You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
== Abstract ==
2
3
This paper shows applications of a recently developed thin shell element adequate for the analysis of membrane and inflatable structures. The element is a three node triangle with only translational degrees of freedom that uses the configuration of the three adjacent elements to evaluate the strains in terms of the nodal displacements only. This allows to compute (constant) bending strains and (linear) membrane strains using a total Lagrangian formulation. Several examples, including inflation and deflation of membranes and some practical applications to the analysis, design and construction of membrane structures formed by low pressure inflatable tubes   are presented.
4
5
'''Keywords''' shell  elements, rotation free shell triangle, membrane structures,   inflatable structures, low pressure inflatable tubes
6
7
==1 Introduction==
8
9
Inflatable structures have unique features. Because of their foldability and air- or helium pneumatic stabilisation they cannot be compared to any classical structural concepts.
10
11
Inflatable structures have become increasingly popular in recent years for a wide range of applications in architecture, civil engineering, aeronautic  and airspace situations.
12
13
The use of inflatable structures can be found in temporary and/or foldable structures to cover large spaces or to support other elements, in permanent roofs or shelters with a high degree of transparency, in mobile buildings as temporary housing in civil logistic missions (e.g. environmental disasters and rescue situations), in the construction of tunnels and dams, in antennas for both ground and aerospace applications, as well as in extremely light airship structures among other uses <span id='citeF-1'></span> <span id='citeF-11'></span>[[#cite-1|[1]]-[[#cite-11|11]]].
14
15
Some efforts have been made in the past years to develop inflated structures formed by assembly of high pressure tubes. The obvious disadvantages of these structures are the design of the joints and their big vulnerability to air losses. In general, high pressure inflated structures are difficult to maintain and repair and have a high cost.
16
17
Inflatable structures formed by an assembly of self-supported low pressure tubular membrane elements are ideal to cover large space areas. They also adapt easily to any design shape and have minimal maintenance requirements, other than keeping a constant low internal pressure accounting for the air losses through the material pores and the seams.
18
19
The simulation of the inflation of membrane structures is normally performed with membrane finite elements, i.e. no bending stiffness included.  The formulation of such elements is simple as they only require <math display="inline">C^{0}</math> continuity <span id='citeF-12'></span>[[#cite-12|[12]]], in contrast with elements based on thin shell theory where <math display="inline">C^{1}</math> continuity implies important obstacles <span id='citeF-13'></span>[[#cite-13|[13]]] in the development of conforming elements.  Triangular elements are naturally preferred as they can easily adapt to arbitrary geometries and due to the robustness of the associated mesh generators.
20
21
Membrane structures components have some, although small, bending stiffness that in most cases is  disregarded. However in many applications it is convenient to include bending energy in the model due to the important regularization effect it introduces. Shell elements are typically more complex and expensive due the increase in degrees of freedom (rotations) and integration points (through the thickness). In the last few years shell elements without rotation degrees of freedom have been developed <span id='citeF-14'></span> <span id='citeF-22'></span>[[#cite-14|[14]]-[[#cite-22|22]]], which make shell elements more efficient for both implicit and explicit integration schemes.
22
23
When only the final configuration of the membrane is of interest implicit schemes are normally used, including special algorithms due to the lack of stiffness of the membrane when no tensile stresses are yet present.  When the inflation/deflation process is of interest, the explicit integration of the momentum equations is largely preferred.  Modeling of complex deformation with constant strain shell triangles, such as those occuring in the inflation-deflation process of inflatable membranes accounting for frictional contact conditions typically require  fine discretizations. These type of simulations can be time consuming due to the time increment limitations. In this paper a rotation-free triangular shell element with similar convergence properties to the linear strain triangle, but without its drawbacks, is used.
24
25
The outline of this chapter is as follows. Next two section summarizes the rotation-free shell triangle used. [[#4 Aeroelastic Analysis|Section 4]] summarices the procedure for aeroelastic analysis. [[#5 Examples|Section 5]] presents examples of application to the analysis of inflatable membranes. The paper concludes with practical examples inflatable structures formed by low pressure inflatable tubes designed and analyzed  using the  technology described in the paper. Finally [[#6 Concluding Remarks|Section 6]] summarizes some conclusions.
26
27
==2 Formulation of the Rotation Free Shell Triangle==
28
29
===2.1 Shell Kinematics===
30
31
A summary of the most relevant hypothesis related to the kinematic behaviour of a thin shell are presented. Further details may be found in the wide literature dedicated to this field <span id='citeF-21'></span> <span id='citeF-23'></span>[[#cite-21|[21]]-[[#cite-23|23]]].
32
33
Consider a shell with undeformed middle surface occupying the domain <math display="inline">\Omega ^{0}</math> in <math display="inline">R^{3}</math> with a boundary <math display="inline">\Gamma ^{0}</math>. At each point of the middle surface a thickness <math display="inline">h^{0}</math> is defined. The positions <math display="inline">\mathbf{x}^{0}</math> and <math display="inline">\mathbf{x}</math> of a point in the undeformed and the deformed configurations can be respectively written as a function of the coordinates of the middle surface <math display="inline">{\boldsymbol \varphi }</math> and the normal <math display="inline">\mathbf{t}_{3}</math> at the point as
34
35
{| class="formulaSCP" style="width: 100%; text-align: left;" 
36
|-
37
| 
38
{| style="text-align: left; margin:auto;width: 100%;" 
39
|-
40
| style="text-align: center;" | <math>\mathbf{x}^{0}\left( \xi _{1},\xi _{2},\zeta \right)    ={\boldsymbol \varphi }^{0}\left( \xi _{1},\xi _{2}\right) +\lambda \mathbf{t}_{3}^{0}</math>
41
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
42
|-
43
| style="text-align: center;" | <math> \mathbf{x}\left( \xi _{1},\xi _{2},\zeta \right)    ={\boldsymbol \varphi }\left( \xi  _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}</math>
44
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
45
|}
46
|}
47
48
where <math display="inline">\xi _{1},\xi _{2}</math> are arc-length curvilinear principal coordinates defined over the middle surface of the shell and <math display="inline">\zeta </math> is the distance from the point to the middle surface in the undeformed configuration. The product <math display="inline">\zeta \lambda </math> is the distance from the point to the middle surface measured on the deformed configuration. The parameter <math display="inline">\lambda </math> relates the thickness at the present and initial configurations as:
49
50
{| class="formulaSCP" style="width: 100%; text-align: left;" 
51
|-
52
| 
53
{| style="text-align: left; margin:auto;width: 100%;" 
54
|-
55
| style="text-align: center;" | <math>\lambda =\frac{h}{h^{0}}</math>
56
|}
57
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
58
|}
59
60
This approach implies a constant strain in the normal direction. Parameter <math display="inline">\lambda </math> will not be considered as an independent variable  and will be computed from purely geometrical considerations (''isochoric'' behaviour) via a staggered iterative update. Besides this, the usual plane stress condition of thin shell theory will be adopted.
61
62
A convective system is computed at each point as
63
64
{| class="formulaSCP" style="width: 100%; text-align: left;" 
65
|-
66
| 
67
{| style="text-align: left; margin:auto;width: 100%;" 
68
|-
69
| style="text-align: center;" | <math>\mathbf{g}_{i}\left( \mathbf{\xi }\right) =\frac{\partial \mathbf{x}}{\partial \xi _{i}}\qquad i=1,2,3</math>
70
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
71
|-
72
| style="text-align: center;" | <math> \mathbf{g}_{\alpha }\left( \mathbf{\xi }\right)    =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \xi _{\alpha }}={\boldsymbol \varphi }_{^{\prime }\alpha }+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }\alpha }\quad \alpha=1,2</math>
73
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
74
|-
75
| style="text-align: center;" | <math> \mathbf{g}_{3}\left( \mathbf{\xi }\right)    =\frac{\partial \left( \mathbf{\boldsymbol \varphi }\left( \xi _{1},\xi _{2}\right) +\zeta \lambda \mathbf{t}_{3}\right) }{\partial \zeta }=\lambda \mathbf{t}_{3}</math>
76
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
77
|}
78
|}
79
80
This can be particularized for the points on the middle surface as
81
82
{| class="formulaSCP" style="width: 100%; text-align: left;" 
83
|-
84
| 
85
{| style="text-align: left; margin:auto;width: 100%;" 
86
|-
87
| style="text-align: center;" | <math>\mathbf{a}_{\alpha }    =\mathbf{g}_{\alpha }\left( \zeta=0\right) ={\boldsymbol \varphi  }_{^{\prime }\alpha }</math>
88
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
89
|-
90
| style="text-align: center;" | <math> \mathbf{a}_{3}    =\mathbf{g}_{3}\left( \zeta=0\right) =\lambda  \mathbf{t}_{3}</math>
91
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
92
|}
93
|}
94
95
The covariant (first fundamental form) metric tensor of the middle surface is
96
97
<span id="eq-9"></span>
98
{| class="formulaSCP" style="width: 100%; text-align: left;" 
99
|-
100
| 
101
{| style="text-align: left; margin:auto;width: 100%;" 
102
|-
103
| style="text-align: center;" | <math>a_{\alpha \beta }=\mathbf{a}_{\alpha }\cdot \mathbf{a}_{\beta } = {\boldsymbol \varphi }_{^{\prime }\alpha } \cdot  {\boldsymbol \varphi }_{^{\prime }\beta }  </math>
104
|}
105
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
106
|}
107
108
The Green-Lagrange strain vector of the middle surface points (membrane strains) is defined as
109
110
{| class="formulaSCP" style="width: 100%; text-align: left;" 
111
|-
112
| 
113
{| style="text-align: left; margin:auto;width: 100%;" 
114
|-
115
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=[\varepsilon _{m_{11}},\varepsilon _{m_{12}},\varepsilon _{m_{12}}]^{T}</math>
116
|}
117
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
118
|}
119
120
with
121
122
<span id="eq-11"></span>
123
{| class="formulaSCP" style="width: 100%; text-align: left;" 
124
|-
125
| 
126
{| style="text-align: left; margin:auto;width: 100%;" 
127
|-
128
| style="text-align: center;" | <math>\varepsilon _{m_{ij}}=\frac{1}{2}(a_{ij}-a_{ij}^{0}) </math>
129
|}
130
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
131
|}
132
133
The curvatures (second fundamental form) of the middle surface are obtained by
134
135
{| class="formulaSCP" style="width: 100%; text-align: left;" 
136
|-
137
| 
138
{| style="text-align: left; margin:auto;width: 100%;" 
139
|-
140
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\frac{1}{2}\left( {\boldsymbol \varphi }_{^{\prime }\alpha }\cdot \mathbf{t}_{3^{\prime }\beta }+{\boldsymbol \varphi }_{^{\prime }\beta }\cdot  \mathbf{t}_{3^{\prime }\alpha }\right) =- \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{{\prime }\alpha \beta }\quad , \quad \alpha ,\beta=1,2 </math>
141
|}
142
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
143
|}
144
145
The deformation gradient tensor is
146
147
{| class="formulaSCP" style="width: 100%; text-align: left;" 
148
|-
149
| 
150
{| style="text-align: left; margin:auto;width: 100%;" 
151
|-
152
| style="text-align: center;" | <math>\mathbf{F=} [{\boldsymbol x}_{{\prime }1},{\boldsymbol x}_{{\prime }2},{\boldsymbol x}_{{\prime }3}]=\left[ \begin{array}{ccc}{\boldsymbol \varphi }_{^{\prime }1}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime  }1} & {\boldsymbol \varphi }_{^{\prime }2}+\zeta \left( \lambda \mathbf{t}_{3}\right) _{^{\prime }2} & \lambda \mathbf{t}_{3}\end{array} \right] </math>
153
|}
154
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
155
|}
156
157
The product <math display="inline">\mathbf{F}^{T}\mathbf{F=U}^{2}=\mathbf{C}</math> (where <math display="inline">\mathbf{U}</math> is the right stretch tensor, and <math display="inline">\mathbf{C}</math> the right Cauchy-Green deformation tensor) can be written as
158
159
<span id="eq-14"></span>
160
{| class="formulaSCP" style="width: 100%; text-align: left;" 
161
|-
162
| 
163
{| style="text-align: left; margin:auto;width: 100%;" 
164
|-
165
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc}a_{11}+2\kappa _{11}\zeta \lambda & a_{12}+2\kappa _{12}\zeta \lambda & 0\\ a_{12}+2\kappa _{12}\zeta \lambda & a_{22}+2\kappa _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2}\end{array} \right] </math>
166
|}
167
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
168
|}
169
170
In the derivation of expression ([[#eq-14|14]]) the derivatives of the thickness ratio <math display="inline">\lambda _{^{\prime }a}</math> and the terms associated to <math display="inline">\zeta ^{2}</math> have been neglected.
171
172
Equation ([[#eq-14|14]]) shows that <math display="inline">\mathbf{U}^{2}</math> is not a unit tensor at the original configuration for curved surfaces (<math display="inline">\kappa _{ij}^{0}\neq{0}</math>). The changes of curvature of the middle surface are computed by
173
174
{| class="formulaSCP" style="width: 100%; text-align: left;" 
175
|-
176
| 
177
{| style="text-align: left; margin:auto;width: 100%;" 
178
|-
179
| style="text-align: center;" | <math>\chi _{ij}=\kappa _{ij}-\kappa _{ij}^{0}</math>
180
|}
181
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
182
|}
183
184
Note that <math display="inline">\delta \chi _{ij}=\delta \kappa _{ij}</math>.
185
186
For computational convenience the following approximate expression (which is exact for initially flat surfaces) will be adopted
187
188
<span id="eq-16"></span>
189
{| class="formulaSCP" style="width: 100%; text-align: left;" 
190
|-
191
| 
192
{| style="text-align: left; margin:auto;width: 100%;" 
193
|-
194
| style="text-align: center;" | <math>\mathbf{U}^{2}=\left[ \begin{array}{ccc}a_{11}+2\chi _{11}\zeta \lambda & a_{12}+2\chi _{12}\zeta \lambda & 0\\ a_{12}+2\chi _{12}\zeta \lambda & a_{22}+2\chi _{22}\zeta \lambda & 0\\ 0 & 0 & \lambda ^{2}\end{array} \right]  </math>
195
|}
196
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
197
|}
198
199
This expression is useful to compute different Lagrangian strain measures. An advantage of these measures is that they are associated to material fibres, what makes it easy to take into account material anisotropy. It is also useful to compute the eigen decomposition of <math display="inline">\mathbf{U}</math> as
200
201
{| class="formulaSCP" style="width: 100%; text-align: left;" 
202
|-
203
| 
204
{| style="text-align: left; margin:auto;width: 100%;" 
205
|-
206
| style="text-align: center;" | <math>\mathbf{U=}\sum _{\alpha=1}^{3}\lambda _{\alpha } \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha }</math>
207
|}
208
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
209
|}
210
211
where <math display="inline">\lambda _{\alpha }</math> and <math display="inline">\mathbf{r}_{\alpha }</math> are the eigenvalues and eigenvectors of <math display="inline">\mathbf{U}</math>.
212
213
The resultant stresses  (axial forces and bending moments) are obtained by integrating across the original thickness the second Piola-Kirchhoff stress vector <math display="inline">{ \boldsymbol \sigma }</math> using the actual distance to the middle surface for  evaluating the bending moments. This gives
214
215
<span id="eq-18"></span>
216
{| class="formulaSCP" style="width: 100%; text-align: left;" 
217
|-
218
| 
219
{| style="text-align: left; margin:auto;width: 100%;" 
220
|-
221
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{m}\equiv \lbrack N_{11},N_{22},N_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma }d\zeta </math>
222
|}
223
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
224
|}
225
226
<span id="eq-19"></span>
227
{| class="formulaSCP" style="width: 100%; text-align: left;" 
228
|-
229
| 
230
{| style="text-align: left; margin:auto;width: 100%;" 
231
|-
232
| style="text-align: center;" | <math>{\boldsymbol \sigma }_{b}\equiv \lbrack M_{11},M_{22},M_{12}]^{T}=\int _{h^{0}}{\boldsymbol \sigma  }\lambda \zeta  d\zeta </math>
233
|}
234
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
235
|}
236
237
With these values the virtual work can be written as
238
239
<span id="eq-20"></span>
240
{| class="formulaSCP" style="width: 100%; text-align: left;" 
241
|-
242
| 
243
{| style="text-align: left; margin:auto;width: 100%;" 
244
|-
245
| style="text-align: center;" | <math>\iint _{A^{0}}\left[ \delta{\boldsymbol \varepsilon }_{m}^{T}{\boldsymbol \sigma }_{m}+\delta{\boldsymbol \kappa  }^{T}{\boldsymbol \sigma }_{b}\right] dA=\iint _{A^{0}}\delta \mathbf{u}^{T}\mathbf{t}dA </math>
246
|}
247
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
248
|}
249
250
where <math display="inline">\delta \mathbf{u}</math> are virtual displacements, <math display="inline">\delta{\boldsymbol \varepsilon }_{m}</math> is the virtual Green-Lagrange membrane strain vector, <math display="inline">\delta{\boldsymbol \kappa }</math> are the virtual curvatures and <math display="inline">\mathbf{t}</math> are the surface loads. Other load types can be easily included into ([[#eq-20|20]]).
251
252
===2.2 Constitutive Models===
253
254
In order to treat non linear material behaviour at finite strains an adequate stress-strain pair must be used. The Hencky measures will be adopted here. The (logarithmic) strains are defined as
255
256
<span id="eq-21"></span>
257
{| class="formulaSCP" style="width: 100%; text-align: left;" 
258
|-
259
| 
260
{| style="text-align: left; margin:auto;width: 100%;" 
261
|-
262
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=}\left[ \begin{array}{ccc}\varepsilon _{11} & \varepsilon _{21} & 0\\ \varepsilon _{12} & \varepsilon _{22} & 0\\ 0 & 0 & \varepsilon _{33}\end{array} \right] =\sum _{\alpha=1}^{3}\ln \left( \lambda _{\alpha }\right) \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\alpha } </math>
263
|}
264
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
265
|}
266
267
The use of a logarithmic strain measure reasonably allows to adopt an additive decomposition of elastic and non-linear (plastic) strain components as
268
269
<span id="eq-22"></span>
270
{| class="formulaSCP" style="width: 100%; text-align: left;" 
271
|-
272
| 
273
{| style="text-align: left; margin:auto;width: 100%;" 
274
|-
275
| style="text-align: center;" | <math>\mathbf{E}_{\ln }\mathbf{=E}_{\ln }^{e}+\mathbf{E}_{\ln }^{p} </math>
276
|}
277
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
278
|}
279
280
A constant linear relationship between the (plane) Hencky stresses and the logarithmic elastic strains is  chosen giving
281
282
<span id="eq-23"></span>
283
{| class="formulaSCP" style="width: 100%; text-align: left;" 
284
|-
285
| 
286
{| style="text-align: left; margin:auto;width: 100%;" 
287
|-
288
| style="text-align: center;" | <math>\mathbf{T}=\mathbf{H} \mathbf{E}_{\ln }^{e} </math>
289
|}
290
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
291
|}
292
293
where <math display="inline">\boldsymbol H</math> is the constitutive matrix.
294
295
The constitutive equations are integrated using a standard return algorithm. Details of an specific constitutive model for rubber-type materials can be found in <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-22|22]]]. The Hencky stress tensor <math display="inline">\mathbf{T}</math> can be easily particularized for the plane stress case.
296
297
We define the rotated Hencky and second Piola-Kirchhoff stress tensors as
298
299
<span id="eq-24"></span>
300
<span id="eq-25"></span>
301
{| class="formulaSCP" style="width: 100%; text-align: left;" 
302
|-
303
| 
304
{| style="text-align: left; margin:auto;width: 100%;" 
305
|-
306
| style="text-align: center;" | <math>\mathbf{T}_{L}    =\mathbf{R}_{L}^{T}\;\mathbf{T\;R}_{L}</math>
307
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
308
|-
309
| style="text-align: center;" | <math> \mathbf{S}_{L}    =\mathbf{R}_{L}^{T}\;\mathbf{S\;R}_{L}</math>
310
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
311
|}
312
|}
313
314
where <math display="inline">\mathbf{R}_{L}</math> is the rotation tensor obtained from the eigenvectors of <math display="inline">\mathbf{U}</math> given by
315
316
{| class="formulaSCP" style="width: 100%; text-align: left;" 
317
|-
318
| 
319
{| style="text-align: left; margin:auto;width: 100%;" 
320
|-
321
| style="text-align: center;" | <math>\mathbf{R}_{L}=\left[ \begin{array}{ccc}\mathbf{r}_{1}\quad ,& \mathbf{r}_{2} \quad ,& \mathbf{r}_{3}\end{array} \right] </math>
322
|}
323
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
324
|}
325
326
The relationship between the rotated Hencky and Piola-Kirchhoff stresses is <math display="inline">\left(\alpha , \beta=1,2 \right)</math>
327
328
{| class="formulaSCP" style="width: 100%; text-align: left;" 
329
|-
330
| 
331
{| style="text-align: left; margin:auto;width: 100%;" 
332
|-
333
| style="text-align: center;" | <math>\left[ S_{L}\right] _{\alpha \alpha }    =\frac{1}{\lambda _{\alpha }^{2}}\left[ T_{L}\right] _{\alpha \alpha }</math>
334
|-
335
| style="text-align: center;" | <math> \left[ S_{L}\right] _{\alpha \beta }    =\frac{\ln \left( \lambda _{\alpha  }/\lambda _{\beta }\right) }{\frac{1}{2}\left( \lambda _{\alpha }^{2}-\lambda _{\beta }^{2}\right) }\left[ T_{L}\right] _{\alpha \beta }</math>
336
|}
337
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
338
|}
339
340
The second Piola-Kirchhoff stress tensor can be computed by
341
342
{| class="formulaSCP" style="width: 100%; text-align: left;" 
343
|-
344
| 
345
{| style="text-align: left; margin:auto;width: 100%;" 
346
|-
347
| style="text-align: center;" | <math>\mathbf{S=}\sum _{\alpha=1}^{2}\sum _{\beta=1}^{2}\left[ S_{L}\right] _{\alpha \beta } \mathbf{r}_{\alpha }\otimes \mathbf{r}_{\beta }</math>
348
|}
349
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
350
|}
351
352
The second Piola-Kirchhoff stress vector <math display="inline">{\boldsymbol \sigma }</math> used in Eqs.([[#eq-18|18]]&#8211;[[#eq-19|19]]) can be readily extracted from the <math display="inline">\mathbf{S}</math> tensor.
353
354
==3 Enhanced Basic Shell Triangle==
355
356
The main features of the element formulation (termed EBST for Enhanced Basic Shell Triangle) are the following:
357
358
<ol>
359
360
<li>The geometry of the patch formed by an element and the three adjacent elements is ''quadratically interpolated'' from the position of the six nodes in the patch (Fig.[[#img-1|1]]). </li>
361
362
<li>The membrane strains are assumed to vary ''linearly'' within the central triangle and are expressed in terms of the (continuous) values of the deformation gradient at the mid side points of the triangle. </li>
363
364
<li>An assumed ''constant curvature'' field within the central triangle is chosen. This is computed in terms of the values of the (continuous) deformation gradient at the mid side points. </li>
365
366
</ol>
367
368
Details of the derivation of the EBST element are given below.
369
370
<div id='img-1a'></div>
371
<div id='img-1b'></div>
372
<div id='img-1'></div>
373
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
374
|-
375
|[[File:Draft_Samper_330523237_7304_1.JPG]]
376
|[[File:Draft_Samper_330523237_8216_2.JPG]]
377
|- style="text-align: center; font-size: 75%;"
378
| (a) 
379
| (b) 
380
|- style="text-align: center; font-size: 75%;"
381
| colspan="2" | '''Figure 1:''' (a) Patch of three node triangular elements including the central   triangle (M) and three adjacent triangles (1, 2 and 3); (b) Patch of elements in the isoparametric space
382
|}
383
384
===3.1 Definition of the Element Geometry and Computation of Membrane Strains===
385
386
A  quadratic approximation of the geometry of the four elements patch is chosen using the position of the six nodes in the patch. It is useful to define the patch in the isoparametric space using the nodal positions given in the Table [[#table-1|1]] (see also Fig.[[#img-1|1]]).
387
388
389
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
390
|+ style="font-size: 75%;" |<span id='table-1'></span>Table. 1 Isoparametric coordinates of the six nodes in the patch of Fig.[[#img-1|1]]
391
|- style="border-top: 2px solid;"
392
| style="border-left: 2px solid;border-right: 2px solid;" |  
393
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
394
| style="border-left: 2px solid;border-right: 2px solid;" | 2 
395
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
396
| style="border-left: 2px solid;border-right: 2px solid;" | 4 
397
| style="border-left: 2px solid;border-right: 2px solid;" | 5 
398
| style="border-left: 2px solid;border-right: 2px solid;" | 6
399
|- style="border-top: 2px solid;"
400
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\xi </math> 
401
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
402
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
403
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
404
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
405
| style="border-left: 2px solid;border-right: 2px solid;" | -1 
406
| style="border-left: 2px solid;border-right: 2px solid;" | 1
407
|- style="border-top: 2px solid;border-bottom: 2px solid;"
408
| style="border-left: 2px solid;border-right: 2px solid;" | <math display="inline">\eta </math> 
409
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
410
| style="border-left: 2px solid;border-right: 2px solid;" | 0 
411
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
412
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
413
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
414
| style="border-left: 2px solid;border-right: 2px solid;" | -1
415
416
|}
417
418
The quadratic interpolation is defined by
419
420
<span id="eq-29"></span>
421
{| class="formulaSCP" style="width: 100%; text-align: left;" 
422
|-
423
| 
424
{| style="text-align: left; margin:auto;width: 100%;" 
425
|-
426
| style="text-align: center;" | <math>{\boldsymbol \varphi }=\sum _{i=1}^{6}N_{i}{\boldsymbol \varphi }_{i}</math>
427
|}
428
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
429
|}
430
431
with (<math display="inline">\zeta=1-\xi-\eta</math>)
432
433
{| class="formulaSCP" style="width: 100%; text-align: left;" 
434
|-
435
| 
436
{| style="text-align: left; margin:auto;width: 100%;" 
437
|-
438
| style="text-align: center;" | <math>\begin{array}{ccc}N_{1}=\zeta{+\xi}\eta &  & N_{4}=\displaystyle \frac{\zeta }{2}\left( \zeta{-1}\right) \\[.15cm] N_{2}=\xi{+\eta}\zeta &  & N_{5}=\displaystyle \frac{\xi }{2}\left( \xi{-1}\right) \\[.15cm] N_{3}=\eta{+\zeta}\xi &  & N_{6}=\displaystyle \frac{\eta }{2}\left( \eta{-1}\right) \end{array} </math>
439
|}
440
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
441
|}
442
443
This interpolation allows to computing the displacement gradients at selected points in order to use an assumed strain approach. The computation of the gradients is performed at the mid side points of the central element of the patch denoted by <math display="inline">G_{1}</math>, <math display="inline">G_{2}</math> and <math display="inline">G_{3}</math> in Fig. [[#img-1|1]]. This choice has the following advantages.
444
445
* Gradients at the three mid side points depend only on the nodes belonging to the two elements adjacent to each side. This can be easily verified by sampling the derivatives of the shape functions at each mid-side point.
446
447
* When gradients are computed at the common mid-side point of two adjacent elements, the same values are obtained, as the coordinates of the same four points are used. This in practice means that the gradients at the mid-side points are independent of the element where they are computed. A side-oriented implementation of the finite element will therefore lead to a unique evaluation of the gradients per side.
448
449
The Cartesian derivatives of the shape functions are computed at the original configuration by the standard expression
450
451
{| class="formulaSCP" style="width: 100%; text-align: left;" 
452
|-
453
| 
454
{| style="text-align: left; margin:auto;width: 100%;" 
455
|-
456
| style="text-align: center;" | <math>\left[ \begin{array}{c}N_{i,1}\\ N_{i,2}\end{array} \right] =\mathbf{J}^{-1}\left[ \begin{array}{c}N_{i,\xi } \\ N_{i,\eta }\end{array} \right] </math>
457
|}
458
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
459
|}
460
461
where the Jacobian matrix at the original configuration is
462
463
{| class="formulaSCP" style="width: 100%; text-align: left;" 
464
|-
465
| 
466
{| style="text-align: left; margin:auto;width: 100%;" 
467
|-
468
| style="text-align: center;" | <math>\mathbf{J=}\left[ \begin{array}{cc}\mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{1} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{1}\\ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{2} & \mathbf{\boldsymbol \varphi  }_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{2}\end{array} \right] </math>
469
|}
470
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
471
|}
472
473
The deformation gradients on the middle surface, associated to an arbitrary spatial Cartesian system and to the material cartesian system defined on the middle surface are related by
474
475
{| class="formulaSCP" style="width: 100%; text-align: left;" 
476
|-
477
| 
478
{| style="text-align: left; margin:auto;width: 100%;" 
479
|-
480
| style="text-align: center;" | <math>\left[ {\boldsymbol \varphi }_{^{\prime }1},\mathbf{\boldsymbol \varphi }_{^{\prime }2}\right] =\left[ \mathbf{\boldsymbol \varphi }_{^{\prime }\xi },\mathbf{\boldsymbol \varphi }_{^{\prime }\eta }\right]  \mathbf{J}^{-1}</math>
481
|}
482
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
483
|}
484
485
The membrane strains within the central triangle are obtained using a linear assumed strain field <math display="inline">\hat{\boldsymbol \varepsilon }_{m}</math>, i.e.
486
487
{| class="formulaSCP" style="width: 100%; text-align: left;" 
488
|-
489
| 
490
{| style="text-align: left; margin:auto;width: 100%;" 
491
|-
492
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\hat{\boldsymbol \varepsilon }_{m}</math>
493
|}
494
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
495
|}
496
497
with
498
499
<span id="eq-35"></span>
500
{| class="formulaSCP" style="width: 100%; text-align: left;" 
501
|-
502
| 
503
{| style="text-align: left; margin:auto;width: 100%;" 
504
|-
505
| style="text-align: center;" | <math>\hat{\boldsymbol \varepsilon }_{m}=(1-2\zeta ){\boldsymbol \varepsilon }_{m}^{1}+(1-2\xi ){\boldsymbol \varepsilon  }_{m}^{2}+(1-2\eta ){\boldsymbol \varepsilon }_{m}^{3}=\sum _{i=1}^{3}\bar{N}_{i}{\boldsymbol \varepsilon }_{m}^{i}</math>
506
|}
507
| style="width: 5px;text-align: right;white-space: nowrap;" | (35)
508
|}
509
510
where <math display="inline">{\boldsymbol \varepsilon }_{m}^{i}</math> are the membrane strains computed at the three mid side points <math display="inline">G_{i}</math> (<math display="inline">i=1,2,3</math>  see Fig.[[#img-1|1]]). In Eq.([[#eq-35|35]]) <math display="inline">\bar{N}_{1}=(1-2\zeta )</math>, etc.
511
512
The gradient at each mid side point is computed from the quadratic interpolation ([[#eq-29|29]]):
513
514
<span id="eq-36"></span>
515
{| class="formulaSCP" style="width: 100%; text-align: left;" 
516
|-
517
| 
518
{| style="text-align: left; margin:auto;width: 100%;" 
519
|-
520
| style="text-align: center;" | <math>\left( {\boldsymbol \varphi }_{^{\prime }\alpha }\right) _{G_{i}}={\boldsymbol \varphi }_{^{\prime  }\alpha }^{i}=\left[ \sum _{j=1}^{3}N_{j,\alpha }^{i}{\boldsymbol \varphi }_{j}\right] +N_{i+3,\alpha }^{i}{\boldsymbol \varphi }_{i+3}\quad ,\quad \alpha=1,2\quad ,\quad  i=1,2,3</math>
521
|}
522
| style="width: 5px;text-align: right;white-space: nowrap;" | (36)
523
|}
524
525
Substituting Eq.([[#eq-11|11]]) into ([[#eq-35|35]]) and using Eq.([[#eq-9|9]]) gives the membrane strain vector as
526
527
{| class="formulaSCP" style="width: 100%; text-align: left;" 
528
|-
529
| 
530
{| style="text-align: left; margin:auto;width: 100%;" 
531
|-
532
| style="text-align: center;" | <math>{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\frac{1}{2}\bar{N}_{i}\left\{ \begin{array}{c}{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}-1\\ {\boldsymbol \varphi }_{^{\prime }2}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}-1\\ 2{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right\} </math>
533
|}
534
| style="width: 5px;text-align: right;white-space: nowrap;" | (37)
535
|}
536
537
and the virtual membrane strains as
538
539
<span id="eq-38"></span>
540
{| class="formulaSCP" style="width: 100%; text-align: left;" 
541
|-
542
| 
543
{| style="text-align: left; margin:auto;width: 100%;" 
544
|-
545
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\sum _{i=1}^{3}\bar{N}_{i}\left\{ \begin{array}{c}{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ {\boldsymbol \varphi }_{2}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}\\ \delta{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \mathbf{\boldsymbol \varphi }_{^{\prime }2}^{i}+{\boldsymbol \varphi }_{^{\prime }1}^{i}\cdot \delta \mathbf{\boldsymbol \varphi }_{2}^{i}\end{array} \right\} </math>
546
|}
547
| style="width: 5px;text-align: right;white-space: nowrap;" | (38)
548
|}
549
550
We note that the gradient at each mid side point <math display="inline">G_{i}</math> depends only on the coordinates of the three nodes of the central triangle and on those of an additional node in the patch, associated to the side <math display="inline">i</math> where the gradient is computed.
551
552
Combining Eqs.([[#eq-38|38]]), ([[#eq-36|36]]) and ([[#eq-29|29]]) gives
553
554
{| class="formulaSCP" style="width: 100%; text-align: left;" 
555
|-
556
| 
557
{| style="text-align: left; margin:auto;width: 100%;" 
558
|-
559
| style="text-align: center;" | <math>\delta{\boldsymbol \varepsilon }_{m}=\mathbf{B}_{m}\delta \bar{\boldsymbol u}^{p}</math>
560
|}
561
| style="width: 5px;text-align: right;white-space: nowrap;" | (39.a)
562
|}
563
564
with
565
566
<span id="eq-39.b"></span>
567
{| class="formulaSCP" style="width: 100%; text-align: left;" 
568
|-
569
| 
570
{| style="text-align: left; margin:auto;width: 100%;" 
571
|-
572
| style="text-align: center;" | <math>\underset{18\times 1}{\delta \bar{\boldsymbol u}^p} =[\delta \bar{\boldsymbol u}_{1}^{T},\delta \bar{\boldsymbol u}_{2}^{T},\delta \bar{\boldsymbol u}_{3}^{T},\delta \bar{\boldsymbol u}_{4}^{T},\delta \bar{\boldsymbol u}_{5}^{T},\delta \bar{\boldsymbol u}_{6}^{T}]^{T}</math>
573
|}
574
| style="width: 5px;text-align: right;white-space: nowrap;" | (39.b)
575
|}
576
577
where <math display="inline">\delta \bar{\boldsymbol u}^{p}</math> is the patch displacement vector, <math display="inline">\delta \bar{\boldsymbol u}_i</math> contains the three virtual displacement of node <math display="inline">i</math> and <math display="inline">\mathbf{B}_{m}</math> is the membrane strain matrix. An explicit form of <math display="inline">\mathbf{B}_{m}</math> is given in <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-22|22]]].
578
579
Note that the membrane strains within the EBST element are  a function of the displacements of the six patch nodes.
580
581
===3.2 Computation of Curvatures===
582
583
We will assume the following constant curvature field within each element
584
585
<span id="eq-40"></span>
586
{| class="formulaSCP" style="width: 100%; text-align: left;" 
587
|-
588
| 
589
{| style="text-align: left; margin:auto;width: 100%;" 
590
|-
591
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\hat{\kappa }_{\alpha \beta } </math>
592
|}
593
| style="width: 5px;text-align: right;white-space: nowrap;" | (40)
594
|}
595
596
where <math display="inline">\hat{\kappa }_{\alpha \beta }</math> is the assumed constant curvature field defined by
597
598
<span id="eq-41"></span>
599
{| class="formulaSCP" style="width: 100%; text-align: left;" 
600
|-
601
| 
602
{| style="text-align: left; margin:auto;width: 100%;" 
603
|-
604
| style="text-align: center;" | <math>\hat{\kappa }_{\alpha \beta }=-\frac{1}{A_{M}^{0}}\int _{A_{M}^{0}}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }\beta \alpha }\;dA^{0} </math>
605
|}
606
| style="width: 5px;text-align: right;white-space: nowrap;" | (41)
607
|}
608
609
where <math display="inline">A_{M}^{0}</math> is the area (in the original configuration) of the central element in the patch.
610
611
Substituting Eq.([[#eq-41|41]]) into ([[#eq-40|40]]) and integrating by parts the area integral gives the curvature vector within the element in terms of the following line integral
612
613
<span id="eq-42"></span>
614
{| class="formulaSCP" style="width: 100%; text-align: left;" 
615
|-
616
| 
617
{| style="text-align: left; margin:auto;width: 100%;" 
618
|-
619
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\left\{ \begin{array}{c}\kappa _{11}\\ \kappa _{22}\\ 2\kappa _{12}\end{array} \right\} =\frac{1}{A_{M}^{0}}{\displaystyle \oint _{\Gamma _{M}^{0}}} \left[ \begin{array}{cc}-n_{1} & 0\\ 0 & -n_{2}\\ -n_{2} & -n_{1}\end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}\end{array} \right] d\Gamma </math>
620
|}
621
| style="width: 5px;text-align: right;white-space: nowrap;" | (42)
622
|}
623
624
where <math display="inline">n_{i}</math> are the components (in the local system) of the normals to the element sides in the initial configuration <math display="inline">\Gamma _{M}^{0}</math>. The integration by parts of Eq.([[#eq-41|41]]) is typical in finite volume methods for computing second derivatives over volumes by line integrals of gradient terms <span id='citeF-16'></span> <span id='citeF-17'></span> <span id='citeF-19'></span> <span id='citeF-21'></span> <span id='citeF-22'></span>[[#cite-1|[16]],[[#cite-17|17]],[[#cite-19|19]],[[#cite-21|21]],[[#cite-22|22]]]. For the definition of the normal vector <math display="inline">\mathbf{t}_{3}</math>, the linear interpolation over the central element is used. In this case the tangent plane components are
625
626
<span id="eq-43.a"></span>
627
{| class="formulaSCP" style="width: 100%; text-align: left;" 
628
|-
629
| 
630
{| style="text-align: left; margin:auto;width: 100%;" 
631
|-
632
| style="text-align: center;" | <math>{\boldsymbol \varphi }_{^{\prime }\alpha } = \sum _{i=1}^{3} L_{i,\alpha }^M {\boldsymbol \varphi }_{i}\quad ,\quad \alpha=1,2 </math>
633
|}
634
| style="width: 5px;text-align: right;white-space: nowrap;" | (43.a)
635
|}
636
637
<span id="eq-43.b"></span>
638
{| class="formulaSCP" style="width: 100%; text-align: left;" 
639
|-
640
| 
641
{| style="text-align: left; margin:auto;width: 100%;" 
642
|-
643
| style="text-align: center;" | <math>\mathbf{t}_{3}=\frac{{\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}}{\left\vert {\boldsymbol \varphi }_{\prime{1}}\times{\boldsymbol \varphi }_{\prime{2}}\right\vert }=\lambda \;{\boldsymbol \varphi  }_{1}\times{\boldsymbol \varphi }_{2} </math>
644
|}
645
| style="width: 5px;text-align: right;white-space: nowrap;" | (43.b)
646
|}
647
648
From these expressions it is also possible to compute in the original configuration the element area <math display="inline">A^{0}_{M}</math>, the outer normals <math display="inline">\left( n_{1},n_{2}\right) ^{i}</math> at each side and the side lengths <math display="inline">l_{i}^{M}</math>. Equation ([[#eq-43.b|43.b]]) also allows to evaluate the thickness ratio <math display="inline">\lambda </math> in the deformed configuration and the actual normal <math display="inline">\mathbf{t}_{3}</math>.
649
650
The numerical evaluation of the line  integral in Eq.([[#eq-42|42]]) results in a sum over the integration points at the element boundary which are, in fact, the same points used for evaluating the gradients when computing the membrane strains. As one integration point is used over each side, it is not necessary to distinguish between sides (<math display="inline">i</math>) and integration points (<math display="inline">G_{i}</math>). In this way the curvatures can be computed by
651
652
<span id="eq-44"></span>
653
{| class="formulaSCP" style="width: 100%; text-align: left;" 
654
|-
655
| 
656
{| style="text-align: left; margin:auto;width: 100%;" 
657
|-
658
| style="text-align: center;" | <math>{\boldsymbol \kappa }=\frac{1}{A_{M}^{0}} \sum ^3_{i=1} l_i^M \left[ \begin{array}{cc}-n_{1} & 0\\ 0 & -n_{2}\\ -n_{2} & -n_{1}\end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}\end{array} \right] d\Gamma </math>
659
|}
660
| style="width: 5px;text-align: right;white-space: nowrap;" | (44)
661
|}
662
663
Eq.([[#eq-44|44]]) is now expressed in terms  of the shape functions of the 3-noded triangle <math display="inline">L_i^M</math> (which coincide with the area coordinates <span id='citeF-23'></span>[[#cite-23|[23]]]). Noting the property of the area coordinates
664
665
<span id="eq-45"></span>
666
{| class="formulaSCP" style="width: 100%; text-align: left;" 
667
|-
668
| 
669
{| style="text-align: left; margin:auto;width: 100%;" 
670
|-
671
| style="text-align: center;" | <math>\nabla L_{i}^{M}=\left[ \begin{array}{c}L_{i,x}^{M}\\ L_{i,y}^{M}\end{array} \right] =-\frac{l_{i}^{M}}{2A_{M}}\left[ \begin{array}{c}n_{x}^{i}\\ n_{y}^{i}\end{array} \right]  </math>
672
|}
673
| style="width: 5px;text-align: right;white-space: nowrap;" | (45)
674
|}
675
676
the expression for the curvature can be expressed as
677
678
<span id="eq-46"></span>
679
{| class="formulaSCP" style="width: 100%; text-align: left;" 
680
|-
681
| 
682
{| style="text-align: left; margin:auto;width: 100%;" 
683
|-
684
| style="text-align: center;" | <math>{\boldsymbol \kappa }=2\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^M & 0\\ 0         & L_{i,2}^M \\ L_{i,2}^M & L_{i,1}^M \end{array} \right] \left[ \begin{array}{c}\mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }1}^{i}\\ \mathbf{t}_{3}\cdot{\boldsymbol \varphi }_{^{\prime }2}^{i}\end{array} \right]  </math>
685
|}
686
| style="width: 5px;text-align: right;white-space: nowrap;" | (46)
687
|}
688
689
The gradient <math display="inline">\mathbf{\boldsymbol \varphi  }_{\prime \alpha }^{i}</math>  is evaluated at each side <math display="inline">G_{i}</math> from the quadratic interpolation
690
691
<span id="eq-47"></span>
692
{| class="formulaSCP" style="width: 100%; text-align: left;" 
693
|-
694
| 
695
{| style="text-align: left; margin:auto;width: 100%;" 
696
|-
697
| style="text-align: center;" | <math>\left[ \begin{array}{c}{\boldsymbol \varphi }_{\prime{1}}^{i}\\ {\boldsymbol \varphi }_{\prime{2}}^{i}\end{array} \right] =\left[ \begin{array}{cccc}N_{1,1}^{i} & N_{2,1}^{i} & N_{3,1}^{i} & N_{i+3,1}^{i}\\ N_{1,2}^{i} & N_{2,2}^{i} & N_{3,2}^{i} & N_{i+3,2}^{i}\end{array} \right] \left[ \begin{array}{c}{\boldsymbol \varphi }_{1}\\ {\boldsymbol \varphi }_{2}\\ {\boldsymbol \varphi }_{3}\\ {\boldsymbol \varphi }_{i+3}\end{array} \right]  </math>
698
|}
699
| style="width: 5px;text-align: right;white-space: nowrap;" | (47)
700
|}
701
702
This is a basic difference with respect of the computation of the curvature field in the original Basic Shell Triangle (BST) where the gradient at the side mid-point is computed as the average value between the values at two adjacent elements <span id='citeF-17'></span><span id='citeF-19'></span><span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-17|[17]],[[#cite-19|19]],[[#cite-21|21]],[[#cite-22|22]]].
703
704
Note again than at each side the gradients depend only on the positions of the three nodes of the central triangle and of an extra node (<math display="inline">i+3</math>), associated precisely to the side (<math display="inline">G_{i}</math>) where the gradient is computed.
705
706
Direction '''t'''<math display="inline">_{3}</math> in Eq.([[#eq-46|46]]) can be seen as a reference direction. If a different direction than that given by Eq.([[#eq-43.b|43.b]]) is chosen at an angle <math display="inline">\theta </math> with the former, this has an influence of order <math display="inline">\theta ^{2}</math> in the projection. This justifies Eq.([[#eq-43.b|43.b]]) for the definition of '''t'''<math display="inline">_{3}</math> as a function exclusively of the three nodes of the central triangle, instead of using the 6-node isoparametric interpolation.
707
708
The variation of the curvatures can be expressed as
709
710
<span id="eq-48"></span>
711
{| class="formulaSCP" style="width: 100%; text-align: left;" 
712
|-
713
| 
714
{| style="text-align: left; margin:auto;width: 100%;" 
715
|-
716
| style="text-align: center;" | <math>\delta{\boldsymbol \kappa }   =2\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^M & 0\\ 0         & L_{i,2}^M\\ L_{i,2}^M & L_{i,1}^M\end{array} \right] \left\{ \sum _{i=1}^{3}\left[ \begin{array}{c}N_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \bar{\boldsymbol u}_{j})\\ N_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \bar{\boldsymbol u}_{j}) \end{array} \right] +\left[ \begin{array}{c}N_{i+3,1}^{i}(\mathbf{t}_{3}\cdot \delta \bar{\boldsymbol u}^{i+3})\\ N_{i+3,2}^{i}(\mathbf{t}_{3}\cdot \delta \bar{\boldsymbol u}^{i+3}) \end{array} \right] \right\} -</math>
717
|-
718
| style="text-align: center;" | <math>   -\sum _{i=1}^{3}\left[ \begin{array}{c}(L_{i,1}^M\rho _{11}^{1}+L_{i,2}^M\rho _{11}^{2})\\ (L_{i,1}^M\rho _{22}^{1}+L_{i,2}^M\rho _{22}^{2})\\ (L_{i,1}^M\rho _{12}^{1}+L_{i,2}^M\rho _{12}^{2}) \end{array} \right] (\mathbf{t}_{3}\cdot \delta \bar{\boldsymbol u}_{i})=\mathbf{B}_{b}\delta \bar{\boldsymbol u}^{p}</math>
719
|}
720
| style="width: 5px;text-align: right;white-space: nowrap;" | (48)
721
|}
722
723
In Eq.([[#eq-48|48]])
724
725
<span id="eq-49"></span>
726
{| class="formulaSCP" style="width: 100%; text-align: left;" 
727
|-
728
| 
729
{| style="text-align: left; margin:auto;width: 100%;" 
730
|-
731
| style="text-align: center;" | <math>\mathbf{B}_{b}=[\mathbf{B}_{b_{1}},\mathbf{B}_{b_{2}},\cdots ,\mathbf{B}_{b_{6}}]</math>
732
|}
733
| style="width: 5px;text-align: right;white-space: nowrap;" | (49)
734
|}
735
736
Details of the derivation of the curvature matrix <math display="inline">\mathbf{B}_b</math> are given in <span id='citeF-21'></span><span id='citeF-22'></span><span id='citeF-26'></span>[[#cite-21|[21]],[[#cite-21|22]],[[#cite-26|26]]].
737
738
===3.3 The EBST1 Element===
739
740
A simplified and yet very effective version of the EBST element can be obtained by using ''one point quadrature'' for the computation of all the element integrals. This element is termed EBST1. Note that this only affects the membrane stiffness matrices and it is equivalent to using a assumed constant membrane strain field defined by an average of the metric tensors computed at each side <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-22|22]]].
741
742
Numerical experiments have shown that both the EBST and the EBST1 elements are free of spurious energy modes <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-22|22]]].
743
744
===3.4 Boundary Conditions===
745
746
Elements at the domain boundary, where an adjacent element does not exist, deserve a special attention. The treatment of essential boundary conditions associated to translational constraints is straightforward, as they are the natural degrees of freedom of the element. The conditions associated to the normal vector are crucial in the bending  formulation. For clamped sides or symmetry planes, the normal vector <math display="inline">\mathbf{t}_{3}</math> must be kept fixed (clamped case), or constrained to move in the plane of symmetry (symmetry case). The former case can be seen as a special case of the latter, so we will consider symmetry planes only. This restriction can be imposed through the definition of the tangent plane at the boundary, including the normal to the plane of symmetry <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> that does not change during the process.
747
748
<div id='img-2'></div>
749
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
750
|-
751
|[[File:Draft_Samper_330523237_7907_3.JPG]]
752
|
753
|- style="text-align: center; font-size: 75%;"
754
| colspan="1" | '''Figure 2:''' Local Cartesian system for the treatment of symmetry boundary conditions
755
|}
756
757
The tangent plane at the boundary (mid-side point) is expressed in terms of two orthogonal unit vectors referred to a local-to-the-boundary Cartesian system (see Fig.[[#img-2|2]]) defined as
758
759
{| class="formulaSCP" style="width: 100%; text-align: left;" 
760
|-
761
| 
762
{| style="text-align: left; margin:auto;width: 100%;" 
763
|-
764
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }n}^{0},\;\bar{\boldsymbol \varphi }_{^{\prime }s}\right] </math>
765
|}
766
| style="width: 5px;text-align: right;white-space: nowrap;" | (50)
767
|}
768
769
where vector <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{0}</math> is fixed during the process while direction <math display="inline">\bar{\boldsymbol \varphi }_{^{\prime }s}</math> emerges from the intersection of the symmetry plane with the plane defined by the central element (<math display="inline">M</math>). The plane (gradient) defined by the central element in the selected original  convective Cartesian system (<math display="inline">\mathbf{t}_{1},\mathbf{t}_{2} </math>) is
770
771
{| class="formulaSCP" style="width: 100%; text-align: left;" 
772
|-
773
| 
774
{| style="text-align: left; margin:auto;width: 100%;" 
775
|-
776
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi _{^{\prime  }2}^{M}\right] </math>
777
|}
778
| style="width: 5px;text-align: right;white-space: nowrap;" | (51)
779
|}
780
781
the intersection line (side <math display="inline">i</math>) of this plane with the plane of symmetry can be written in terms of the position of the nodes that define the side (<math display="inline">j </math> and <math display="inline">k</math>) and the original length of the side <math display="inline">l_{i}^{M}</math>, i.e.
782
783
{| class="formulaSCP" style="width: 100%; text-align: left;" 
784
|-
785
| 
786
{| style="text-align: left; margin:auto;width: 100%;" 
787
|-
788
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }s}^{i}=\frac{1}{l_{i}^{M}}\left(\boldsymbol \varphi _{k}-\boldsymbol \varphi _{j}\right) </math>
789
|}
790
| style="width: 5px;text-align: right;white-space: nowrap;" | (52)
791
|}
792
793
That together with the outer normal to the side <math display="inline">\mathbf{n}^{i} =\left[n_{1},n_{2}\right]^{T}=\left[\mathbf{n\cdot t}_{1},\mathbf{n\cdot t}_{2}\right]^{T}</math> (resolved in the selected original convective Cartesian system) leads to
794
795
{| class="formulaSCP" style="width: 100%; text-align: left;" 
796
|-
797
| 
798
{| style="text-align: left; margin:auto;width: 100%;" 
799
|-
800
| style="text-align: center;" | <math>\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }1}^{iT} \\ \boldsymbol \varphi _{^{\prime }2}^{iT}\end{array}\right]=\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1}\end{array}\right]\left[ \begin{array}{c}\boldsymbol \varphi _{^{\prime }n}^{iT} \\ \boldsymbol \varphi _{^{\prime }s}^{iT}\end{array}\right] </math>
801
|}
802
| style="width: 5px;text-align: right;white-space: nowrap;" | (53)
803
|}
804
805
where, noting  that <math display="inline">\lambda </math> is the determinant of the gradient, the normal component of the gradient <math display="inline">\boldsymbol \varphi _{^{\prime }n}^{i}</math> can be approximated by
806
807
{| class="formulaSCP" style="width: 100%; text-align: left;" 
808
|-
809
| 
810
{| style="text-align: left; margin:auto;width: 100%;" 
811
|-
812
| style="text-align: center;" | <math>\boldsymbol \varphi _{^{\prime }n}^{i}=\frac{\boldsymbol \varphi _{^{\prime }n}^{0}}{\lambda |\boldsymbol \varphi _{^{\prime }s}^{i}|} </math>
813
|}
814
| style="width: 5px;text-align: right;white-space: nowrap;" | (54)
815
|}
816
817
For a simple supported (hinged) side, the problem is not completely defined. The simplest choice is to neglect the contribution to the side rotations from the adjacent element missing in the patch in the evaluation of the curvatures via Eq.([[#eq-42|42]]) [<span id='citeF-17'></span><span id='citeF-19'></span><span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-17|17]],[[#cite-19|19]],[[#cite-21|21]],[[#cite-22|22]]]. This is equivalent to assume that the gradient at the side is equal to the gradient in the central element, i.e.
818
819
{| class="formulaSCP" style="width: 100%; text-align: left;" 
820
|-
821
| 
822
{| style="text-align: left; margin:auto;width: 100%;" 
823
|-
824
| style="text-align: center;" | <math>\left[\boldsymbol \varphi _{^{\prime }1}^{i},\;\boldsymbol \varphi _{^{\prime }2}^{i}\right]=\left[\boldsymbol \varphi _{^{\prime }1}^{M},\;\boldsymbol \varphi _{^{\prime }2}^{M}\right] </math>
825
|}
826
| style="width: 5px;text-align: right;white-space: nowrap;" | (55)
827
|}
828
829
More precise changes can be however introduced to account for the different natural boundary conditions. One may assume that the curvature normal to the side is zero, and consider a contribution of the missing side to introduce this constraint. As the change of curvature parallel to the side is also zero along the hinged side, this obviously leads to zero curvatures in both directions.
830
831
We note finally that for the membrane formulation of the EBST element, the gradient at the mid-side point of the boundary is assumed equal to the gradient of the main triangle.
832
833
More details on the specification of the boundary conditions on the EBST element can be found in <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-21|22]]].
834
835
===3.5 Explicit Solution Scheme===
836
837
For simulations presenting large geometrical and/or material non-linearities, involving frictional contact conditions on complex geometries, convergence is difficult to achieve with implicit schemes. In these cases an explicit solution algorithm is typically most advantageous. The explicit  scheme provides the solution for dynamic problems and also for quasi-static problems if an adequate damping is chosen.
838
839
The dynamic equations of motion to solve are of the form
840
841
{| class="formulaSCP" style="width: 100%; text-align: left;" 
842
|-
843
| 
844
{| style="text-align: left; margin:auto;width: 100%;" 
845
|-
846
| style="text-align: center;" | <math>\mathbf{r}(\bar{\boldsymbol u}) + \mathbf{D} \dot{\bar{\mathbf u}} + \mathbf{M}  \ddot{\bar{\mathbf u}} = 0 </math>
847
|}
848
| style="width: 5px;text-align: right;white-space: nowrap;" | (56)
849
|}
850
851
where <math display="inline">\bar{\boldsymbol u}</math> is the nodal displacement vector for the whole mesh, <math display="inline">\mathbf{M}</math> is the mass matrix, <math display="inline">\mathbf{D}</math> is the damping matrix and the dot means the time derivative. The solution is performed using the ''central difference method''. To make the method competitive a diagonal (lumped) <math display="inline">\mathbf{M}</math> matrix is typically used and <math display="inline">\mathbf{D}</math> is taken proportional to <math display="inline">\mathbf{M}</math>. As usual, mass lumping is performed by assigning one third of the triangular element mass to each node in the central element.
852
853
The explicit solution scheme can be summarized as follows. At each time step <math display="inline">n</math> where the displacements '''u''' have been computed:
854
855
<ol>
856
857
<li>Compute the residual forces <math display="inline">\mathbf{r}^{n}</math>. This follows the  steps described in Box 1. </li>
858
859
<li>Compute the accelerations at time <math display="inline">t_{n}</math>
860
861
{| class="formulaSCP" style="width: 100%; text-align: left;" 
862
|-
863
| 
864
{| style="text-align: left; margin:auto;width: 100%;" 
865
|-
866
| style="text-align: center;" | <math>
867
868
\ddot{\bar{\boldsymbol u}}^{n} = {\boldsymbol M}_d^{-1} [ \mathbf{r}^{n} - \mathbf{D} \dot{\bar{\mathbf u}}^{n-1/2} ] </math>
869
|}
870
| style="width: 5px;text-align: right;white-space: nowrap;" | (57)
871
|}</li>
872
873
where <math display="inline">{\boldsymbol M}_d</math> is the diagonal (lumped) mass matrix.
874
875
<li>Compute the velocities at time <math display="inline">t_{n+1/2}</math>
876
877
{| class="formulaSCP" style="width: 100%; text-align: left;" 
878
|-
879
| 
880
{| style="text-align: left; margin:auto;width: 100%;" 
881
|-
882
| style="text-align: center;" | <math>
883
884
\dot{\bar{\boldsymbol u}}^{n+1/2} = \dot{\bar{\boldsymbol u}}^{n-1/2}+ \ddot{\bar{\boldsymbol u}}^{n} \delta t </math>
885
|}
886
| style="width: 5px;text-align: right;white-space: nowrap;" | (58)
887
|}</li>
888
889
<li>Compute the displacements at  time <math display="inline">t_{n+1}</math>
890
891
{| class="formulaSCP" style="width: 100%; text-align: left;" 
892
|-
893
| 
894
{| style="text-align: left; margin:auto;width: 100%;" 
895
|-
896
| style="text-align: center;" | <math>
897
898
\bar{\boldsymbol u}^{n+1} = \bar{\mathbf{u}}^{n} +\dot{\bar{\mathbf u}}^{n+1/2} \delta t </math>
899
|}
900
| style="width: 5px;text-align: right;white-space: nowrap;" | (59)
901
|}</li>
902
<li>Update the shell geometry </li>
903
<li>Check frictional contact conditions </li>
904
905
</ol>
906
907
908
909
{|  class="floating_tableSCP wikitable" style="text-align: left; margin: 1em auto;min-width:50%;"
910
|-
911
| style="border-left: 2px solid;border-right: 2px solid;border-top: 2px solid;" | 
912
913
Generate the actual configuration <math display="inline">\mathbf{\boldsymbol \varphi }^{n+1}=\mathbf{\boldsymbol \varphi }^{n}+\Delta \bar{\mathbf u}^{n}</math>
914
Compute the metric tensor <math display="inline">a_{\alpha \beta }^{n+1}\mathbf{ }</math>and the curvatures <math display="inline">\kappa _{\alpha \beta }^{n+1}</math>. Then at each layer <math display="inline">k</math> compute the (approximate) right Cauchy-Green tensor. From [[#Eq-14|(14)]]
915
916
{| class="formulaSCP" style="width: 100%; text-align: left;" 
917
|-
918
| 
919
{| style="text-align: left; margin:auto;width: 100%;" 
920
|-
921
| style="text-align: center;" | <math> \mathbf{C}_{k}^{n+1}=\mathbf{a}^{n+1}+z_{k}{\boldsymbol \chi }^{n+1} </math>
922
|}
923
| style="width: 5px;text-align: right;white-space: nowrap;" | (60)
924
|}
925
Compute the total (21) and elastic (22) deformations at each layer <math display="inline">k</math>
926
927
<span id="eq-61"></span>
928
{| class="formulaSCP" style="width: 100%; text-align: left;" 
929
|-
930
| 
931
{| style="text-align: left; margin:auto;width: 100%;" 
932
|-
933
| style="text-align: center;" | <math> {\boldsymbol \varepsilon }_{k}^{n+1}   = \frac{1}{2}\ln{\mathbf{C}_{k}^{n+1}} </math>
934
| style="width: 5px;text-align: right;white-space: nowrap;" | (61)
935
|-
936
| style="text-align: center;" | <math> \left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1}   ={\boldsymbol \varepsilon  }_{k}^{n+1}-\left[ {\boldsymbol \varepsilon }_{p}\right] _{k}^{n} </math>
937
|}
938
|}
939
Compute the trial Hencky elastic stresses (23) at each layer <math display="inline">k</math>
940
941
{| class="formulaSCP" style="width: 100%; text-align: left;" 
942
|-
943
| 
944
{| style="text-align: left; margin:auto;width: 100%;" 
945
|-
946
| style="text-align: center;" | <math> \mathbf{T} _{k}^{n+1}=\mathbf{H}\left[ {\boldsymbol \varepsilon }_{e}\right] _{k}^{n+1} </math>
947
|}
948
| style="width: 5px;text-align: right;white-space: nowrap;" | (62)
949
|}
950
Check the plasticity condition and return to the plasticity surface. If necessary correct the plastic strains <math display="inline">\left[{\boldsymbol \varepsilon }_{p}\right] _{k}^{n+1}</math> at each layer
951
Compute the second Piola-Kirchhoff stress vector <math display="inline">\boldsymbol \sigma _k^{n+1}</math> and the generalized stresses
952
953
{| class="formulaSCP" style="width: 100%; text-align: left;" 
954
|-
955
| 
956
{| style="text-align: left; margin:auto;width: 100%;" 
957
|-
958
| style="text-align: center;" | <math>\begin{array}{l} {\boldsymbol \sigma }^{n+1}_{m}  &  =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k}^{n+1} w_{k}\\ {\boldsymbol \sigma }^{n+1}_{b}  &  =\frac{h^{0}}{N_{L}}\sum _{k=1}^{N_{L}}\boldsymbol \sigma _{k}^{n+1}z_{k} w_{k}\end{array}</math>
959
|}
960
| style="width: 5px;text-align: right;white-space: nowrap;" | (63)
961
|}
962
963
Where <math display="inline"> w_{k}</math> is the weight of the through-the-thickness integration point and <math display="inline">N_L</math> is the number of layers (integration points) across the thickness. Recall that <math display="inline">z_{k}</math> is the current distance of the layer to the mid-surface and not the original distance. However, for small strain plasticity this distinction is not important.  This computation of stresses is  exact for an elastic problem.
964
Compute the residual force vector for each element from
965
966
<span id="eq-64"></span>
967
{| class="formulaSCP" style="width: 100%; text-align: left;" 
968
|-
969
| 
970
{| style="text-align: left; margin:auto;width: 100%;" 
971
|-
972
| style="text-align: center;" | <math> \mathbf{r}^e_i =\iint _A L_i {\boldsymbol t}\, dA - \iint _{A^\circ } ({\boldsymbol    B}_{m_i}^T {\boldsymbol \sigma }_m + {\boldsymbol B}_{b_i}^T {\boldsymbol \sigma }_b)dA  </math>
973
|}
974
| style="width: 5px;text-align: right;white-space: nowrap;" | (64)
975
|}
976
977
|- style="border-bottom: 2px solid;"
978
979
| style="border-left: 2px solid;border-right: 2px solid;" | 
980
981
|}
982
983
<div class="center" style="width: auto; margin-left: auto; margin-right: auto;">'''Box 1.''' Computation of the residual forces vector for an   elasto-plastic material</div>
984
985
The formulation of the EBST element described above has been implemented in the explicit dynamic code STAMPACK <span id='citeF-31'></span> [[#cite-31|[31]]]. This code has been used for the structural analysis computations shown in the examples section.
986
987
For further details see <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]],[[#cite-22|22]]].
988
989
==4 Aeroelastic Analysis==
990
991
Wind loading analysis is mandatory in outdoor membrane structures such as inflatable structures formed by low pressure inflatable tubes. Aeroelastic forces can induce the instability and failure of the structure. The accurate computation of wind forces is also essential for the correct design of the anchoring system. A simple weakly coupled staggered aeroelastic scheme has been implemented for the EBST rotation-free shell triangle described in the previous sections. The computation of the wind forces on the membrane structure is performed at each time step using the Tdyn fluid-dynamic code based on the solution of the Navier-Stokes equations for a viscous flow using a stabilized finite element formulation <span id='citeF-31'></span> [[#cite-33|[33]]]. Wind forces are used to compute the membrane deformations via the EBST element. This naturally introduces changes in the geometry of the domain where the aerodynamic analysis is performed. These changes are taken into account in the fluid-dynamic analysis at the next time step and so on. The transfer of data between the aerodynamic and structural analysis codes is performed via “ad-hoc” interface for data interchange in fluid-structure interaction problems <span id='citeF-27'></span> [[#cite-27|[27]],<span id='citeF-28'></span> [[#cite-28|28]],<span id='citeF-32'></span> [[#cite-32|32]]].
992
993
==5 Examples==
994
995
All units in the examples are given in the international unit system.
996
997
===5.1 Inflation of a Sphere===
998
999
As the EBST element uses a quadratic interpolation of geometry, the existance of  membrane locking must be assessed. For this example an originally curved surface is considered, where a standard linear strain triangle would lead to membrane locking. The example is the inflation of a spherical shell under internal pressure. An incompressible Mooney-Rivlin constitutive material have been considered <span id='citeF-21'></span><span id='citeF-22'></span>[[#cite-21|[21]], [[#cite-22|22]]]. The three meshes of EBST elements considered to evaluate convergence are shown in Fig.&nbsp;[[#img-3|3]].a-c. The value of the actual radius as a function of the internal pressure is  plotted in Fig.&nbsp;[[#img-3|3]].d for the different meshes and is also compared with the analytical solution. It can be seen that with a few degrees of freedom it is possible to obtain an excellent agreement for the range of strains considered. The final value corresponds to a thickness radius ratio of <math display="inline">h/R=0.00024</math>. No membrane locking has therefore been detected in this problem. For more details see <span id='citeF-21'></span><span id='citeF-22'></span><span id='citeF-29'></span>[[#cite-21|[21]], [[#cite-22|22]], [[#cite-29|29]]].
1000
1001
<div id='img-3'></div>
1002
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1003
|-
1004
|[[File:Draft_Samper_330523237_5129_4.JPG]]
1005
|- style="text-align: center; font-size: 75%;"
1006
| colspan="1" | '''Figure 3:''' Inflation of sphere of Mooney-Rivlin material. (a)-(c) EBST meshes used in the analysis (d)Radius as a function of the internal pressure
1007
|}
1008
1009
===5.2 Inflation of a Square Airbag Against a Spherical Object===
1010
1011
The next example is the inflation of a square airbag supporting a spherical object. The lower surface part of the airbag is limited by a rigid plane and on the upper part a spherical dummy object is set to study the interaction between the airbag and the object. The material properties are given in <span id='citeF-21'></span><span id='citeF-22'></span><span id='citeF-30'></span>[[#cite-21|[21]], [[#cite-22|22]], [[#cite-30|30]]].
1012
1013
The airbag geometry is initially square with an undeformed side length of <math display="inline">0.643</math>. Only one quarter of the geometry has been modelled due to symmetry.  The thickness considered is <math display="inline">h=0.00075</math> and the inflation pressure is <math display="inline">250000</math>. Using a density <math display="inline">\delta=1000</math>, pressure is linearly increased from 0 to the final value in <math display="inline">t=0.15</math>. The spherical object has a radius <math display="inline">r=0.08</math> and a mass of <math display="inline">4.8</math> (one quarter), and is subjected to gravity load during all the process.
1014
1015
<div id='img-4'></div>
1016
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1017
|-
1018
|[[File:Draft_Samper_330523237_6771_5.JPG]]
1019
|- style="text-align: center; font-size: 75%;"
1020
| colspan="1" | '''Figure 4:''' Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution
1021
|}
1022
1023
The mesh has 8192 EBST elements and 4225 nodes on the  surface of the airbag. Figure&nbsp;[[#img-4|4]] shows the deformed configurations for three different times. The sequence on the left figure corresponds to an analysis including full bending effects and the sequence on the right is the result of a pure membrane analysis. Note that the membrane solution presents artificial (numerical) wrinkles which dissappear when using the full bending formulation presented in this paper.
1024
1025
===5.3 Inflation/Deflation of a Closed Tube===
1026
1027
This  problem studies the inflating and de-inflating of a tube with a semi-spherical end cap.  The tube diameter is <math display="inline">D=2</math>, its total length is <math display="inline">L=6</math> and the thickness <math display="inline">h=5\times 10^{-4}</math>.  The material has the following properties <math display="inline">E=4\times 10^{8}</math>, <math display="inline">\nu =0.35 </math>, <math display="inline">\varrho =2\times 10^{3}</math>.  The tube is inflated fast until a pressure of <math display="inline">10^4</math> and when pressure is released the tube de-inflates and falls under self weight.  The analysis is performed with a mesh of 16704 EBST elements and 8501 nodes modelling a quarter of the geometry.  A rigid frictionless base is assumed.  Self contact is also included to avoid penetrations.  The evolution of the tube walls during the de-inflating process are shown in Fig.&nbsp;[[#img-5|5]].  For this very thin shell, the differences between a full bending solution and a pure membrane solution are less marked.
1028
1029
<div id='img-5'></div>
1030
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1031
|-
1032
|[[File:Draft_Samper_330523237_5138_6.JPG]]
1033
|- style="text-align: center; font-size: 75%;"
1034
| colspan="1" | '''Figure 5:''' Inflation and deflation of a closed tube. <math>L=6</math>, <math>D=2</math>, <math>h=5\times  10^{-4}</math>. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution
1035
|}
1036
1037
===5.4 Inflation of a Tubular Arch===
1038
1039
The next example is the analysis of a tubular arch. This kind of archs are joined together to form large inflatable structures for a wide range of applications as shown in the following examples. The  tubular arch has a internal diameter of <math display="inline">0.9</math>; is total length is <math display="inline">11.0</math> and the heigth is <math display="inline">4.5</math>. The tube thickness is <math display="inline">3 \times  10^{-4}</math>, the constitutive material is polyamid with  Young modulus <math display="inline">E=2.45\times 10^8</math> and Poisson ratio <math display="inline">\nu=0.35</math>. Due to geometric symmetrys one quarter of the tube was discretized with 33600 triangular elements (17061 nodes). The simulation includes two stages. First the tube is left fall down under gravity action. Second an internal pressure of <math display="inline">p=883</math> is applied in a short time and kept constant afterwards until the full inflation of the tube is reached.
1040
1041
Figure [[#img-6|6]] shows deformed configurations for different instants of the process.
1042
1043
<div id='img-6'></div>
1044
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1045
|-
1046
|[[File:Draft_Samper_330523237_4060_7.JPG]]
1047
|- style="text-align: center; font-size: 75%;"
1048
| colspan="1" | '''Figure 6:''' Inflation of a tubular arch. (a) Deflated tube. (b),(c) Deformed   configurations during the inflation process. (d) Final inflated   configuration
1049
|}
1050
1051
===5.5 Impact of Rigid Spheres on an Inflated Pavilion===
1052
1053
Figure [[#img-7|7]] shows the impact of two rigid spheres on an inflatable structure ressembling a mushroom. The surface has been discretized with a relative coarse mesh of EBST elements. This example simulates the effect of children  jumping or walking on an inflatable structure. Frictional contact conditions and elastic material properties are assumed. The  pavilion structure is inflated to a low pressure. The sphere on the top of the pavilion is linked to the structure. The bouncing sphere was shot to the structure.  The results observed agree very well with the expected behaviour.
1054
1055
A numerical experiment was performed next for reproducing the inflating and deflating process of the mushroom shape pavilion. Figure [[#img-8|8]] represents the inflating process.
1056
1057
<div id='img-7'></div>
1058
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1059
|-
1060
|[[File:Draft_Samper_330523237_2857_8.JPG]]
1061
|- style="text-align: center; font-size: 75%;"
1062
| colspan="1" | '''Figure 7:''' Impact of two spheres on a inflatable structure. Deformed shape at   different times
1063
|}
1064
1065
<div id='img-8'></div>
1066
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1067
|-
1068
|[[File:Draft_Samper_330523237_6197_9.JPG]]
1069
|- style="text-align: center; font-size: 75%;"
1070
| colspan="1" | '''Figure 8:''' Inflation of a membrane structure. Geometry at different times during the inflating process
1071
|}
1072
1073
===5.6 Deployment of a Spinnaker Sail===
1074
1075
Figure [[#img-9|9]] shows the simulation of the deployment of a spinnaker sail under the wind action. An elastic material (Naylon) is used with a coarse mesh of 730 EBST elements. The material properties used are <math display="inline">E= 5000</math>, <math display="inline">\nu  = 0.3</math>, <math display="inline">t = 5\times  10^{-4}</math>. The wind pressure force  is obtained using the Tdyn CFD code  <span id='citeF-1'></span> [[#cite-33|[33]]]. The apparent wind velocity used is 4. The sail deployment process agrees very well to the real behaviour. The objective was to determine the stress level on the sail.
1076
1077
===5.7 Examples of Practical Constructions of Membrane Structures with Low Pressure Inflatable Tubes===
1078
1079
Figure Figure [[#img-10|10]] presents a pavilion of 150 m<math display="inline">^2</math> for a telecommunication company in Spain. The pavilion is made by assembling some 70 low pressure tubes like the one showed in Figure Figure [[#img-6|6]]. The tubes are joined together to create the pavilion space. The complexity of the shape required extensive aerodynamic analysis to guarantee the stability of the structure. This pavilion visited some 15 cities in Spain during 2005.
1080
1081
<div id='img-9'></div>
1082
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1083
|-
1084
|[[File:Draft_Samper_330523237_9989_11.JPG]]
1085
|- style="text-align: center; font-size: 75%;"
1086
| colspan="2" | '''Figure 9:''' Spinnaker sail.  Sequence of deployment
1087
|}
1088
1089
<div id='img-10'></div>
1090
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1091
|-
1092
|[[File:Draft_Samper_330523237_5185_10.JPG]]
1093
|- style="text-align: center; font-size: 75%;"
1094
| colspan="1" | '''Figure 10:''' Inflated pavilion for a telecommunication exhibition built by   assembly of low pressure inflatable tubes. Triangular mesh on the pavilion   surface and results of   the aerodynamic analysis
1095
|}
1096
1097
<div id='img-11'></div>
1098
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1099
|-
1100
|[[Image:Draft_Samper_330523237-Diapo27.png|500px|]]
1101
|-
1102
|[[Image:Draft_Samper_330523237-Cadillac_stand.png|450px|Cadillac style exhibition pavilion built by assembly of low pressure analysis   tubes. Geometry and results of the aerodynamic analysis]]
1103
|- style="text-align: center; font-size: 75%;"
1104
| colspan="2" | '''Figure 11:''' Cadillac style exhibition pavilion built by assembly of low pressure analysis   tubes. Geometry and results of the aerodynamic analysis
1105
|}
1106
1107
<div id='img-12'></div>
1108
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1109
|-
1110
|[[File:Draft_Samper_330523237_4184_12.JPG]]
1111
|- style="text-align: center; font-size: 75%;"
1112
| colspan="1" | '''Figure 12:''' Exhibition hall in Barcelona built by assembly of low pressure   inflatable tubes. Images of the design project
1113
|}
1114
1115
<div id='img-13'></div>
1116
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1117
|-
1118
|[[File:Draft_Samper_330523237_8284_13.JPG]]
1119
|- style="text-align: center; font-size: 75%;"
1120
| colspan="1" | '''Figure 13:''' Inflatable exhibition hall in Barcelona harbour. Images of the   construction of the different modules, transport, lay-out and   inflating operations
1121
|}
1122
1123
<div id='img-14'></div>
1124
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1125
|-
1126
|[[Image:Draft_Samper_330523237-Fig_interior.png|500px|Inflatable exhibition hall in Barcelona harbour. Images of  outside and inside   spaces. Lower frame shows the first and third authors of the paper (from   right to left)]]
1127
|- style="text-align: center; font-size: 75%;"
1128
| colspan="1" | '''Figure 14:''' Inflatable exhibition hall in Barcelona harbour. Images of  outside and inside   spaces. Lower frame shows the first and third authors of the paper (from   right to left)
1129
|}
1130
1131
Figure [[#img-11|11]] shows an inflated pavilion of some 200 m<math display="inline">^2</math> simulating and old cadillac automotive for and itinerant exhibition in Spain (2005). The flat geometry of the ceiling was a challenge for the designers. Extensive structural and aerodynamic analysis were performed using the Tdyn code <span id='citeF-33'></span> [[#cite-33|[33]]] to guarantee the integrity of the structure.
1132
1133
Figure [[#img-12|12]] shows the design shape of a relative large inflatable exhibition hall (1600m<math display="inline">^2</math>) built in the harbour area of the city of Barcelona on December 2004. Figure [[#img-13|13]] shows some stages of the construction of the different inflatable modules of the pavilion and images of the transport, lay-out and inflating operations. Note the simplicity of the transport logistics, compared with the dimensions of the structure, involving a few bags easily carried in a mid-size vehicle. Figure [[#img-14|14]] shows images of the outside and inside spaces of the pavilion containing a display of innovative concepts and products in modern art, fashion and information technologies.
1134
1135
Figure [[#img-15|15]] shows images of a mid-size inflatable pavilion (250m<math display="inline">^2</math>) built for an itinerant exhibition on Gaudi. The exhibition visited some 20 cities in Spain in 2002. Some images of the outside and inside of the pavilion are shown in Fig [[#img-16|16]]. More details are given in <span id='citeF-25'></span> [[#cite-25|[25]]].
1136
1137
Figure [[#img-17|17]] shows images of an inflatable pavilion of <math display="inline">\approx 1000\hbox{m}^2</math> formed by assembling of 6 cylindrical halls. The pavilion was built in an old train station in Barcelona in December 2004 for an exhibition on the history of Civil Engineering in Catalonia. Some views of the pavilion entrance and the inside are shown in Fig.18. For more details of this inflatable pavilion see <span id='citeF-25'></span> [[#cite-25|[25]]].
1138
1139
Figures [[#img-19|19]] and [[#img-20|20]] finally show images of designs of innovative inflatable pavilions and halls formed by low pressure inflatable tubes. The versatility of the tube assembly process allows the design and construction of quite complex shapes of artistic and architectural value in a simple and economical manner.
1140
1141
<div id='img-15'></div>
1142
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1143
|-
1144
|[[Image:Draft_Samper_330523237-Diapo6.png|500px|]]
1145
|-
1146
|[[Image:Draft_Samper_330523237-Diapo8.png|500px|Pavilion for an itinerant Gaudi Exhibition in Spain. Geometry and lay-out of the inflation process]]
1147
|- style="text-align: center; font-size: 75%;"
1148
| colspan="2" | '''Figure 15:''' Pavilion for an itinerant Gaudi Exhibition in Spain. Geometry and lay-out of the inflation process
1149
|}
1150
1151
<div id='img-16'></div>
1152
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1153
|-
1154
|[[File:Draft_Samper_330523237_9430_14.JPG]]
1155
|-
1156
|[[Image:Draft_Samper_330523237-Diapo10.png|600px|Inflatable   pavilion for Gaudi Exhibition. Images of outside and inside spaces]]
1157
|- style="text-align: center; font-size: 75%;"
1158
| colspan="2" | '''Figure 16:''' Inflatable   pavilion for Gaudi Exhibition. Images of outside and inside spaces
1159
|}
1160
1161
<div id='img-17'></div>
1162
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1163
|-
1164
|[[File:Draft_Samper_330523237_5139_15.JPG]]
1165
|-
1166
|[[Image:Draft_Samper_330523237-Diapo13.png|300px|]]
1167
|[[Image:Draft_Samper_330523237-Diapo17.png|300px|]]
1168
|-
1169
|[[Image:Draft_Samper_330523237-Diapo21.png|700px|Inflatable exhibition hall in Barcelona. Original design. Results of   the aerodynamic analysis. Sewing of membrane patterns and final construction]]
1170
|- style="text-align: center; font-size: 75%;"
1171
| colspan="2" | '''Figure 17:''' Inflatable exhibition hall in Barcelona. Original design. Results of   the aerodynamic analysis. Sewing of membrane patterns and final construction
1172
|}
1173
1174
<div id='img-18'></div>
1175
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1176
|-
1177
|[[Image:Draft_Samper_330523237-Diapo22.png|500px|]]
1178
|-
1179
|[[Image:Draft_Samper_330523237-Diapo23.png|500px|Images of inflatable exhibition hall in Barcelona]]
1180
|- style="text-align: center; font-size: 75%;"
1181
| colspan="2" | '''Figure 18:''' Images of inflatable exhibition hall in Barcelona
1182
|}
1183
1184
<div id='img-19'></div>
1185
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1186
|-
1187
|[[Image:Draft_Samper_330523237-Diapo32.png|450px|]]
1188
|-
1189
|[[Image:Draft_Samper_330523237-Diapo33.png|400px|Projects of low pressure inflatable pavilions. Above: pavilion  for an international swimming competition. Below: mobile opera theatre]]
1190
|- style="text-align: center; font-size: 75%;"
1191
| colspan="2" | '''Figure 19:''' Projects of low pressure inflatable pavilions. Above: pavilion  for an international swimming competition. Below: mobile opera theatre
1192
|}
1193
1194
==6 Concluding Remarks ==
1195
1196
We have presented in the paper the formulation of a rotation-free enhanced basic shell triangle (EBST) for analysis of thin membranes and inflatable structures. The element is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and an assumed linear membrane strain field for the in-plane behaviour. A simple and economic version of the element using a single integration point has been presented. The  element has proven to be an excellent candidate for solving practical problems in the design and analysis of low pressure inflatable structures under different loading conditions as demonstrated in the examples of application shown.
1197
1198
A large variety of membrane structures built by assembly of low pressure inflatable tubes has been presented showing the versalitiy and potential of this type of constructions in practice.
1199
1200
==Acknowledgments==
1201
1202
The second author is a member of the scientific staff of the Science Research Council of Argentina (CONICET). The financial support of CIMNE, CONICET and Agencia Córdoba Ciencia S.E. and the support of the companies QUANTECH ATZ SA (<code>http://www.quantech.es/</code>) and COMPASS Ingeniería y Sistemas SA (<code>http://www.compassis.com/</code>) providing the codes STAMPACK <span id='citeF-31'></span> [[#cite-31|[31]]] and Tdyn <span id='citeF-33'></span> [[#cite-31|[33]]] are gratefully acknowledged. Thanks are also given to BuildAir Ingeniería y Arquitectura SA (<code>http://www.buildair.com/</code>) for providing photographs of practical constructions of inflatable structures.
1203
1204
<div id='img-20'></div>
1205
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1206
|-
1207
|[[Image:Draft_Samper_330523237-Diapo34.png|600px|Projects of pavilions formed by low pressure inflatable tubes]]
1208
|- style="text-align: center; font-size: 75%;"
1209
| colspan="1" | '''Figure 20:''' Projects of pavilions formed by low pressure inflatable tubes
1210
|}
1211
1212
==References==
1213
1214
<div id="cite-1"></div>
1215
[[#citeF-1|[1]]]  Inflatable structures for engineering and architecture applications. BuildAir Ingeniería y Arquitectura SA, www.buildair.com, 2007
1216
1217
<div id="cite-2"></div>
1218
[[#citeF-2|[2]]]   Plant RH, Liapis S,  Telionis DP (1996) Flood Protection using Inflatable Dams. Natural Disaster Reduction Conference. Washington December 3-5:264-265
1219
1220
<div id="cite-3"></div>
1221
[[#citeF-3|[3]]]   Rehmet M, Bauder C, Schäfer, I  Kröplin BH (1994) Solar Powered Airship Project. International Conference Remotely Piloted Vehicles, Bristol
1222
1223
<div id="cite-4"></div>
1224
[[#citeF-4|[4]]]   Beukers A,  Molder OV,  Vermeeren CAJR (2001) Inflatable Structures in Space Engineering. Journal of the IASS
1225
1226
<div id="cite-5"></div>
1227
[[#citeF-5|[5]]]    ILC Dover, World leader in innovative flexible solutions (2000). http://www.ilcdover.com
1228
1229
<div id="cite-6"></div>
1230
[[#citeF-6|[6]]]    New Methodologies for Design and Manufacturing of Inflated Structures (INFLAST) (Brite-Euram Contract NAº BRPR-CT97-0448). Consortium: CIMNE: BAZAN, S.A., CASA, S.A., NOVURANIA, S.p.A., IRD a/s, Universitat Stutt-gart, Airship Technologies, GmbH. Project finished on May 2000
1231
1232
<div id="cite-7"></div>
1233
[[#citeF-7|[7]]] Sadeh WZ,  Criswell ME A generic inflatable structure for a lunar/martian base. Proceeding of the Ebgineering, Construction and Operations in Space IV 1146-1156
1234
1235
<div id="cite-8"></div>
1236
[[#citeF-8|[8]]]  Nowak PS,  Sadeh WZ,  Morroni LA (1992), Geometric modeling of inflatable structures for lunar base. Journal of Aerospace Engineering 5(3):311-322
1237
1238
<div id="cite-9"></div>
1239
[[#citeF-9|[9]]]  Oñate E, Kröplin B (Eds.) (2003) Proceedings of the     1st. International Conference on Textile Composites and     Inflatable Structures I, CIMNE, Barcelona
1240
1241
<div id="cite-10"></div>
1242
[[#citeF-10|[10]]]  Oñate E, Kröplin B (Eds.) (2005) Textile Composites and     Inflatable Structures I, Springer, Netherlands
1243
1244
<div id="cite-11"></div>
1245
[[#citeF-11|[11]]]  Oñate E, Kröplin B (Eds.) (2005) Proceedings of the     2nd. International Conference on Textile Composites and     Inflatable Structures II, CIMNE, Barcelona
1246
1247
<div id="cite-12"></div>
1248
[[#citeF-12|[12]]]  Taylor RL (2001) ''Finite element analysis of membrane structures''. Publication 203, CIMNE, Barcelona
1249
1250
<div id="cite-13"></div>
1251
[[#citeF-13|[13]]]   Oñate E (1994) ''A review of some finite element families for thick and thin plate and shell analysis''. Publication 53, CIMNE, Barcelona
1252
1253
<div id="cite-14"></div>
1254
[[#citeF-14|[14]]]  Hampshire JK, Topping BHV, Chan HC (1992) Three node triangular elements with one degree of freedom per node. Engng. Comput. 9:49&#8211;62,
1255
1256
<div id="cite-15"></div>
1257
[[#citeF-15|[15]]]  Phaal R,  Calladine CR (1992) A simple class of finite elements for plate and shell problems. II: An element for thin shells with only translational degrees of freedom. Int. J. Num. Meth. Engng. 35:979&#8211;996
1258
1259
<div id="cite-16"></div>
1260
[[#citeF-16|[16]]]  Oñate E, Cervera M (1993) Derivation of thin plate bending elements with one degree of freedom per node. Engineering Computations 10:553&#8211;561
1261
1262
<div id="cite-17"></div>
1263
[[#citeF-17|[17]]]  Oñate E, Zárate F (2000) Rotation-free plate and shell triangles. Num. Meth. Engng. 47:557&#8211;603
1264
1265
<div id="cite-18"></div>
1266
[[#citeF-18|[18]]]  Cirak F, Ortiz M  (2000) Subdivision surfaces: A new paradigm for thin-shell finite element analysis. Int. J Num. Meths. Engng. 47:2039&#8211;2072
1267
1268
<div id="cite-19"></div>
1269
[[#citeF-19|[19]]]  Flores FG, Oñate E  (2001) A basic thin shell triangle with only translational DOFs for large strain plasticity. Int. J. Num. Meths. Engng. 51:57&#8211;83.
1270
1271
<div id="cite-20"></div>
1272
[[#citeF-20|[20]]]  Cirak F,  Ortiz M (2001) Fully <math>C^{1}</math>-conforming subdivision elements for finite deformations thin-shell analysis. Num. Meths. Engng. 51:813&#8211;833
1273
1274
<div id="cite-21"></div>
1275
[[#citeF-21|[21]]]   Flores FG, Oñate E (2005) Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach. Comput. Meth. Appl. Mech. Engng. 194(6&#8211;8):907&#8211;932
1276
1277
<div id="cite-22"></div>
1278
[[#citeF-22|[22]]]  Oñate E, Flores FG (2005)  Advances in the formulation of the rotation-free basic shell triangle. Comput. Meth. Appl. Mech. Engng. 194(21-24):2406-2443
1279
1280
<div id="cite-23"></div>
1281
[[#citeF-23|[23]]]  Zienkiewicz OC, Taylor RL (2005) The finite element method. Vol II: Solid Mechanics, Oxford, Elsevier
1282
1283
<div id="cite-24"></div>
1284
[[#citeF-24|[24]]]  Ogden RW  (1972)  Large deformation isotropic elasticity: on the correlation of theory and experiments for incompressible rubberlike solids. Proc. Royal Society London A. 326:565&#8211;584
1285
1286
<div id="cite-25"></div>
1287
[[#citeF-25|[25]]]  Marcipar J, Oñate E, Miquel J (2005) Experiences in     the design analysis and construction of low pressure inflatable     structures. Textile Composites and Inflatable Structures I, E.  Oñate     and B. Kröplin (Eds.), Springer
1288
1289
<div id="cite-26"></div>
1290
[[#citeF-26|[26]]]  Flores F, Oñate E (2005) Applications of a rotation-free     triangular element for finite strain analysis of thin shells and     membranes. Textile Composites and Inflatable Structures I, E.  Oñate     and B. Kröplin (Eds.), Springer
1291
1292
<div id="cite-27"></div>
1293
[[#citeF-27|[27]]]  Pons J,  Oñate E, Flores F, García J, Ribó R,   Marcipar J (2005) Numerical and experimental values comparison for an   inflatable structure. Textile Composites and Inflatable Structures II, E.   Oñate and B. Kröplin (Eds.), CIMNE, Barcelona
1294
1295
<div id="cite-28"></div>
1296
[[#citeF-28|[28]]]  GiD. The personal pre/postprocessor (2007), CIMNE, Barcelona,
1297
1298
www.gidhome.com
1299
1300
<div id="cite-29"></div>
1301
[[#citeF-29|[29]]]  Needleman A (1977) Inflation of spherical rubber ballons. Solids and Structures 13:409&#8211;421
1302
1303
<div id="cite-30"></div>
1304
[[#citeF-30|[30]]]  Marklund PO,  Nilsson L (2002) Simulation of airbag inflation processes using a coupled fluid structure approach. Computational Mechanics 29:289&#8211;297
1305
1306
<div id="cite-31"></div>
1307
[[#citeF-31|[31]]]  STAMPACK (2007) An explicit dynamic code for sheet stamping   analysis. Quantech ATZ SA (www.quantech.es)
1308
1309
<div id="cite-32"></div>
1310
[[#citeF-32|[32]]]  A communication library for fluid-structure interaction   analysis (2007). Compass Ingeniería y Sistemas SA, www.compassis.com
1311
1312
<div id="cite-33"></div>
1313
[[#citeF-33|[33]]]  Tdyn (2007) Finite element code for fluid dynamics and     thermal analysis. Compass Ingeniería y Sistemas SA, www.compassis.com
1314

Return to Onate et al 2007g.

Back to Top

Document information

Published on 01/01/2007

Licence: CC BY-NC-SA license

Document Score

0

Views 188
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?