You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==Abstract==
2
3
By the integral finite element analysis of elasto-plastic constitutive relationship, the process of crack formation and development of the T-shaped frame joint in reinforced concrete and its stress distribution under monotonic and low-cycle repeated loading were studied . The nonlinear constitutive relation of concrete and the failure mechanism of T-shaped column joint were further discussed. The work of this paper provides a reference to the design and construction of T-shaped column joints.
4
5
'''Keywords:''' Reinforced concrete, T-shaped column frame joint, integral finite element analysis, nonlinear constitutive relationship
6
7
==1. Foreword==
8
9
Special-shaped column refers to the column whose cross-sectional geometry is “+”, T or L-shaped, and the ratio of its limb length and limb thickness is not more than 4. Special-shaped column's limbs have the same thickness as the infill walls, so that there are no edges and corners in the room to facilitate the furniture layout and increase the indoor use area. Special-shaped column structures are more and more widely used due to their superiority in the residential system [1,2].
10
11
<span id='translation_sen_id-2'></span><span id='translation_sen_id-1'></span><span id='translation_sen_id-3'></span><span id='121423-0-13'></span><span id='121423-0-14'></span>As the force transfer hub in the framework of the structure, joints play an important role in ensuring structural integrity. The force they take is very complex [4,5,6]. Due to the weaker limbs of special-shaped column than that of rectangular column and more intensive steel distribution, the shear resistance of the special-shaped column is worse. Therefore, the special-shaped column frame joint is more prone to damage under the complex earthquake. In the past twenty years, many experts from around the world have carried out a large number of experiments and theoretical studies on special-shaped columns, and have made a series of research results [7-13], but no comparative mature theoretical models have been proposed yet. Thus it is still very important to study the seismic behavior of the special-shaped column joints.
12
13
In this paper, the finite element software ANSYS was used to study the mechanical behavior of T-shaped frame joints under cyclic loading and monotonic loading [14]. The results of the example analysis show that the finite element calculation model established in this paper can be used to analyze the mechanical behavior of the joint area and provide some references for the design of the reinforced concrete beam-column joint.
14
15
==2. Integral finite element model==
16
17
In a integral finite element model, the reinforcement is distributed throughout the element. And the element is considered as a continuous homogeneous material, which allows the element stiffness matrix to be obtained using equation (1) . The specific expression [15] is:
18
19
{| class="formulaSCP" style="width: 100%; text-align: center;" 
20
|-
21
| 
22
{| style="text-align: center; margin:auto;" 
23
|-
24
| style="text-align: center;" | <math>{\bf K}=\int {\bf B}^{T} {\bf DB}dv</math>
25
|}
26
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
27
|}
28
29
30
Where, <math>\textbf{K}</math> is the stiffness matrix, <math>\textbf{B}</math> is the geometric matrix of the element, and <math>\textbf{D}</math> is the constitutive matrix of the material, <math>v</math> represents the volume.
31
32
The constitutive matrix is composed of two parts:
33
34
{| class="formulaSCP" style="width: 100%; text-align: center;" 
35
|-
36
| 
37
{| style="text-align: center; margin:auto;" 
38
|-
39
|style="text-align: center;" | <math>\textbf{D}=\textbf{D}_c+\textbf{D}_s</math>
40
|}
41
| style="width: 5px;text-align: right;white-space: nowrap;" | (2) 
42
|}
43
44
<math>\textbf{D}_c</math> is the stress-strain matrix of concrete. Before cracking of the concrete, it can be calculated as the general homogeneous body, the specific expression is
45
46
{| class="formulaSCP" style="width: 100%; text-align: center;" 
47
|-
48
| 
49
{| style="text-align: center; margin:auto;" 
50
|-
51
| style="text-align: center;" | <math>\textbf{D}_c=\left[\begin{array}{cccccc} {d_{11}} & {d_{12}} & {d_{13}} & {0} & {0} & {0} \\ {0} & {d_{22}} & {d_{23}} & {0} & {0} & {0} \\ {0} & {0} & {d_{33}} & {0} & {0} & {0} \\ {0} & {0} & {0} & {d_{44}} & {0} & {0} \\ {\begin{array}{l} {0} \\ {0} \end{array}} & {\begin{array}{l} {0} \\ {0} \end{array}} & {\begin{array}{l} {0} \\ {0} \end{array}} & {\begin{array}{l} {0} \\ {0} \end{array}} & {\begin{array}{l} {d_{55}} \\ {0} \end{array}} & {\begin{array}{l} {0} \\ {d_{66}} \end{array}} \end{array}\right]</math>
52
|}
53
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
54
|}
55
56
In the equation(3),
57
58
{| class="formulaSCP" style="width: 100%; text-align: center;" 
59
|-
60
| 
61
{| style="text-align: center; margin:auto;" 
62
|-
63
| style="text-align: center;" | <math>d_{11}=d_{22}=d_{33}=\frac{E_c(1-\nu )}{(1+\nu )(1-2\nu )}</math>
64
|}
65
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
66
|}
67
68
{| class="formulaSCP" style="width: 100%; text-align: center;" 
69
|-
70
| 
71
{| style="text-align: center; margin:auto;" 
72
|-
73
| style="text-align: center;" | <math>d_{12}=d_{13}=d_{23}=\frac{\nu E_c}{(1+\nu )(1-2\nu )}</math>
74
|}
75
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
76
|}
77
78
{| class="formulaSCP" style="width: 100%; text-align: center;" 
79
|-
80
| 
81
{| style="text-align: center; margin:auto;" 
82
|-
83
| style="text-align: center;" | <math> d_{44}=d_{55}=d_{66}=\frac{E_c}{2(1+\nu )} </math>
84
|}
85
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
86
|}
87
88
89
Among them, <math>E_c</math> is the elastic modulus of concrete, <math>\nu</math> is Poisson's ratio. Since the relationship of stress and strain are non-linear, <math>E_c</math> varies with the state of stress.
90
91
Stress-strain relationship of equivalent distribution steel, can be obtained by the following formula:
92
93
{| class="formulaSCP" style="width: 100%; text-align: center;" 
94
|-
95
| 
96
{| style="text-align: center; margin:auto;" 
97
|-
98
| style="text-align: center;" | <math>\textbf{D}_s=E_s\left[\begin{array}{cccccc} {\rho_x} & {0} & {0} & {0} & {0} & {0} \\ {0} & {\rho_y} & {0} & {0} & {0} & {0} \\ {0} & {0} & {\rho_z} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} & {0} & {0} \\ {\begin{array}{l} {0} \\ {0} \end{array}} & {\begin{array}{l} {0} \\ {0} \end{array}} & {\begin{array}{l} {0} \\ {0} \end{array}} & {\begin{array}{l} {0} \\ {0} \end{array}} & {\begin{array}{l} {0} \\ {0} \end{array}} & {\begin{array}{l} {0} \\ {0} \end{array}} \end{array}\right] </math>
99
|}
100
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
101
|}
102
103
where <math>E_s</math> is the elasticity modulus of the steel; <math>\rho_x</math>, <math>\rho_y</math>, <math>\rho_z</math> stand for the reinforcement ratios along the ''x'', ''y'', ''z'' axis direction respectively.
104
105
==3. Finite element calculation model==
106
107
===3.1 Joint model===
108
109
The calculation model in this paper is the frame joint of T-shaped column which is the side column of special-shaped column frame structure [2], as follows.
110
111
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
112
|-
113
|style="padding:10px;"|  [[Image:review_Liu_2017c-image8.png|276px]]
114
|- style="text-align: center; font-size: 75%;"
115
| colspan="1" style="padding-bottom:10px;"| '''Figure 1'''. Cross-section of T-shaped column
116
|}
117
118
119
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
120
|-
121
|style="padding:10px;"|  [[Image:review_Liu_2017c-image9.png|241x241px]] 
122
|- style="text-align: center; font-size: 75%;"
123
| colspan="1" style="padding-bottom:10px;"| '''Figure 2'''. Cross-section of rectangular beam
124
|}
125
126
127
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
128
|-
129
|style="padding:10px;"|  [[Image:review_Liu_2017c-image10.jpeg|308x308px]] 
130
|- style="text-align: center; font-size: 75%;"
131
| colspan="1" style="padding-bottom:10px;"| '''Figure 3'''. 3D view of the joint
132
|}
133
134
135
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
136
|-
137
|style="padding:10px;"|  [[Image:review_Liu_2017c-image11.jpeg|283x283px]] 
138
|- style="text-align: center; font-size: 75%;"
139
| colspan="1" style="padding-bottom:10px;"| '''Figure 4'''. Side view of the joint
140
|}
141
142
143
The height of the T-shaped column is 2.4m and the beam extends from the middle of the column for 1.5m. The limb length of T-shaped column is 600mm, and limb thickness is 200mm. The beam cross-section is of 400mm×200mm. The steel grade of longitudinal bars in both column and beam is HRB335 and that of stirrups is HPB300.The longitudinal bar diameter of column and beam is both 16mm . The stirrup diameter of column is 10mm, but that of the beam is 6mm. And the spacing of stirrups is all 150mm. Reinforcement placement can be seen above. The concrete strength level used for beam and column is both C30.
144
145
===3.2 Mechanical properties of materials===
146
147
Mechanical properties of C30 concrete are shown in Table 1 [16].
148
149
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;font-size:75%;">
150
'''Table 1.''' Concrete mechanical properties</div>
151
152
{| style="width: 70%;margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;" 
153
|-
154
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Strength grade
155
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Elastic Modulus (MPa)
156
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Poisson's ratio
157
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Standard value of axial compressive strength (MPa)
158
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Standard value of axial tensile strength (MPa)
159
|-
160
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|C30
161
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|30000
162
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|0.2
163
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|20.1
164
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|2.01
165
|}
166
167
168
The mechanical properties of HRB335 and HPB300 bars are as follows (Table 2).
169
170
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;font-size:75%;">
171
'''Table 2. '''Steel mechanical properties</div>
172
173
{| style="width: 70%;margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;" 
174
|-
175
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Steel grades
176
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Elastic Modulus (MPa)
177
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Poisson's ratio
178
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Standard value of yield strength (MPa)
179
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Tangential modulus after yielding (MPa)
180
|-
181
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|HRB335
182
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|200000
183
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|0.27
184
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|335
185
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|2000
186
|-
187
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|HPB300
188
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|210000
189
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|0.27
190
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|300
191
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|2000
192
|}
193
194
===3.3 The constitutive relationship of concrete===
195
196
In order to determine the concrete uniaxial compression stress-strain relationship, the equations are selected as follows [16]:
197
198
{| class="formulaSCP" style="width: 100%; text-align: center;" 
199
|-
200
| 
201
{| style="text-align: center; margin:auto;" 
202
|- 
203
| style="text-align: center;" | <math> \sigma =(1-d_{c} )E_c\varepsilon </math>
204
|}
205
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
206
|}
207
208
{| class="formulaSCP" style="width: 100%; text-align: center;" 
209
|-
210
| 
211
{| style="text-align: center; margin:auto;" 
212
|-
213
| style="text-align: center;" | <math> d_{c} =\left\{\begin{array}{ll} 1-\displaystyle\frac{\rho _{c} n}{n-1+x^{n} } \; \; \;  &  x\le 1 \\ 
214
1-\displaystyle\frac{\rho _{c} }{\alpha _{c} (x-1)^{2} +x} \; \; \; & x>1 \end{array}\right. </math>
215
|}
216
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
217
|}
218
219
among the equation (9),
220
221
{| class="formulaSCP" style="width: 100%; text-align: center;" 
222
|-
223
| 
224
{| style="text-align: center; margin:auto;" 
225
|-
226
| style="text-align: center;" | <math> \rho _{c} =\displaystyle\frac{f_{c,r} }{E_{c} \varepsilon _{c,r} } </math>
227
|}
228
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
229
|}
230
231
{| class="formulaSCP" style="width: 100%; text-align: center;" 
232
|-
233
| 
234
{| style="text-align: center; margin:auto;" 
235
|-
236
| style="text-align: center;" | <math>n=\displaystyle\frac{E_c\varepsilon _{c,r} }{E_c\varepsilon _{c,r} -f_{c,r} }</math>
237
|}
238
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
239
|}
240
241
{| class="formulaSCP" style="width: 100%; text-align: center;" 
242
|-
243
| 
244
{| style="text-align: center; margin:auto;" 
245
|-
246
| style="text-align: center;" | <math> x=\frac{\varepsilon }{\varepsilon _{c,r} }</math>
247
|}
248
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
249
|}
250
251
In the formulas above, <math>{d_c} </math> is the uniaxial compressive damage evolution parameter of concrete; <math>\alpha _{c}</math> is the descending section reference value of uniaxial compressive stress-strain curve of concrete, taking 0.74 for C30 concrete in this paper; <math>f_{c,r}</math> is the representative value of uniaxial compressive strength of concrete, taking 20.1N / mm<sup>2</sup>; <math>\varepsilon _{c,r}</math> is peak compressive strain of concrete corresponding to <math>f_{c,r}</math>, taking <math>1.47\times 10^3</math>. When the above values are put into the formula operation, the stress corresponding to a certain strain can be obtained, as shown in the following table:
252
253
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;font-size:75%;">
254
'''Table 3. '''Stress-strain relationship of C30 concrete </div>
255
256
{| style="width: 36%;margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;" 
257
|-style="text-align:center;"
258
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|Strain ε
259
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|0.0005
260
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|0.001
261
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|0.0015
262
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|0.002
263
|-style="text-align:center;"
264
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|Stress σ(MPa)
265
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|15
266
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|19
267
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|20
268
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;vertical-align: top;"|19
269
|}
270
271
272
Drawing concrete four-fold line stress-strain relationship, as follows:
273
274
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
275
|-
276
|style="padding:10px;"| [[Image:review_Liu_2017c-image17.png|391x391px]]
277
|- style="text-align: center; font-size: 75%;"
278
| colspan="1" style="padding-bottom:10px;"| '''Figure 5.''' Line chart of concrete stress-strain relationship 
279
|}
280
281
282
It can be seen that the elastic modulus of the concrete is 30000 MPa at the beginning. When the strain reaches <math>0.5\times 10^{-3}</math>, the elastic modulus reduces to 8000 MPa. And with the strain reaching <math>1.0\times 10^{-3}</math>, the elastic modulus decreases to 2000 MPa. Once the strain reaches <math>1.5\times 10^{3}</math>, the stress begins to drop. The constitutive relationship of the concrete has a "softening" decline.
283
284
===3.4 The establishment of the joint model===
285
286
In this paper, the three-dimensional solid element SOLID65 , which is specially used to simulate the concrete and rock materials, is selected to establish the integral model of the joint. The Willam-Warnke five-parameter failure criterion and the distribution crack model are adopted in the element. When the stress combination reaches the failure surface, the element enters the crushing or cracking state [17.18].
287
288
The non-linear simulation in this paper obeys the von Mises yield criterion and multilinear isotropic hardening model [14,15].
289
290
Model the joint and mesh it with tetrahedrons as below:
291
292
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
293
|-
294
|style="padding:10px;"| [[Image:review_Liu_2017c-image18.png|294px]]
295
|- style="text-align: center; font-size: 75%;"
296
| colspan="1" style="padding-bottom:10px;"| '''Figure 6. '''Finite element model of the joint
297
|}
298
299
300
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
301
|-
302
|style="padding:10px;"| [[Image:review_Liu_2017c-image19.png|306px]]
303
|- style="text-align: center; font-size: 75%;"
304
| colspan="1" style="padding-bottom:10px;"| '''Figure 7.''' Joint model after meshing
305
|}
306
307
308
The reinforcement ratios of each part of the joint are as follows (Table 4). 
309
310
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;font-size:75%;">
311
'''Table 4. '''Joint reinforcement ratios</div>
312
313
{| style="width: 51%;margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;" 
314
|-
315
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|
316
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|Part ①
317
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|Part ②
318
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|Part ③
319
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|Part ④
320
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|Part ⑤
321
|-
322
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|Direction X
323
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|0.26
324
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|0.523
325
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|0.26
326
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|0.523
327
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|1.0048
328
|-
329
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|Direction Y
330
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|0.523
331
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|0.523
332
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|0.523
333
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|0.13
334
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|0.0942
335
|-
336
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|Direction Z
337
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|1.0048
338
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|2.0096
339
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|1.0048
340
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|1.0048
341
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;vertical-align: top;"|0.1884
342
|}
343
344
==4. Calculation results==
345
346
===4.1 Low-cycle repeated loading===
347
348
Constrain the finite element nodes at the top and bottom of the column, and apply a uniform downward load of 858 KN on the top of the column. Apply a concentrated load in the vertical direction to the overhanging beam end, sequentially changing the direction of the load (up or down) in each load step, and gradually increase the concentrated load in the steps [19,20].
349
350
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;font-size:75%;">
351
'''Table 5. '''Loading situation</div>
352
353
{| style="width: 55%;margin: 1em auto 0.1em auto;border-collapse: collapse;font-size:85%;" 
354
|-
355
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: left;"|Load step
356
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Step 1
357
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Step 2
358
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Step 3
359
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Step 4
360
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"| Step 5
361
|-
362
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: left;"|Magnitude(KN)
363
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|10
364
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|10
365
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|20
366
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|20
367
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|30
368
|-
369
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: left;"|Direction 
370
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Vertical down
371
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Vertical up
372
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Vertical down
373
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Vertical up
374
|  style="border-top: 1pt solid black;border-bottom: 1pt solid black;text-align: center;"|Vertical down
375
|}
376
377
378
After the five load steps, the formation and development of cracks in the joint model can be got (Figure 8).
379
380
381
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
382
|-
383
|  style="text-align: center;padding:10px;"| [[Image:review_Liu_2017c-image20.png|270px]] 
384
|  style="text-align: center;padding:10px;"| [[Image:review_Liu_2017c-image21.png|center|270x270px]]
385
|-
386
|  style="text-align: center;font-size: 75%;"|(a) Load step 1 
387
|  style="text-align: center;font-size: 75%;"|(b) Load step 2
388
|-
389
| style="text-align: center;padding:10px;"|[[Image:review_Liu_2017c-image22.png|270px]]
390
| style="text-align: center;padding:10px;""|[[Image:review_Liu_2017c-image23.png|center|270x270px]]
391
|-
392
| style="text-align: center;font-size:75%;"|(c)Load step 3
393
| style="text-align: center;font-size:75%;"|(d)Load step 4
394
|-
395
|colspan="2" style="text-align: center;padding:10px;"|[[Image:review_Liu_2017c-image24.png|270px]] 
396
|-
397
|colspan="2" style="text-align: center;font-size:75%;"|(e) Load step 5
398
|- style="text-align: center; font-size: 75%;"
399
| colspan="2" style="padding:10px;"| '''Figure 8.''' Crack growth pattern under repeated loading
400
|}
401
402
403
It can be seen from the figure that after the first load step has been loaded, the cracks at the upper part of the beam head first appear due to the tensile stress. After the second load step is applied, there are cracks in the lower part of the beam head. In the third downward concentrated load step, the cracks develop to the column limb, the column part above the beam begins to crack because of the pulling force. The fourth load step is upward, the damage of the beam is aggravated, and the lower part of the column limb emerges the cracking phenomenon. With the fifth load step, fractures occur in the middle of the beam, the junction of beam and column limb is the most devastated, and the top of the column also fractures due to the uniform force.
404
405
After the five load steps were loaded, the nephogram of major principal stress which is along the x-axis direction can be obtained (Figure 9).
406
407
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: auto;max-width: auto;"
408
|-
409
|  style="text-align: center;padding:10px;"|[[Image:review_Liu_2017c-image25.jpeg|288px]]
410
| style="text-align: center;padding:10px;"|[[Image:review_Liu_2017c-image26.jpeg|center|288px]]
411
|-
412
|style="text-align: center;font-size:75%;"|(a) Isometric view
413
|style="text-align: center;font-size:75%;"|(b) Side view
414
|- style="text-align: center; font-size: 75%;"
415
| colspan="2" style="padding:10px;"| '''Figure 9.''' Major principal stress nephogram under the repeated loading
416
|}
417
418
419
As shown in the figure, the stress on the pressure side of the beam is larger, and the stress on the beam head is the maximum. The stress at the column limb increases due to the extrusion effect, and the contour of stress develops obliquely. Different from the stress distribution, cracks appear on the tensile side of the beam and column limb, this is because the concrete tensile strength is much lower than its compressive strength.
420
421
===4.2 Monotonic loading===
422
423
As the repeated loading situation above, the top and bottom element nodes of column model are constrained and a uniform downward load of 858 KN is applied to the top of the column.
424
425
In monotonic loading situation''', '''a vertically downward concentrated load is applied at the beam end and gradually increases until some elements of the model are destroyed [19,21].
426
427
Figure 10 shows the development of joint cracks with increasing load:
428
429
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
430
431
{|
432
|-
433
| style="text-align: center;"|[[Image:review_Liu_2017c-image27.png|center|270px]]
434
| style="text-align: center;"|[[Image:review_Liu_2017c-image28.png|center|270px]]
435
|-
436
| style="text-align: center;font-size:75%;"|(a) 10KN   
437
| style="text-align: center;font-size:75%;"|(b) 20KN
438
|-
439
| style="text-align: center;"|[[Image:review_Liu_2017c-image29.png|center|270px]]
440
| style="text-align: center;"|[[Image:review_Liu_2017c-image30.png|center|270px]]
441
|-
442
| style="text-align: center;font-size:75%;"|(c) 30KN       
443
| style="text-align: center;font-size:75%;"|(d) 40KN
444
|-
445
|colspan="2" style="text-align: center;"|[[Image:review_Liu_2017c-image31.png|center|270px]]
446
|-
447
|colspan="2" style="text-align: center;font-size:75%;"|(e) 50KN
448
|}</div>
449
450
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;font-size:75%;">
451
'''Figure 10.''' Crack growth pattern under monotonic loading.</div>
452
453
454
As in the figure, the cracks earliest appear at the beam head and then develop to the middle part of the beam and the column limb. With the increase of load, the junction of two column limbs is also cracked. The development of cracks in the column limb is approximately oval shape. Finally, the completely damaged element first appears at the beam head, and its failure mode is crushed. Due to the uniform load applied to the top of the column, a small amount of cracks appear in the column top.
455
456
When the load is added to 50KN, a element at beam head is completely damaged.
457
458
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
459
460
{|
461
|-
462
| style="text-align: center;"|[[Image:review_Liu_2017c-image32.png|300px]]
463
|style="text-align: center;"| [[Image:review_Liu_2017c-image33.jpeg|center|300px]]
464
|-
465
|style="text-align: center;font-size:75%;"|(a) Destroyed part 
466
| style="text-align: center;font-size:75%;"|(b) Partial enlargement of the destroyed part
467
|}</div>
468
469
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;font-size:75%;>
470
'''Figure 11.''' Completely destroyed part in the joint.</div>
471
472
473
Figure 11 is enlarged views of the joint when the load force is 50KN, the rhombus appearing in a element means the element is completely destroyed. The rhombus is marked out by a red circle.
474
475
The relationship between the displacement of the beam end and the force under monotonic loading can be got as follows:
476
477
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
478
[[Image:review_Liu_2017c-image34.jpeg|600px]] </div>
479
480
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;font-size:75%;>
481
'''Figure 12.''' Curve of beam end displacement and load force under monotonic loading.</div>
482
483
484
When the beam end is loaded to 50KN, the joint nephogram of major principal stress which is also along the x-axis direction can be acquired as follows:
485
486
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">
487
488
{|
489
|-
490
| style="text-align: center;"|[[Image:review_Liu_2017c-image35.jpeg|288px]]
491
|style="text-align: center;"| [[Image:review_Liu_2017c-image36.jpeg|center|288px]]
492
|-
493
|style="text-align: center;font-size:75%;"|(a) Isometric view  
494
| style="text-align: center;font-size:75%;"|(b) Side view
495
|}</div>
496
497
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;font-size:75%;>
498
'''Figure 13. '''Major principal stress nephogram under the monotonic loading</div>
499
500
501
As shown, due to the stress concentration effect, the stress in the junction of beam and column limb is greater. And the stress in the compression side of beam head is the largest, which exceeds the compressive strength standard value of the concrete.
502
503
==5 Conclusions==
504
505
In this paper, by the elasto-plastic finite element analysis of a T-shaped column joint model, the crack development and the stress distribution of the joint under repeated and monotonic loading were observed, its failure mode was studied. The following conclusions can be drawn:
506
507
1. The use of integral finite element model, can make the analysis and calculation of model concise and efficient, easy to converge.
508
509
2. The four-fold line constitutive model of concrete adopted in this paper is suitable for the nonlinear simulation.
510
511
3. The failure mode of T-shaped column frame under repeated and monotonic loading is beam failure. The plastic hinge first appears at the beam head of the frame joint, and the two column limb intersection which is the core area of column is not damaged at all. The T-shaped column frame meets the "strong column weak beam"design principle.
512
513
==References ==
514
<div class="auto" style="width: auto; margin-left: auto; margin-right: auto;font-size: 85%;">
515
516
[1] JGJ 149-2006. Technical specification for concrete structures with specially shaped columns[S]. Beijing: China Architecture & Building Press, 2006.
517
518
[2] S.C. YAN, et al. Comprehension and application of technical specification of concrete special-shaped column [M]. Beijing: China Architecture & Building Press, 2007.
519
520
[3] L.N. Lowes, N. Mitra. A beam-column joint model for simulating the earthquake response of reinforced concrete frames[R]. Pacific Earthquake Engineering Research Center, University of California at Berkeley, 2004.
521
522
[4]L. Li, J.B. Mander, R.P. Dhakal. Bidirectional cyclic loading experiment on a 3D beam-column joint designed for damage avoidance[J]. Journal of Structural Engineering, 134(11):1733-1742, 2008.
523
524
[5] N. Hooda, J. Narwal, et al. An experimental investigation on structural behaviour of beam column joint[J]. International Journal of Innovative Technology & Exploring Engineering,  3(3):84-88, 2013.
525
526
[6] G. Somma, A. Pieretto, T. Rossetto, D.N. Grant. R.C. Beam to column connection failure assessment and limit state design[J]. Materials & Structures, 48(4):1-17, 2015.
527
528
[7] J. Marim.Design aids for L-shaped reinforced concrete Columns[J]. Journal of the American Concrete Institute, 76(11):1197-1216, 1979.
529
530
[8] L.N. Ramamurthy, T.A.H. Khan. L-shaped column design for biaxial eccentric[J]. Journal of Structural Engineering, 109(8):1903-1917, 1983.
531
532
[9] C.T.T. Hsu. T-shaped reinforced concrete members under biaxial bending and axial compression [J]. ACI Structural Journal,86(4):460-468, 1989.
533
534
[10] Mallikarjuna, P. Mahadevappa. Computer-aided analysis of reinforced concrete columns subjected to axial compression and bending. Part II: T-shaped sections [J]. Computers & Structures, 53(6):1317-1356, 1994.
535
536
[11] W.L. Cao, S.L. Gao, et al. Nonlinear analysis of T-shaped reinforced concrete columns[J]. World Information On Earthquake Engineering, (1):32-37, 1996.
537
538
[12] D. Wang, C.K. Huang, et al. Research on experiment and design method of specially-shaped columns under eccentric loading [J]. Journal of Building Structures, 22(5):37-42, 2001.
539
540
[13]C. H. Chen, H. Gong, et al. Experimental study and nonlinear finite element analysis of concrete frame joint with T-shaped columns[J]. Industrial Construction, 47(3):76-82,88, 2017.
541
542
[14] ANSYS, Inc. ANSYS structural analysis guide release 8.0[S]. SAP, IP Inc, 2000.
543
544
[15] J. J. Jiang, X.Z. Lu. Finite element analysis of concrete structures (Second edition) [M]. Beijing: Tsinghua University Press, 2013.
545
546
[16] GB50010-2010. Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010.
547
548
[17] Z. He, J.P. OU. Nonlinear analysis of reinforced concrete structures [M]. Harbin: Harbin Institute of Technology Press, 2007.
549
550
[18] F. Legeron, P. Paultre, J. Mazar. Damage mechanics modeling of nonlinear seismic behavior of concrete structures [J]. Journal of Structural Engineering - ASCE, 131(6):949-954, 2005.
551
552
[19] P. Jun, V. Mechtcherine. Behaviour of strain-hardening cement-based composites (SHCC) under monotonic and cyclic tensile loading: Part 1- Experimental investigations[J]. Cement & Concrete Composites, 32(10):801-809, 2010.
553
554
[20] H. Ma, X.Y. Sun, et al. Finite Element Analysis of Reinforced Concrete Beam-Column Joint under Low Cyclic Loading with Different Load Systems[J]. Applied Mechanics & Materials, 351-352:351-354, 2013.
555
556
[21] I.N. Doudoumis. Finite element modelling and investigation of the behaviour of elastic infilled frames under monotonic loading[J]. Engineering Structures, 29(6):1004-1024, 2007.
557
</div>
558

Return to Liu et al 2017a.

Back to Top

Document information

Published on 08/02/19
Accepted on 13/03/18
Submitted on 10/12/17

Volume 35, Issue 1, 2019
DOI: 10.23967/j.rimni.2018.03.003
Licence: CC BY-NC-SA license

Document Score

0

Views 260
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?