbulent Channel Flow; ''Proc. Direct and Large-Eddy Simulation V'', ERCOFTAC Series Volume 9, pp 271-278  (2004).
1165
1166
<div id="cite-108"></div>
1167
'''[[#citeF-108|[108]]]'''  J. Wei, Y. Li - Airborne Spread of Infectious Agents in the Indoor Environment; ''American J. of Infection Control ''44, S102-S108 (2016). http://dx.doi.org/10.1016/j.ajic.2016.06.003
1168
1169
<div id="cite-109"></div>
1170
'''[[#citeF-109|[109]]]'''  X. Xie, Y. Li, A.T.Y. Chwang, P.L. Ho, W.H. Seto - How Far Droplets Can Move in Indoor Environments - Revisiting the wells Evaporation-Falling Curve; ''Indoor Air ''17, 211-225 (2007). doi:10.1111/j.1600-0668.2006.00469.x
1171
1172
<div id="cite-110"></div>
1173
'''[[#citeF-110|[110]]]'''  T. Zhang, Q. Chen and C.-H. Lin - Optimal Sensor Placement for Airborne Contaminant Detection in an Aircraft Cabin; ''HVAC&R Research ''13, 5, 683-696 (2007).
1174
1175
<div id="cite-111"></div>
1176
'''[111]'''  Y. Zhang, G. Feng, Z. Kang, Y. Bi and Y. Cai - Numerical Simulation of Coughed Droplets in Conference Room; ''10th International Symposium on Heating, Ventilation and Air Conditioning, ISHVAC2017'', October, 19-22 Jinan, China (2017), ''Procedia Engineering ''205, 302–308 (2017).
1177

Return to Lohner et al 2020b.

Back to Top