You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
==Abstract==
2
3
We present a general formulation for analysis of fluid-structure interaction problems using the particle finite element method (PFEM). The key feature of the PFEM is the use of a Lagrangian description to model the motion of nodes (particles) in both the fluid and the structure domains. Nodes are thus viewed as particles which can freely move and even separate from the main analysis domain representing, for instance,  the effect of water drops. A mesh connects the nodes defining the discretized domain where the governing equations, expressed in an integral from, are solved as in the standard FEM. The necessary stabilization for dealing with the incompressibility condition in the fluid is introduced via the finite calculus (FIC) method. A fractional step scheme for the transient coupled fluid-structure solution is described. Examples of application of the PFEM method to solve a number of fluid-structure interaction problems involving large motions of the free surface and splashing of waves are presented.
4
5
'''Keywords:''' Particle finite element method; finite element method; fluid-structure interaction; finite calculus.
6
7
==1 Introduction==
8
9
There is an increasing interest in the development of robust and efficient numerical methods for analysis of engineering problems involving the interaction of fluids and structures accounting for large motions of the fluid free surface and the existance of  fully  or partially submerged bodies. Examples of this kind are common  in  ship hydrodynamics, off-shore structures, spillways in dams, free surface channel flows, liquid containers, stirring reactors, mould filling processes, etc.
10
11
The movement of solids in fluids is usually analyzed with the finite element method (FEM) [Zienkiewicz and Taylor (2000) <span id="citeF-43"></span>[[#cite-43|[43]]]] using the so called arbitrary Lagrangian-Eulerian (ALE) formulation [Donea and Huerta (2003)] <span id="citeF-9"></span>[[#cite-9|[9]]]. In the ALE approach the movement of the fluid particles is decoupled from that of the mesh nodes. Hence the relative velocity between mesh nodes and particles is used as the convective velocity in the momentum equations.
12
13
The ALE formulation has being used in conjunction with stabilized finite element method to derive a number of numerical procedures for fluid-structure interaction (FSI) analysis. For instance the deforming-spatial-domain/stabilized space-time (DSD/SST) [Tezduyar ''et al.'' (1992a,b) <span id="citeF-38"></span>[[#cite-38|[38]]-<span id="citeF-39"></span>[[#cite-39|39]]]] formulation has been used for computation of fluid-structure interaction and free-surface flow problems. The Mixed Interface-Tracaking/Interface-Capturing Technique (MITICT) [Tezduyar (2001) <span id="citeF-40"></span>[[#cite-40|[40]]]] was proposed for computation of problems that involve both fluid-structure interactions and free surfaces. The  MITICT can in general be used for classes of problems that involve both interfaces that can be tracked with a moving-mesh method and interfaces that are too complex or unsteady to be tracked and therefore require an interface-capturing technique.
14
15
Typical difficulties of FSI analysis using the FEM with both the Eulerian and ALE formulation include the treatment of the convective terms and the incompressibility constraint in the fluid equations, the modelling and tracking of the free surface in the fluid, the transfer of information between the fluid and solid domains via the contact interfaces, the modelling of wave splashing, the possibility to deal with large rigid body motions of the structure within the fluid domain, the efficient updating of the finite element meshes for both the structure and the fluid, etc.
16
17
Most of these problems disappear if a ''Lagrangian description'' is used to formulate the governing equations of both the solid and the fluid domain. In the Lagrangian formulation the motion of the individual particles are followed and, consequently, nodes in a finite element mesh can be viewed as moving “particles”. Hence, the motion of the  mesh discretizing the total domain (including both the fluid and solid parts) is followed during the transient solution.
18
19
In this paper we present an overview of a particular class of Lagrangian formulation developed by the authors to solve problems involving the interaction between fluids and solids in a unified manner. The method, called the ''particle finite element method'' (PFEM), treats the mesh nodes in the fluid and solid domains as  particles which can freely move and even separate from the main fluid domain representing, for instance, the effect of water drops. A finite element mesh connects the nodes defining the discretized domain where the governing equations are solved in the standard FEM fashion. The PFEM is the natural evolution of recent work of the authors for  the solution of FSI problems using Lagrangian finite element and meshless methods [Aubry ''et al.'' (2004) <span id="citeF-1"></span>[[#cite-1|[1]]]; Idelsohn ''et al.'' (2003a; 2003b; 2004) <span id="citeF-20"></span>[[#cite-20|[20]], <span id="citeF-21"></span>[[#cite-21|21]], <span id="citeF-23"></span>[[#cite-23|23]]]; Oñate ''et al.'' (2003; 2004) <span id="citeF-33"></span>[[#cite-33|[33]], <span id="citeF-34"></span>[[#cite-34|34]]]].
20
21
An obvious advantage of the Lagrangian formulation is that the convective terms disappear from the fluid equations. The difficulty is however transferred to the problem of adequately (and efficiently) moving the mesh nodes. Indeed for large mesh motions remeshing may be a frequent necessity along the time solution. We use an innovative mesh regeneration procedure blending elements of different shapes using an extended Delaunay tesselation [Idelsohn ''et al.'' (2003a; 2003c) <span id="citeF-20"></span>[[#cite-20|[20]],<span id="citeF-22"></span>[[#cite-22|22]]]]. Furthermore, this special polyhedral finite element needs special shape funtions. In this paper, meshless finite element (MFEM) shape functions have been used [Idelsohn ''et al.'' (2003a) <span id="citeF-20"></span>[[#cite-20|[20]]]].
22
23
The need to properly treat the incompressibility condition in the fluid still remains in the Lagrangian formulation. The use of standard finite element interpolations may lead to a volumetric locking defect unless some precautions are taken. A number of stabilization finite element procedures aiming to alleviate the locking problem in incompressible fluids have been proposed and some of them are listed in [Chorin (1967) <span id="citeF-2"></span>[[#cite-2|[2]]]; Codina (2002) <span id="citeF-3"></span>[[#cite-3|[3]]]; Codina ''et al.'' (1998) <span id="citeF-4"></span>[[#cite-4|[4]]];  Codina and Blasco (2000) <span id="citeF-5"></span>[[#cite-5|[5]]]; Codina and Zienkiewicz (2002) <span id="citeF-6"></span>[[#cite-6|[6]]]; Cruchaga and Oñate (1997; 1999) <span id="citeF-7"></span>[[#cite-7|[7]],<span id="citeF-8"></span>[[#cite-8|8]]]; Donea and Huerta (2003) <span id="citeF-9"></span>[[#cite-9|[9]]]; Franca and Frey (1992) <span id="citeF-121></span>[[#cite-11|[11]]]; Hansbo and Szepessy (1990) <span id="citeF-15"></span>[[#cite-15|[15]]]; Hughes ''et al.'' (1986; 1989; 1994) <span id="citeF-16"></span>[[#cite-16|[16]], <span id="citeF-17"></span>[[#cite-17|17]], <span id="citeF-18"></span>[[#cite-18|18]]]; Oñate (1998) <span id="citeF-27"></span>[[#cite-27|[27]]]; Sheng ''et al.'' (1996) <span id="citeF-36"></span>[[#cite-36|[36]]]; Tezduyar ''et al.'' (1992) <span id="citeF-41"></span>[[#cite-41|[41]]]; Zienkiewicz and Taylor (2000) <span id="citeF-43"></span>[[#cite-43|[43]]]; Storti ''et al.'' (2004) <span id="citeF-37"></span>[[#cite-37|[37]]]]. A general aim is to use low order  elements with equal order interpolation for the velocity and pressure variables. In our work the stabilization via a finite calculus (FIC) procedure has been chosen [Oñate (2000) <span id="citeF-31"></span>[[#cite-31|[31]]]]. Recent applications of the FIC method for incompressible flow analysis using linear triangles and tetrahedra are reported in [García and Oñate (2003) <span id="citeF-12"></span>[[#cite-12|[12]]]; Oñate (2004) <span id="citeF-29"></span>[[#cite-29|[29]]]; Oñate ''et al.'' (2000; 2004) <span id="citeF-31"></span>[[#cite-31|[31]], <span id="citeF-34"></span>[[#cite-34|34]]]; Oñate and García (2001) <span id="citeF-32"></span>[[#cite-32|[32]]]; Oñate and Idelsohn (1998) <span id="citeF-31"></span>[[#cite-30|[30]]]].
24
25
The Lagrangian formulation has many advantages for tracking the motion of fluid particles in flows accounting for large displacements of the fluid surface as in the case of breaking waves and splashing of liquids (Figure [[#img-1|1]]). We note that the information in the PFEM is typically nodal-based, i.e. the element mesh is mainly used to obtain the values of the state variables (i.e. velocities, pressure, etc.) at the nodes. A difficulty arises in the identification of the  boundary of the domain from a given collection of nodes. Indeed the “boundary” can include the  free surface in the fluid and the individual particles moving outside the fluid domain. In our work the Alpha Shape technique [Edelsbrunner and Mucke (1999) <span id="citeF-10"></span>[[#cite-10|[10]]]] is used to identify the boundary nodes.
26
27
<div id='img-1'></div>
28
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
29
|-
30
|[[Image:Draft_Samper_616988227_4491_monograph-Figure1.png|400px|(a) Large breaking wave. (b) PFEM results for a large wave hitting a verticall wall in 2D.]]
31
|- style="text-align: center; font-size: 75%;"
32
| colspan="1" | '''Figure 1:''' (a) Large breaking wave. (b) PFEM results for a large wave hitting a verticall wall in 2D.
33
|}
34
35
The layout of the paper is the following. In the next section the basic ideas of the PFEM are outlined. Next the basic equation for an incompressible flow using a Lagrangian description and the FIC formulation are presented. Then a fractional step scheme for the transient solution via standard finite element procedures is described. Details of the treatment of the coupled FSI problem are given. The procedures for mesh generation and for identification of the free surface nodes are briefly outlined. Finally, the efficiency of the ''particle finite element method'' (PFEM) is shown in its application to a number of FSI problems involving large flow motions, surface waves, moving bodies. etc.
36
37
==2 Rationale of the Particle Finite Element Method==
38
39
Let us consider a domain containing both fluid and solid subdomains. The moving fluid particles interact with the solid boundaries thereby inducing the deformation of the solid which in turn affects the flow motion and, therefore, the problem is  fully coupled.
40
41
FSI problems traditionally have been  solved using an arbitrary Eulerian-Lagrangian description (ALE) for the flow equation whereas the structure is modelled with a full Lagrangian formulation. Many examples of applications of this type of approach are found in the literature. A good review can be found in [Donea and Huerta (2003) <span id="citeF-9"></span>[[#cite-9|[9]]]; Zienkiewicz and Taylor (2000) <span id="citeF-43"></span>[[#cite-43|[43]]]].
42
43
In the PFEM approach presented here, both the fluid and the solid domains are modelled using an ''updated'' ''Lagrangian formulation''. The finite element method (FEM) is used to solve the continuum equations in both domains. Hence a mesh discretizing these domains must be generated in order to solve the governing equations for both the fluid and solid problems in the standard FEM fashion. We note once more that the nodes discretizing the fluid and solid domains can be viewed as material particles which motion is tracked during the transient solution.
44
45
The quality of the numerical solution will obviously depend on the discretization chosen as in the standard FEM. Adaptive mesh refinement techniques can be used to improve the solution in zones where large motions of the fluid or the structure occur.
46
47
The Lagrangian formulation allows us to track the motion of each  single fluid particle (a node). This is useful to model the separation of water particles from the main fluid domain and to follow their subsequent motion as individual particles with an initial velocity and subject to gravity forces.
48
49
In summary, a typical solution with the PFEM involves the following steps.
50
51
<ol>
52
53
<li>Discretize the fluid and solid domains with a finite element mesh. The mesh generation process can be based on a standard Delaunay discretization [George (1991) <span id="citeF-13"></span>[[#cite-13|[13]]]] of the analysis domain using an initial collection of points which then become the mesh nodes. Alternatively, the nodes can be created during the mesh generation process using a front generation method [Irons (1970) <span id="citeF-24"></span>[[#cite-24|[24]]]; Thompson ''et al.'' (1999) <span id="citeF-42"></span>[[#cite-42|[42]]]]. </li>
54
<li>Identify the external boundaries for both the fluid and solid domains. This is  an essential step as some boundaries (such as the free surface in fluids) may be severely distorted during the solution process including separation and re-entering of nodes. The Alpha Shape method [Edelsbrunner and Mucke (2003) <span id="citeF-10"></span>[[#cite-10|[10]]]] is used for the boundary definition (see Section [[#7 Generation of a New Mesh|7]]). </li>
55
<li>Solve the coupled Lagrangian equations of motion for  the fluid and the solid domains. Compute the relevant state variables in both domains at each time step: velocities, pressure and viscous stresses in the fluid and displacements, stresses and strains in the solid. </li>
56
<li>Move the mesh nodes to a new position in terms of the time increment size. This step is typically a consequence of the solution process of step 3. </li>
57
<li>Generate a new mesh if needed. The mesh regeneration process can take place after a prescribed number of time steps or when the actual mesh has suffered severe distorsions due to the Lagrangian motion. In our work we use an innovative mesh generation scheme based on the extended Delaunay tesselation (Section [[#7 Generation of a New Mesh|7]]) [Idelsohn ''et al.'' (2003a; 2003b; 2004) <span id="citeF-20"></span>[[#cite-20|[20]],<span id="citeF-21"></span>[[#cite-21|21]],<span id="citeF-23"></span>[[#cite-23|23]]]]. </li>
58
<li>Go back to step 2 and repeat the solution process for the next time step. </li>
59
60
</ol>
61
62
Details of the stabilized Lagrangian FEM for the solution of the fluid equations using a FIC formulation are presented in the next section. The fractional step scheme chosen for the transient coupled FSI solution using the FEM and details of the boundary recognition method and the mesh regeneration process are given in subsequent sections. Finally some examples of application of the PFEM are given.
63
64
In order to complete this introduction, Figure [[#img-2|2]] shows a typical example of a PFEM solution in 2D. The pictures correspond to the analysis of the problem of breakage of a water column described in Section [[#10.1 Collapse of a water column|10.1.]] Figure [[#img-2|2a]] shows the initial grid of four node rectangles discretizing the fluid domain and the solid walls. Boundary nodes identified with the Alpha-Shape method have been marked with a circle. Figures [[#img-2|2b]] and [[#img-2|2c]] show the mesh for the solution at two later times.
65
66
<div id='img-2'></div>
67
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
68
|-
69
|- style="text-align: center; font-size: 75%;"
70
| colspan="1" | (a)
71
| colspan="1" | (b)
72
|-
73
|[[Image:draft_Samper_616988227-Figure2a_b.png|600px|]]
74
|-
75
|[[Image:draft_Samper_616988227-Figure2c.png|300px|Breakage of a water column. (a) Discretization of the fluid domain and the solid walls. Boundary nodes are marked with circles. (b) and (c) Mesh in the fluid and solid domains at two different times.]]
76
|- style="text-align: center; font-size: 75%;"
77
| colspan="2" | (c)
78
|- style="text-align: center; font-size: 75%;"
79
| colspan="2" | '''Figure 2:''' Breakage of a water column. (a) Discretization of the fluid domain and the solid walls. Boundary nodes are marked with circles. (b) and (c) Mesh in the fluid and solid domains at two different times.
80
|}
81
82
==3 Lagrangian Equations for an Incompressible Fluid. FIC Formulation==
83
84
The standard infinitessimal  equations for a viscous incompressible fluid can be written in a  Lagrangian frame as [Oñate (1998) <span id="citeF-27"></span>[[#cite-27|[27]]]; Zienkiewicz and Taylor (2000) <span id="citeF-43"></span>[[#cite-43|[43]]]]
85
86
'''Momentum'''
87
<span id="eq-1"></span>
88
{| class="formulaSCP" style="width: 100%; text-align: left;" 
89
|-
90
| 
91
{| style="text-align: left; margin:auto;width: 100%;" 
92
|-
93
| style="text-align: center;" | <math>r_{m_i} =0 \quad \hbox{in } \Omega  </math>
94
|}
95
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
96
|}
97
98
'''Mass balance'''
99
<span id="eq-2"></span>
100
{| class="formulaSCP" style="width: 100%; text-align: left;" 
101
|-
102
| 
103
{| style="text-align: left; margin:auto;width: 100%;" 
104
|-
105
| style="text-align: center;" | <math>r_d =0 \quad \hbox{in } \Omega  </math>
106
|}
107
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
108
|}
109
110
where
111
<span id="eq-3"></span>
112
{| class="formulaSCP" style="width: 100%; text-align: left;" 
113
|-
114
| 
115
{| style="text-align: left; margin:auto;width: 100%;" 
116
|-
117
| style="text-align: center;" | <math>r_{m_i} = \rho {\partial v_i \over \partial t} + {\partial \sigma _{ij} \over \partial x_j}-b_i\quad ,\quad \sigma _{ji}=\sigma _{ij}</math>
118
|}
119
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
120
|}
121
122
<span id="eq-4"></span>
123
{| class="formulaSCP" style="width: 100%; text-align: left;" 
124
|-
125
| 
126
{| style="text-align: left; margin:auto;width: 100%;" 
127
|-
128
| style="text-align: center;" | <math> r_d = {\partial v_i \over \partial x_i}\qquad i,j = 1, n_d </math>
129
|}
130
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
131
|}
132
133
Above <math display="inline">n_d</math> is the number of space dimensions, <math display="inline">v_i</math> is the velocity along the ith global axis (<math display="inline">v_i = {\partial u_i \over \partial t}</math>, where <math display="inline">u_i</math> is the ''i''th displacement), <math display="inline">\rho </math> is the (constant) density of the fluid, <math display="inline">b_i</math> are the body forces, <math display="inline">\sigma _{ij}</math> are the total stresses given by <math display="inline">\sigma _{ij}=s_{ij}-\delta _{ij}p</math>, <math display="inline">p</math> is the absolute pressure (defined positive in compression) and <math display="inline">s_{ij}</math> are the viscous deviatoric stresses related to the viscosity <math display="inline">\mu </math> by the standard expression
134
135
<span id="eq-5"></span>
136
{| class="formulaSCP" style="width: 100%; text-align: left;" 
137
|-
138
| 
139
{| style="text-align: left; margin:auto;width: 100%;" 
140
|-
141
| style="text-align: center;" | <math>s_{ij}=2\mu \left(\dot \varepsilon _{ij} - \delta _{ij} {1\over 3} {\partial v_k \over \partial x_k}\right) </math>
142
|}
143
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
144
|}
145
146
where <math display="inline">\delta _{ij}</math> is the Kronecker delta and the strain rates <math display="inline">\dot \varepsilon _{ij}</math> are
147
148
<span id="eq-6"></span>
149
{| class="formulaSCP" style="width: 100%; text-align: left;" 
150
|-
151
| 
152
{| style="text-align: left; margin:auto;width: 100%;" 
153
|-
154
| style="text-align: center;" | <math>\dot \varepsilon _{ij}={1\over 2} \left({\partial v_i \over \partial x_j}+{\partial v_j \over \partial x_i}\right) </math>
155
|}
156
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
157
|}
158
159
In the above all variables are defined at the current time <math display="inline">t</math> (current configuration).
160
161
In our work we will solve a ''modified set of governing'' equations derived using a finite calculus (FIC) formulation. The FIC governing equations are [Oñate (1998; 2000; 2004)<span id="citeF-27"></span>[[#cite-27|[27]],<span id="citeF-28"></span>[[#cite-28|28]],<span id="citeF-29"></span>[[#cite-29|29]]]; Oñate ''et al.'' (2001)<span id="citeF-32"></span>[[#cite-32|[32]]]]
162
163
'''Momentum'''
164
<span id="eq-7></span>
165
{| class="formulaSCP" style="width: 100%; text-align: left;" 
166
|-
167
| 
168
{| style="text-align: left; margin:auto;width: 100%;" 
169
|-
170
| style="text-align: center;" | <math>r_{m_i} - \underline{{1\over 2} h_j{\partial r_{m_i} \over \partial x_j}}=0  </math>
171
|}
172
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
173
|}
174
175
'''Mass balance'''
176
<span id="eq-8"></span>
177
{| class="formulaSCP" style="width: 100%; text-align: left;" 
178
|-
179
| 
180
{| style="text-align: left; margin:auto;width: 100%;" 
181
|-
182
| style="text-align: center;" | <math>r_d - \underline{{1\over 2} h_j {\partial r_d \over \partial x_j}}=0  </math>
183
|}
184
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
185
|}
186
187
The problem definition is completed with the following boundary conditions
188
<span id="eq-9"></span>
189
{| class="formulaSCP" style="width: 100%; text-align: left;" 
190
|-
191
| 
192
{| style="text-align: left; margin:auto;width: 100%;" 
193
|-
194
| style="text-align: center;" | <math>n_j \sigma _{ij} -t_i + \underline{{1\over 2} h_j n_j r_{m_i}}=0 \quad \hbox{on }\Gamma _t </math>
195
|}
196
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
197
|}
198
<span id="eq-10"></span>
199
{| class="formulaSCP" style="width: 100%; text-align: left;" 
200
|-
201
| 
202
{| style="text-align: left; margin:auto;width: 100%;" 
203
|-
204
| style="text-align: center;" | <math>v_j - v_j^p =0 \quad \hbox{on }\Gamma _v </math>
205
|}
206
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
207
|}
208
209
and the initial condition is <math display="inline">v_j =v_j^0</math> for <math display="inline">t=t_0</math>. The standard summation convention for repeated indexes is assumed unless otherwise specified.
210
211
In Eqs.([[#eq-7|7]]) and ([[#eq-8|8]]) <math display="inline">t_i</math> and <math display="inline">v_j^p</math> are surface tractions and prescribed velocities on the boundaries <math display="inline">\Gamma _t</math> and <math display="inline">\Gamma _v</math>, respectively, <math display="inline">n_j</math> are the components of the unit normal vector to the boundary.
212
213
The <math display="inline">h_i's</math> in above equations are ''characteristic lengths'' of the domain where balance of momentum and mass is enforced. In Eq.([[#eq-9|9]]) these lengths define the domain where equilibrium of boundary tractions is established. Details of the derivation of Eqs.([[#eq-7|7]])-([[#eq-10|10]]) can be found in [Oñate (1998; 2000) <span id="citeF-27"></span>[[#cite-27|[27]],<span id="citeF-28"></span>[[#cite-28|28]]]; Oñate ''et al.'' (2001) <span id="citeF-32"></span>[[#cite-32|[32]]]].
214
215
Eqs.([[#eq-7|7]])-([[#eq-10|10]]) are the starting  point for deriving stabilized finite element methods to solve the incompressible Navier-Stokes equations in a Lagrangian frame of reference using equal order interpolation for the velocity and pressure variables [Idelsohn ''et al.'' (2002; 2003a; 2003b; 2004) <span id="citeF-19"></span>[[#cite-19|[19]]-<span id="citeF-21"></span>[[#cite-21|21]],<span id="citeF-23"></span>[[#cite-23|23]]]]; Oñate ''et al.'' (2003)<span id="citeF-33"></span>[[#cite-33|[33]]]; Aubry ''et al.'' (2004)<span id="citeF-1"></span>[[#cite-1|[1]]]]. Application of the FIC formulation to finite element and meshless analysis of fluid flow problems can be found in [García and Oñate (2003)<span id="citeF-12"></span>[[#cite-12|[12]]]; Oñate (2000; 2004)<span id="citeF-28"></span>[[#cite-28|[28]],<span id="citeF-29"></span>[[#cite-29|29]]]; Oñate ''et al.'' (2000; 2004)<span id="citeF-31"></span>[[#cite-31|[31]],<span id="citeF-34"></span>[[#cite-34|34]]]; Oñate and García (2001)<span id="citeF-32"></span>[[#cite-32|[32]]]; Oñate and Idelsohn (1988)<span id="citeF-30"></span>[[#cite-30|[30]]]].
216
217
===3.1 Transformation of the mass balance equation. Integral governing equations===
218
219
The underlined term in Eq.(([[#eq-8|8]])) can be expressed in terms of the momentum equations. The new expression for the mass balance equation is (see [[#Appendix|Appendix]])
220
<span id="eq-11"></span>
221
{| class="formulaSCP" style="width: 100%; text-align: left;" 
222
|-
223
| 
224
{| style="text-align: left; margin:auto;width: 100%;" 
225
|-
226
| style="text-align: center;" | <math>r_d - \sum \limits _{i=1}^{n_d} \tau _i {\partial r_{m_i} \over \partial x_i}=0 </math>
227
|}
228
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
229
|}
230
231
with
232
<span id="eq-12"></span>
233
{| class="formulaSCP" style="width: 100%; text-align: left;" 
234
|-
235
| 
236
{| style="text-align: left; margin:auto;width: 100%;" 
237
|-
238
| style="text-align: center;" | <math>\tau _i = {3h_i^2\over 8\mu } </math>
239
|}
240
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
241
|}
242
243
The <math display="inline">\tau _i</math>'s in Eq.([[#eq-11|11]]), when scaled by the density, are termed  ''intrinsic time parameters''. Similar values for <math display="inline">\tau _i</math> (usually <math display="inline">\tau _i =\tau </math> is taken) are used in other works from ad-hoc extensions of the 1D advective-diffusive problem [Codina ''et al.'' (1998)<span id="citeF-4"></span>[[#cite-4|[4]]];  Codina and Blasco (2000)<span id="citeF-5"></span>[[#cite-5|[5]]]; Codina (2002)<span id="citeF-3"></span>[[#cite-3|[3]]]; Codina and Zienkiewicz (2002)<span id="citeF-6"></span>[[#cite-6|[6]]]; Cruchaga and Oñate (1997; 1999)<span id="citeF-7"></span>[[#cite-7|[7]],<span id="citeF-8"></span>[[#cite-8|8]]]; Donea and Huerta (2003)<span id="citeF-9"></span>[[#cite-9|[9]]]; Franca and Frey (1992)<span id="citeF-11"></span>[[#cite-11|[11]]]; Hansbo and Szepessy (1990)<span id="citeF-15"></span>[[#cite-15|[15]]]; Hughes ''et al.'' (1986; 1989; 1994)<span id="citeF-16"></span>[[#cite-16|[16]]-<span id="citeF-18"></span>[[#cite-18|18]]]; Oñate (1998; 2000; 2004)<span id="citeF-27"></span>[[#cite-27|[27]]-<span id="citeF-29"></span>[[#cite-29|29]]]; Sheng ''et al.'' (1996)<span id="citeF-36"></span>[[#cite-36|[36]]]; Storti ''et al.'' (2004)<span id="citeF-37"></span>[[#cite-37|[37]]]; Tezduyar ''et al.'' (1992)<span id="citeF-41"></span>[[#cite-41|[41]]]; Zienkiewicz and Taylor (2000)<span id="citeF-43"></span>[[#cite-43|[43]]]].
244
245
At this stage it is no longer necessary to retain the stabilization terms in the momentum equations. These terms are critical in Eulerian formulations to stabilize the numerical solution for high values of the convective terms. In the Lagrangian formulation the convective terms dissapear from the momentum equations and the FIC terms in these  equations are just useful to derive the form of the mass balance equation given by Eq.([[#eq-11|11]]) and can be disregarded there onwards. Consistenly, the stabilization terms are also neglected in the Neuman boundary conditions (eqs.([[#eq-9|9]])).
246
247
The weighted residual expression of the final form of the momentum and mass balance equations can  be written as
248
<span id="eq-13"></span>
249
{| class="formulaSCP" style="width: 100%; text-align: left;" 
250
|-
251
| 
252
{| style="text-align: left; margin:auto;width: 100%;" 
253
|-
254
| style="text-align: center;" | <math>\int _\Omega \delta v_i r_{m_i} d\Omega + \int _{\Gamma _i} \delta v_i (n_j\sigma _{ij} - t_i) d\Gamma =0 </math>
255
|}
256
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
257
|}
258
<span id="eq-14"></span>
259
{| class="formulaSCP" style="width: 100%; text-align: left;" 
260
|-
261
| 
262
{| style="text-align: left; margin:auto;width: 100%;" 
263
|-
264
| style="text-align: center;" | <math>\int _\Omega q \left[r_d - \sum \limits _{i=1}^{n_d} \tau _i {\partial r_{m_i} \over \partial x_i}\right]d\Omega =0 </math>
265
|}
266
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
267
|}
268
269
where <math display="inline">\delta v_i</math> and <math display="inline">q</math> are arbitrary weighting functions equivalent to virtual velocity and virtual pressure fields.
270
271
The <math display="inline">r_{m_i}</math> term  in Eq.([[#eq-14|14]]) and the deviatoric stresses and the pressure terms within <math display="inline">r_{m_i}</math> in Eq.([[#eq-13|13]]) are integrated by parts to give
272
<span id="eq-15"></span>
273
{| class="formulaSCP" style="width: 100%; text-align: left;" 
274
|-
275
| 
276
{| style="text-align: left; margin:auto;width: 100%;" 
277
|-
278
| style="text-align: center;" | <math>\int _\Omega \left[\delta v_i\rho  {\partial v_i \over \partial t}  + \delta \dot \varepsilon _{ij}(s_{ij}- \delta _{ij}p )\right]d\Omega -  \int _{\Omega } \delta v_i b_i d\Omega - \int _{\Gamma _t} \delta v_i t_id\Gamma  =0 </math>
279
|}
280
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
281
|}
282
<span id="eq-16"></span>
283
{| class="formulaSCP" style="width: 100%; text-align: left;" 
284
|-
285
| 
286
{| style="text-align: left; margin:auto;width: 100%;" 
287
|-
288
| style="text-align: center;" | <math>\int _\Omega q {\partial v_i \over \partial x_i} d\Omega + \int _\Omega \left[\sum \limits _{i=1}^{n_d} \tau _i {\partial q \over \partial x_i} r_{m_i}\right]d\Omega =0 </math>
289
|}
290
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
291
|}
292
293
In Eq.([[#eq-15|15]]) <math display="inline">\delta \dot \varepsilon _{ij}</math> are virtual strain rates. Note that the boundary term resulting from the integration by parts of <math display="inline">r_{m_i}</math> in Eq.([[#eq-16|16]]) has been neglected  as the influence of this term in the numerical solution has been found to be negligible.
294
295
===3.2 Pressure gradient projection===
296
297
The computation of the residual terms in Eq.([[#eq-16|16]]) can be simplified if we introduce now the pressure gradient projections <math display="inline">\pi _i</math>, defined as
298
<span id="eq-17"></span>
299
{| class="formulaSCP" style="width: 100%; text-align: left;" 
300
|-
301
| 
302
{| style="text-align: left; margin:auto;width: 100%;" 
303
|-
304
| style="text-align: center;" | <math>\pi _i = r_{m_i} - {\partial p \over \partial x_i} </math>
305
|}
306
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
307
|}
308
309
We  express now <math display="inline">r_{m_i}</math> in  Eq.([[#eq-17|17]]) in terms of the <math display="inline">\pi _i</math>  which then become additional variables. The system of integral equations is therefore augmented in the necessary number of  equations by imposing that the residual <math display="inline">r_{m_i}</math> vanishes within the analysis domain (in an average sense). This gives the final system of governing equation as:
310
<span id="eq-18"></span>
311
{| class="formulaSCP" style="width: 100%; text-align: left;" 
312
|-
313
| 
314
{| style="text-align: left; margin:auto;width: 100%;" 
315
|-
316
| style="text-align: center;" | <math>\int _\Omega \left[\delta v_i\rho {\partial v_i \over \partial t} + \delta \dot \varepsilon _{ij}(s_{ij}- \delta _{ij}p )\right]d\Omega -  \int _{\Omega } \delta v_i b_i d\Omega - \int _{\Gamma _t} \delta v_i t_id\Gamma =0 </math>
317
|}
318
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
319
|}
320
<span id="eq-19"></span>
321
{| class="formulaSCP" style="width: 100%; text-align: left;" 
322
|-
323
| 
324
{| style="text-align: left; margin:auto;width: 100%;" 
325
|-
326
| style="text-align: center;" | <math>\int _\Omega q {\partial v_i \over \partial x_i} d\Omega + \int _\Omega \sum \limits _{i=1}^{n_d} \tau _i {\partial q \over \partial x_i} \left({\partial p \over \partial x_i}+\pi _i\right)d\Omega =0 </math>
327
|}
328
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
329
|}
330
<span id="eq-20"></span>
331
{| class="formulaSCP" style="width: 100%; text-align: left;" 
332
|-
333
| 
334
{| style="text-align: left; margin:auto;width: 100%;" 
335
|-
336
| style="text-align: center;" | <math>\int _\Omega \delta \pi _i \tau _i \left({\partial p \over \partial x_i}+\pi _i\right)d\Omega =0\qquad \hbox{no sum in }i </math>
337
|}
338
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
339
|}
340
341
with <math display="inline">i,j,k=1,n_d</math>.  In Eqs.([[#eq-20|20]]) <math display="inline">\delta \pi _i</math> are appropriate weighting functions and the <math display="inline">\tau _i</math> weights are introduced for symmetry reasons.
342
343
==4 Finite Element Discretization==
344
345
===4.1 Derivation of the discretized equations===
346
347
We choose <math display="inline">C^\circ </math> continuous  interpolations of the velocities, the pressure and the pressure gradient projections <math display="inline">\pi _i</math> over each element with <math display="inline">n</math> nodes. The interpolations are written as
348
<span id="eq-21"></span>
349
{| class="formulaSCP" style="width: 100%; text-align: left;" 
350
|-
351
| 
352
{| style="text-align: left; margin:auto;width: 100%;" 
353
|-
354
| style="text-align: center;" | <math>v_i = \sum \limits _{j=1}^n N_j \bar v_i^j \quad , \quad p = \sum \limits _{j=1}^n N_j \bar p^j\quad , \quad \pi _i = \sum \limits _{j=1}^n N_j \bar \pi _i^j </math>
355
|}
356
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
357
|}
358
359
where <math display="inline">\bar {(\cdot )}^j</math> denotes nodal variables and <math display="inline">N_j</math> are the  shape functions [Zienkiewicz and Taylor (2000)<span id="citeF-43"></span>[[#cite-43|[43]]]]. More details of the mesh discretization process and the choice of shape functions are given in Section [[#7 Generation of a New Mesh|7]].
360
361
Substituting the approximations ([[#eq-21|21]]) into Eqs.([[#eq-19|19]]-[[#eq-20|20]]) and choosing a Galerkin form with <math display="inline">\delta v_i =q=\delta \pi _i =N_i</math> leads to the following system of discretized equations
362
<span id="eq-22"></span>
363
<span id="eq-22a"></span>
364
{| class="formulaSCP" style="width: 100%; text-align: left;" 
365
|-
366
| 
367
{| style="text-align: left; margin:auto;width: 100%;" 
368
|-
369
| style="text-align: center;" | <math>\displaystyle {M}\dot{\bar {v}} + \bar {g} - {f}  = 0</math>
370
|}
371
| style="width: 5px;text-align: right;white-space: nowrap;" | (22a)
372
|}
373
<span id="eq-22b"></span>
374
{| class="formulaSCP" style="width: 100%; text-align: left;" 
375
|-
376
| 
377
{| style="text-align: left; margin:auto;width: 100%;" 
378
|-
379
| style="text-align: center;" | <math>\displaystyle {G}^T \bar {v} + {L}\bar {p}+{Q}\bar {\boldsymbol \pi }={0}</math>
380
|}
381
| style="width: 5px;text-align: right;white-space: nowrap;" | (22b)
382
|}
383
<span id="eq-22c"></span>
384
{| class="formulaSCP" style="width: 100%; text-align: left;" 
385
|-
386
| 
387
{| style="text-align: left; margin:auto;width: 100%;" 
388
|-
389
| style="text-align: center;" | <math>\displaystyle {Q}^T \bar {p} + \hat {M}\bar {\boldsymbol \pi }={0}</math>
390
|}
391
| style="width: 5px;text-align: right;white-space: nowrap;" | (22c)
392
|}
393
394
where
395
<span id="eq-23"></span>
396
{| class="formulaSCP" style="width: 100%; text-align: left;" 
397
|-
398
| 
399
{| style="text-align: left; margin:auto;width: 100%;" 
400
|-
401
| style="text-align: center;" | <math>\bar {g}= \int _\Omega {B}^T [{s}-{m}p]d\Omega  </math>
402
|}
403
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
404
|}
405
406
is the internal nodal force vector derived from the momentum equations, <math display="inline">s</math> is the deviatoric stress vector, <math display="inline">B</math> is the strain rate matrix and <math display="inline">{m} = [1,1,0]^T</math> for 2D problems.
407
408
This vector and the rest of the matrices and vectors in Eqs.([[#eq-22|22]]) are assembled from the element contributions given by (for 2D problems)
409
<span id="eq-24"></span>
410
{| class="formulaSCP" style="width: 100%; text-align: left;" 
411
|-
412
| 
413
{| style="text-align: left; margin:auto;width: 100%;" 
414
|-
415
| style="text-align: center;" | <math>\begin{array}{l}\displaystyle M_{ij}= \int _{\Omega ^e} \rho N_iN_j d\Omega \quad , \quad \bar{g}_i = \int _\Omega {B}^T_i [{s}-{m}p]d\Omega \quad ,\quad \displaystyle {B}_i =\left[\begin{matrix}\displaystyle {\partial N_i \over \partial x_1}&0\\ 0 & \displaystyle {\partial N_i \over \partial x_2}\\ \displaystyle {\partial N_i \over \partial x_2} & \displaystyle {\partial N_i \over \partial x_1}\\\end{matrix}\right]\\ \\ \displaystyle L_{ij}= \int _{\Omega ^e} \tau _k {\partial N_i \over \partial x_k} {\partial N_j  \over \partial x_k}d\Omega \quad ,\quad \displaystyle {Q}= [{Q}^1,{Q}^2] \quad ,\quad  \displaystyle Q_{ij}^k = \int _{\Omega ^e}\tau _k {\partial N_i \over \partial x_k} N_jd\Omega \\ \\ \displaystyle \hat {M}= \left[\begin{matrix}\hat {M}^1 &{0}\\  {0} & \hat {M}^2\\\end{matrix}\right]\quad ,\quad  \hat {M}^k_{ij} = \int _{\Omega ^e} \tau _k N_i N_j d\Omega  \quad ,\quad \displaystyle {G}_{ij}= \int _{\Omega ^e} {B}_i^T {m} N_j d\Omega \\ \\ \displaystyle {f}_i = \int _{\Omega ^e} N_i {b}d\Omega + \int _{\Gamma ^e_t}N_i {t} d\Gamma \quad ,\quad  {b}=[b_1,b_2]^T \quad ,\quad {t}=[t_1,t_2]^T  \end{array} </math>
416
|}
417
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
418
|}
419
420
with <math display="inline">i,j=1,n</math> and <math display="inline">k,l=1,2</math>.
421
422
As usual the deviatoric stresses <math display="inline">s_{ij}</math> are related to the strain rates <math display="inline">\dot \varepsilon _{ij}</math> by Eq.([[#eq-5|5]])
423
424
It can be shown that the system of Eqs.([[#eq-22|22]]) leads to a stabilized numerical solution. For details see [Oñate ''et al.'' (2003)<span id="citeF-33"></span>[[#cite-33|[33]]]].
425
426
'''Remark 1'''
427
428
Eq.([[#eq-22a|22a]]) can be written in a more explicit form in terms of the velocity and pressure variables as
429
<span id="eq-25"></span>
430
{| class="formulaSCP" style="width: 100%; text-align: left;" 
431
|-
432
| 
433
{| style="text-align: left; margin:auto;width: 100%;" 
434
|-
435
| style="text-align: center;" | <math>{M}\dot{\bar{v}} + {K} \bar {v} - {G} \bar {p}- {f}={0} </math>
436
|}
437
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
438
|}
439
440
where
441
<span id="eq-26"></span>
442
{| class="formulaSCP" style="width: 100%; text-align: left;" 
443
|-
444
| 
445
{| style="text-align: left; margin:auto;width: 100%;" 
446
|-
447
| style="text-align: center;" | <math>{K}_{ij} =\int _{\Omega ^e} {B}_i^T {D} {B}_j d\Omega  </math>
448
|}
449
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
450
|}
451
452
where <math display="inline">D</math> is the constitutive matrix. For 2D problems
453
<span id="eq-27"></span>
454
{| class="formulaSCP" style="width: 100%; text-align: left;" 
455
|-
456
| 
457
{| style="text-align: left; margin:auto;width: 100%;" 
458
|-
459
| style="text-align: center;" | <math>{D} =\mu \left[\begin{matrix}2 &0&0\\ 0&2&0\\ 0&0&1\\\end{matrix}\right] </math>
460
|}
461
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
462
|}
463
464
==5 Fractional Step Method for Fluid-Structure Interaction Analysis==
465
466
A simple and effective iterative algorithm can be obtained by splitting the pressure from the momentum equations as follows
467
<span id="eq-28"></span>
468
<span id="eq-28a"></span>
469
{| class="formulaSCP" style="width: 100%; text-align: left;" 
470
|-
471
| 
472
{| style="text-align: left; margin:auto;width: 100%;" 
473
|-
474
| style="text-align: center;" | <math>\bar {v}^* = \bar {v}^n -\Delta t {M}^{-1}[{g}^{n+\theta _1,j} -{f}^{n+1}]</math>
475
|}
476
| style="width: 5px;text-align: right;white-space: nowrap;" |  (28a)
477
|}
478
<span id="eq-28b"></span>
479
{| class="formulaSCP" style="width: 100%; text-align: left;" 
480
|-
481
| 
482
{| style="text-align: left; margin:auto;width: 100%;" 
483
|-
484
| style="text-align: center;" | <math>\bar{v}^{n+1,j}= \bar{v}^* + \Delta t {M}^{-1}{G}\delta \bar{p}</math>
485
|}
486
| style="width: 5px;text-align: right;white-space: nowrap;" |  (28b)
487
|}
488
489
In Eq.([[#eq-28a|28a]])
490
<span id="eq-X"></span>
491
{| class="formulaSCP" style="width: 100%; text-align: left;" 
492
|-
493
| 
494
{| style="text-align: left; margin:auto;width: 100%;" 
495
|-
496
| style="text-align: center;" | <math>{g}^{n+\theta _1,j}= \int _{\Omega ^{n+\theta _1,j}} {B}^T [{s}^{n+\theta _1,j}-\alpha {m}^T p^n]d\Omega </math>
497
|}
498
|}
499
500
and <math display="inline">\alpha </math> is a variable taking values equal to zero or one. For <math display="inline">\alpha =0</math>, <math display="inline">\delta p \equiv p^{n+1,j}</math> and for <math display="inline">\alpha =1</math>, <math display="inline">\delta p =\Delta p</math>. Note that in both cases  the sum of Eqs.([[#eq-28a|28a]]) and ([[#eq-28b|28b]]) gives the time discretization of the momentum equations with the pressures computed at <math display="inline">t^{n+1}</math>.
501
502
In above equations and in the following superindex <math display="inline">j</math> denotes an iteration number within each time step.
503
504
The value of <math display="inline">\bar {v}^{n+1,j}</math> from Eq.([[#eq-28b|28b]]) is substituted now into Eq.([[#eq-22b|22b]]) to give
505
<span id="eq-29"></span>
506
<span id="eq-29a"></span>
507
{| class="formulaSCP" style="width: 100%; text-align: left;" 
508
|-
509
| 
510
{| style="text-align: left; margin:auto;width: 100%;" 
511
|-
512
| style="text-align: center;" | <math>{G}^T\bar {v}^* + \Delta t {G}^T {M}^{-1}{G}\delta \bar{p} + {L} \bar{p}^{n+1,j}+ {Q}\bar {\boldsymbol \pi }^{n+\theta _2,j}={0}</math>
513
|}
514
| style="width: 5px;text-align: right;white-space: nowrap;" |  (29a)
515
|}
516
517
The product <math display="inline">{G}^T {M}^{-1}{G}</math> can be approximated by a laplacian matrix, i.e.
518
<span id="eq-29b"></span>
519
{| class="formulaSCP" style="width: 100%; text-align: left;" 
520
|-
521
| 
522
{| style="text-align: left; margin:auto;width: 100%;" 
523
|-
524
| style="text-align: center;" | <math>{G}^T {M}^{-1}{G}=\hat {L} \quad \hbox{with } \hat{L} \simeq \int _{\Omega ^e} {1\over \rho } {\boldsymbol \nabla }^T N_i {\boldsymbol \nabla } N_j \,d\Omega  </math>
525
|}
526
| style="width: 5px;text-align: right;white-space: nowrap;" |  (29b)
527
|}
528
529
In the above equations <math display="inline">\theta _1</math> and <math display="inline">\theta _2</math> are algorithmic parameters ranging between zero and one. A discussion of the choice of <math display="inline">\theta _1</math> and <math display="inline">\theta _2</math> is given below.
530
531
A semi-implicit algorithm can  be derived as follows. For each iteration:<br/>
532
533
'''Step 1''' Compute <math display="inline">{v}^*</math>  from Eq.([[#eq-28a|28a]]) with <math display="inline">{M}={M}_d</math> where subscript <math display="inline">d</math> denotes hereonwards a diagonal matrix.
534
535
<br/>
536
537
'''Step 2''' Compute <math display="inline">\delta \bar {p}</math> and <math display="inline">{p}^{n+1}</math> from Eq.([[#eq-29a|29a]]) as
538
<span id="eq-30"></span>
539
<span id="eq-30a"></span>
540
{| class="formulaSCP" style="width: 100%; text-align: left;" 
541
|-
542
| 
543
{| style="text-align: left; margin:auto;width: 100%;" 
544
|-
545
| style="text-align: center;" | <math>\delta \bar {p} =-({L}+\Delta t \hat  {L})^{-1} [{G}^T\bar{v}^* +{Q}\bar {\boldsymbol \pi }^{n+\theta _2,j}+ \alpha {L} \bar {p}^n]</math>
546
|}
547
| style="width: 5px;text-align: right;white-space: nowrap;" |  (30a)
548
|}
549
550
The pressure <math display="inline">p^{n+1,j}</math> is computed as follows
551
<span id="eq-30b"></span>
552
{| class="formulaSCP" style="width: 100%; text-align: left;" 
553
|-
554
| 
555
{| style="text-align: left; margin:auto;width: 100%;" 
556
|-
557
| style="text-align: center;" | <math>\begin{array}{l} {For }~ \alpha =0 \qquad \bar{p}^{n+1,j} = \delta \bar{p}\\ {For }~ \alpha =1 \qquad \bar{p}^{n+1,j} = \bar{p}^n + \delta \bar{p} \end{array} </math>
558
|}
559
| style="width: 5px;text-align: right;white-space: nowrap;" |  (30b)
560
|}
561
562
'''Step 3''' Compute <math display="inline"> \bar{v}^{n+1,j}</math>  from Eq.([[#eq-28b|28b]]) with <math display="inline">{M}={M}_d</math>
563
564
'''Step 4''' Compute <math display="inline">  \bar{\boldsymbol \pi }^{n+1,j}</math>  from Eq.([[#eq-22c|22c]]) as
565
<span id="eq-31"></span>
566
{| class="formulaSCP" style="width: 100%; text-align: left;" 
567
|-
568
| 
569
{| style="text-align: left; margin:auto;width: 100%;" 
570
|-
571
| style="text-align: center;" | <math>\bar{\boldsymbol \pi }^{n+1,j}=- \hat {M}_d^{-1} {Q}^T \bar {p}^{n+1,j} </math>
572
|}
573
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
574
|}
575
576
'''Step 5''' Solve for the movement of the structure due to the fluid flow forces.<br/>
577
578
This implies solving the dynamic equations of motion for the structure written as
579
<span id="eq-32"></span>
580
{| class="formulaSCP" style="width: 100%; text-align: left;" 
581
|-
582
| 
583
{| style="text-align: left; margin:auto;width: 100%;" 
584
|-
585
| style="text-align: center;" | <math>{M}_s \ddot {d}+ {K}_s {d}={f}_{ext} </math>
586
|}
587
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
588
|}
589
590
where <math display="inline">{d}</math> and <math display="inline">\ddot {d}</math> are respectively the displacement and acceleration vectors of the nodes discretizing the structure, <math display="inline">{M}_s</math> and <math display="inline">{K}_s</math> are the mass and stiffness matrices of the structure and <math display="inline">{f}_{ext}</math> is the vector of external nodal forces accounting for the fluid flow forces induced by the pressure and the viscous stresses. Clearly the main driving forces for the motion of the structure is the fluid pressure which acts as normal a surface traction on the structure. Indeed Eq.([[#eq-32|32]]) can be augmented with an appropriate damping term. The form of all the relevant matrices and vectors can be found in standard books on FEM for structural analysis [Zienkiewicz and Taylor (2000)<span id="citeF-43"></span>[[#cite-43|[43]]]].
591
592
Solution of Eq.([[#eq-32|32]]) in time can be performed using implicit or fully explicit time integration algorithms. In both cases the values of the nodal displacements, velocities and accelerations of the structure at <math display="inline">t^{n+1}</math> are found for the <math display="inline">j</math>th iteration.
593
594
'''Step 6'''
595
596
Update the mesh nodes in a Lagrangian manner. From the definition of the velocity <math display="inline">v_i ={\partial u_i \over \partial t}</math> it is deduced.
597
<span id="eq-33"></span>
598
{| class="formulaSCP" style="width: 100%; text-align: left;" 
599
|-
600
| 
601
{| style="text-align: left; margin:auto;width: 100%;" 
602
|-
603
| style="text-align: center;" | <math>{x}_i^{n+1,j} = {x}_i^{n}+\bar {v}_i^{n+1,j} \Delta t </math>
604
|}
605
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
606
|}
607
608
'''Step 7'''
609
610
Generate a new mesh. This can be effectively performed using the procedure described in Section [[#6 Treatment of Contact Between Fluid and Solid Interfaces|6]].
611
612
'''Step 8'''
613
614
Check the convergence of the velocity and pressure fields in the fluid and the displacements strains and stresses in the structure. If convergence is achieved move to the next time step, otherwise return to step 1 for the next iteration with <math display="inline">j+1 \to j</math>.
615
616
Despite the motion of the nodes within the iterative process, in general there is no need to regenerate the mesh at each iteration. A new mesh is typically generated  after a prescribed number of converged time steps, or when  the nodal displacements induce significant geometrical distorsions in some elements. ''In the examples presented in the paper the mesh in the fluid domain has been regenerated at each time step''.
617
618
The boundary conditions are applied as follows. No condition is applied in the computation of the fractional velocities <math display="inline">{v}^*</math> in Eq.([[#eq-28a|28a]]). The prescribed velocities at the boundary are applied when solving for <math display="inline">\bar{v}^{n+1,j}</math> in step 3. The prescribed pressures at the boundary are imposed by making  the pressure increments zero at the relevant boundary nodes and making <math display="inline">\bar{p}^n</math> equal to the prescribed pressure values.
619
620
Details of the treatment of the contact conditions at the solid-fluid interface are given in Section [[#8 Identification of Boundary Surfaces|8]] [Idelsohn ''et al.'' (2004)<span id="citeF-23"></span>[[#cite-23|[23]]]].
621
622
Note that solution of steps 1, 3 and 4 does not require the solution of  a system of equations as a diagonal form is chosen for <math display="inline">M</math> and <math display="inline">\hat {M}</math>. The whole solution process within a time step can be linearized by choosing <math display="inline">\theta _1 = \theta _2 =0</math> and now the iteration loop is no longer necessary. The implicit solution for <math display="inline">\theta _1 = \theta _2 =1</math> is however very effective as larger time steps can be used. This requires  some iterations within steps 1&#8211;8 until converged values for the fluid and solid variables  and the new position of the mesh nodes at time <math display="inline">n+1</math> are found.
623
624
In the examples presented in the paper the time increment size has been chosen as
625
<span id="eq-34"></span>
626
{| class="formulaSCP" style="width: 100%; text-align: left;" 
627
|-
628
| 
629
{| style="text-align: left; margin:auto;width: 100%;" 
630
|-
631
| style="text-align: center;" | <math>\Delta t =\min (\Delta t_i ) \quad \hbox{with}\quad \Delta t_i ={\vert {v}\vert \over h_i^{\min }} </math>
632
|}
633
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
634
|}
635
636
where <math display="inline">h_i^{\min }</math> is the distance between node <math display="inline">i</math> and the closest node in the mesh.
637
638
'''Remark 2'''
639
640
Although not explicitely mentioned for <math display="inline">\theta _1=1</math> all matrices and vectors in Eqs.([[#eq-28|28]])&#8211;([[#eq-32|32]]) are computed at the final configuration <math display="inline">\Omega ^{n+1,j}</math>. This  means that the integration domain changes for each iteration and, hence,  all the terms involving space derivatives  must be updated at each iteration. This problem dissapears if <math display="inline">\Omega ^n</math> is taken as the reference configuration (<math display="inline">\theta _1=0</math>) as this remains fixed during the iteration. The penalty to pay in this case, however, is the evaluation of the Jacobian matrix at each iterations [Aubry ''et al.'' (2004)<span id="citeF-1"></span>[[#cite-1|[1]]]]].
641
642
==6 Treatment of Contact Between Fluid and Solid Interfaces==
643
644
The  condition of prescribed velocities or pressures at the solid boundaries in the PFEM are  applied in strong form to the boundary nodes. These nodes might belong to fixed external boundaries or to moving boundaries linked to the interacting solids. In some problems it is useful to define a layer of nodes adjacent to the external boundary in the fluid where the condition of prescribed velocity is imposed. These nodes typically remain fixed during the solution process. Contact between water particles and the solid boundaries is accounted for by the incompressibility condition which ''naturally prevents the penetration of the water nodes into the solid boundaries''. This simple way to treat the water-wall contact is another attractive feature of the PFEM formulation.
645
646
==7 Generation of a New Mesh==
647
648
One of the key points for the success of the Lagrangian flow formulation  described here is the fast regeneration of a mesh at every time step on the basis of the position of the nodes in the space domain. In our work the mesh is generated using the so called extended Delaunay tesselation (EDT) presented in [Idelsohn ''et al.'' (2003a; 2003c; 2004)<span id="citeF-20"></span>[[#cite-20|[20]],<span id="citeF-22"></span>[[#cite-22|22]],<span id="citeF-23"></span>[[#cite-23|23]]]]. The EDT allows one to generate non standard meshes combining elements of  arbitrary polyhedrical shapes  (triangles, quadrilaterals and other polygons in 2D and tetrahedra, hexahedra and arbitrary polyhedra in 3D) in a computing time of order <math display="inline">n</math>, where <math display="inline">n</math> is the total number of nodes in the mesh (Figure [[#img-3|3]]). The <math display="inline">C^\circ </math> continuous shape functions of the elements can be simply obtained using the so called meshless finite element interpolation (MFEM). Details of the mesh generation procedure and the derivation of the MFEM shape functions can be found in [Idelsohn ''et al.'' (2003a; 2003c; 2004)<span id="citeF-20"></span>[[#cite-20|[20]],<span id="citeF-22"></span>[[#cite-22|22]],<span id="citeF-23"></span>[[#cite-23|23]]]]].
649
650
Once the new mesh has been generated  the numerical solution is found at each time step using the fractional step algorithm described in the previous section.
651
652
The combination of elements with different geometrical shapes in the same mesh is one of the innovative aspects of the Lagrangian formulation presented here.
653
654
<div id='img-3'></div>
655
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
656
|-
657
|[[Image:draft_Samper_616988227-Figure3.png|300px|Generation of non standard meshes combining different polygons (in 2D) and polyhedra (in 3D) using the extended Delaunay technique.]]
658
|- style="text-align: center; font-size: 75%;"
659
| colspan="1" | '''Figure 3:''' Generation of non standard meshes combining different polygons (in 2D) and polyhedra (in 3D) using the extended Delaunay technique.
660
|}
661
662
==8 Identification of Boundary Surfaces==
663
664
One of the main tasks  in the PFEM is the correct definition of the boundary domain. Sometimes, boundary nodes are explicitly identified  differently from internal nodes. In other cases, the total set of nodes is the only information available and the algorithm must recognize the boundary nodes.
665
666
The use of the extended Delaunay partition makes it easier to recognize boundary nodes.
667
668
Considering that the nodes follow a variable <math display="inline">h(x)</math>  distribution, where <math display="inline">h(x)</math> is the minimum distance between two nodes, the following criterion has been used. ''All nodes on an empty sphere with a radius  greater than <math>\alpha h</math>, are considered as boundary nodes''. In practice, <math display="inline">\alpha </math>  is a parameter close to, but greater than one. Note that this criterion is coincident with the Alpha Shape concept [Edelsbrunner and Mucke (1999)<span id="citeF-10"></span>[[#cite-10|[10]]]].
669
670
Once a decision has been made concerning which  nodes are on the boundaries, the boundary surface must be defined. It is well known that in 3-D problems the surface fitting for a number of nodes is not unique. For instance, four boundary nodes on the same sphere may define two different boundary surfaces, a concave one and a convex one.
671
672
In this work, the boundary surface is defined by  all the polyhedral surfaces (or polygons in 2D) having all their nodes on the boundary and belonging to just one polyhedron.
673
674
Figure [[#img-4|4]] shows example of the boundary recognition using the Alpha Shape technique.
675
676
<div id='img-4'></div>
677
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
678
|-
679
|[[Image:draft_Samper_616988227-Figure4a.png|200px|]]
680
|[[Image:Draft_Samper_616988227_1121_monograph-Fig2.png|200px|Examples of boundary recognition with the Alpha Shape method.  Empty circles with radius greater than αh(x)  define the boundary particles.]]
681
|- style="text-align: center; font-size: 75%;"
682
| colspan="2" | '''Figure 4:''' Examples of boundary recognition with the Alpha Shape method.  Empty circles with radius greater than <math>\alpha h(x)</math>  define the boundary particles.
683
|}
684
685
The correct boundary surface is important to define the  normal external to the surface. Furthermore, in weak forms (Galerkin) such as those used here a correct evaluation of the volume domain is also important. In the criterion proposed above, the error in the boundary surface definition is proportional to <math display="inline">h</math> which is an acceptable error. The only way to obtain a more accurate boundary surface definition is by reducing the distance between the nodes.
686
687
The method described also allows one to identify isolated fluid particles outside the main fluid domain. These particles are treated as part of the external boundary where the pressure is fixed to the atmospheric value.
688
689
Figure [[#img-5|5]] shows a schematic example of the process to identify individual particles (or a group of particles) starting from a given collection of nodes. A practical application of the method for identifying free surface particles is shown in Figure [[#img-6|6]]. The example corresponds to the analysis of the motion of a fluid within an oscilating ellipsoidal container. Note that the method captures the individual water drops departuring from the free surface during the fluid motion.
690
691
<div id='img-5'></div>
692
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
693
|-
694
|[[Image:draft_Samper_616988227-Figure5.png|400px|Identification of individual particles (or a group of particles) starting from a given collection of nodes.]]
695
|- style="text-align: center; font-size: 75%;"
696
| colspan="1" | '''Figure 5:''' Identification of individual particles (or a group of particles) starting from a given collection of nodes.
697
|}
698
699
<div id='img-6'></div>
700
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
701
|-
702
| style="text-align: center; font-size: 75%;"| (a)
703
|-
704
|[[Image:draft_Samper_616988227-Figure6a.png|200px|]]
705
|-
706
|style="text-align: center; font-size: 75%;"| (b)
707
|-
708
|[[Image:draft_Samper_616988227-Figure6b.png|500px|]]
709
|- style="text-align: center; font-size: 75%;"
710
| colspan="1" | '''Figure 6:''' Motion of a liquid within an oscillating container. (a) Original distribution of particles (nodes) prior to the oscillation. (b) Position of the liquid particles at two different times. The boundary particles representing the free surface, the fluid drops and the container wall are plotted with a lighter colour. Arrows indicate velocity vectors for each particle.
711
|}
712
713
==9 Modelling a “Rigid”  Structure as a Viscous Fluid==
714
715
A simple and yet effective way to analyze the rigid motion of solid bodies in fluids with the Lagrangian flow description is to model the solid as a fluid with a viscosity much higher than that of the surrounding fluid. The fractional step scheme of Section [[#5 Fractional Step Method for Fluid-Structure Interaction Analysis|5]] can be readily applied skipping now step 5 and  solving now for the simultaneous motion of both fluid domains (the actual fluid and the fictitious fluid modelling the quasi-rigid body).  Examples of this type are presented in Sections [[#10.3 Wave breaking on a beach|10.3]] and [[#10.4 Fixed ship hit by wave|10.4.]]
716
717
Indeed this approach can be further extended to account for the elastic deformation of the solid treated now as a visco-elastic fluid. This will however introduce some complexity in the formulation and the full coupled FSI scheme described in Section [[#5 Fractional Step Method for Fluid-Structure Interaction Analysis|5]] is preferable.
718
719
==10 Examples==
720
721
The examples chosen show the applicability of the PFEM to solve problems involving large fluid motions and FSI situations. The fractional step algorithm of Section [[#5 Fractional Step Method for Fluid-Structure Interaction Analysis|5]] with <math display="inline">\theta _2 =1</math> and <math display="inline">\alpha =1</math> has been used in all cases.
722
723
In examples [[#10.1 Collapse of a water column|10.1]]-[[#10.10 Rigid cube falling into a water container|10.10]] a value of <math display="inline">\theta _1=1</math> has  been chosen. This basically means that the final configuration <math display="inline">\Omega ^{n+1,j}</math> has been taken as the reference configuration at each iteration. In example [[#10.11 The Rayleigh-Bénard Instability|10.11]] <math display="inline">\theta _1=0</math> has been selected and, hence, the initial configuration <math display="inline">\Omega ^n</math> has been taken as a fixed reference configuration for all the iterations within a time step.
724
725
<div id='img-7'></div>
726
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
727
|-
728
|[[Image:Draft_Samper_616988227_1123_monograph-Fig1ArtBathe.png|400px|]]
729
|-
730
||[[Image:Draft_Samper_616988227_7228_monograph-Fig1contBathe.png|400px|cont.]]
731
|- style="text-align: center; font-size: 75%;"
732
| colspan="1" | '''Figure 7:''' Water column collapse at different time steps.
733
|}
734
735
===10.1 Collapse of a water column===
736
737
The first problem solved to show the potential of the PFEM is the study of the collapse of a water column. This problem was solved by Koshizu and Oka (1996) <span id="citeF-25"></span>[[#cite-25|[25]]] both experimentally and numerically. It has became a classical example to  validate the Lagrangian formulation for fluid flows. The water is initially kept within a rectangular container including a removable vertical board. A double layer of nodes in the solid walls is used in order to prevent water nodes from exiting the analysis domain. The boundary conditions impose zero velocity at the wall nodes and zero (atmospheric) pressure at the free surface. Figures [[#img-7|7b]] and [[#img-7|7c]] show the mesh discretizing the water domain and the solid walls at two different times of the analysis. Note that the method allows one to follow the large motion of the water particles including  separation of some water drops. The collapse starts at time <math display="inline">t = 0</math>, when the board is removed. Viscosity and surface tension are neglected in the analysis. Figure [[#img-7|7]] shows the point positions at different time steps. The dark points represent the free-surface detected with the algorithm described in Section [[#8 Identification of Boundary Surfaces|8]]. The internal points are shown in a gray colour and the fixed points in black. The meshes generated at different times during the fluid motion are shown in Figure [[#img-2|2]].
738
739
The water is running on the bottom wall until, at <math display="inline">0.3 sec</math> it impinges on the right vertical wall. Breaking waves appear at <math display="inline">0.6 sec</math>. At about <math display="inline">1 sec</math>. the wave again reaches the left wall. Agreement with the experimental results of [Koshizuka and Oka (1996) <span id="citeF-25"></span>[[#cite-25|[25]]]] both in the shape of the free surface as well as in its time evolution are excellent.
740
741
The 3D solution of the same problem is shown in Figure [[#img-8|8]]. More information on the PFEM solution of this problem can be found in Idelsohn ''et al.'' (2004) <span id="citeF-23"></span>[[#cite-23|[23]]].
742
743
<div id='img-8'></div>
744
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
745
|-
746
|[[File:Onate_et_al_2004b_8845_8a.JPG|200px|]]
747
|[[File:Onate_et_al_2004b_2556_8b.JPG|200px|]]
748
|-
749
| colspan="1" | a) t= 0 sec. 
750
| colspan="1" | b) t= 0.2 sec.
751
|-
752
|[[File:Onate_et_al_2004b_4744_8c.JPG|200px|]]
753
|[[File:Onate_et_al_2004b_5250_8d.JPG|200px|]]
754
|-
755
| colspan="1" | c) t= 0.4 sec. 
756
| colspan="1" | d) t= 0.6 sec.
757
|-
758
|[[File:Onate_et_al_2004b_9068_8e.JPG|200px|Water column collapse in a 3D domain.]]
759
|[[File:Onate_et_al_2004b_2497_8f.JPG|200px|]]
760
|-
761
| colspan="1" | e) t= 0.8 sec. 
762
| colspan="1" | f) t= 1.1 sec.
763
|- style="text-align: center; font-size: 75%;"
764
| colspan="2" | '''Figure 8:''' Water column collapse in a 3D domain.
765
|}
766
767
===10.2 Sloshing problems===
768
769
The simple problem of the free oscillation of an incompressible liquid in a container is considered next. Numerical solutions for this problem can be found in several references [Radovitzki and Ortiz (1998) <span id="citeF-35"></span>[[#cite-35|[35]]]]. This problem is interesting because there is an analytical solution for small amplitudes. Figure [[#img-9|9]] shows a schematic view of the problem and the point distribution in the initial position. The dark points represent the fixed points on the walls where the velocity is fixed to zero.
770
771
<div id='img-9'></div>
772
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
773
|-
774
|[[Image:Draft_Samper_616988227_9806_monograph-Fig3-c.png|651px|Sloshing. Initial point distribution.]]
775
|- style="text-align: center; font-size: 75%;"
776
| colspan="1" | '''Figure 9:''' Sloshing. Initial point distribution.
777
|}
778
779
<div id='img-10'></div>
780
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
781
|-
782
|[[Image:Draft_Samper_616988227_5402_monograph-Fig4-c.png|500px|Sloshing: Comparison of the numerical and analytical solutions.]]
783
|- style="text-align: center; font-size: 75%;"
784
| colspan="1" | '''Figure 10:''' Sloshing: Comparison of the numerical and analytical solutions.
785
|}
786
787
Figure [[#img-10|10]] shows the  time evolution of the amplitude compared with the analytical results for the near inviscid case.  Little numerical viscosity is observed on the phase wave and amplitude in spite of the relative poor point distribution.
788
789
<div id='img-11'></div>
790
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
791
|-
792
|[[Image:Draft_Samper_616988227_8726_monograph-Fig5-c.png|500px|PFEM results for a large amplitude sloshing problems.]]
793
|- style="text-align: center; font-size: 75%;"
794
| colspan="1" | '''Figure 11:''' PFEM results for a large amplitude sloshing problems.
795
|}
796
797
<div id='img-12'></div>
798
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
799
|-
800
|[[Image:Draft_Samper_616988227_6009_monograph-Fig6-c.png|500px|3D sloshing problem.]]
801
|- style="text-align: center; font-size: 75%;"
802
| colspan="1" | '''Figure 12:''' 3D sloshing problem.
803
|}
804
805
The analytical solution is only acceptable for small wave amplitudes. For larger amplitudes, additional waves are overlapping and, finally, the wave breaks and also some particles separate from the fluid domain due to their large velocity.  Figure [[#img-11|11]] shows the numerical results obtained with the PFEM for larger sloshing amplitudes. Breaking waves as well as separation effects can be seen on the free-surface. This particular and very complicated effect is  well represented by the PFEM.
806
807
In order to test the potential of the PFEM in a 3D domain, the same sloshing problem was solved in 3D.  Figure [[#img-12|12]] show the different point positions at two time steps. Each point position was represented by a sphere and only a half of the fixed recipient is represented on the figure. This sphere representation is only used in order to improve the visualization of the numerical results.
808
809
===10.3 Wave breaking on a beach===
810
811
A simulation of the propagation of a water wave and its breaking due to shoaling over a plane slope is presented next. This example was numerically studied in [Radovitzki and Ortiz (1998) <span id="citeF-35"></span>[[#cite-35|[35]]]] with a Lagrangian formulation using directly the standard Finite Element Method with remeshing. There is also an analytical solution for a simplified approximation that is used for  comparisons [Laitone (1960) <span id="citeF-27"></span>[[#cite-28|[28]]]] where  the geometry of the problem as well as a discussion of the analytical solution may be found. Figure [[#img-13|13]] shows the initial point distribution and Figure [[#img-11|11]] a comparison with the analytical free-surface at different time steps.
812
813
<div id='img-13'></div>
814
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
815
|-
816
|[[Image:Draft_Samper_616988227_7282_monograph-Fig8-c.png|451px|Wave breaking on a beach. Initial geometry and point positions.]]
817
|- style="text-align: center; font-size: 75%;"
818
| colspan="1" | '''Figure 13:''' Wave breaking on a beach. Initial geometry and point positions.
819
|}
820
821
Initially (Figures [[#img-14|14a.]] and [[#img-14|14b.]]) the wave travels over a constant depth bottom towards the slope with no ostensible change of shape. Strongly non-linear effects appear when the wave hits the slope (Fig. [[#img-14|14c.]]). The crest of the wave accelerates until it reaches the shore (Fig. [[#img-14|14d.]]). At this time the comparisons with the analytical solution are in agreement only in the wave position. The shape of the wave obtained with the numerical solution is totally different. The reason is that before the breaking process the analytical solution gives symmetrical shape waves, which are not physical. Subsequently, a water jet is formed at the crest plunge making the breaking wave (Figs. [[#img-14|14e.]] and [[#img-14|14f.]])  and coming in contact with the nearly still surface of the water ahead. In Ref. [Radovitzki and Ortiz (1998) <span id="citeF-35"></span>[[#cite-35|[35]]]] the computation is stopped before this contact point. Using the methodology proposed in this paper, the analysis may be continued until the  end.  In Figs. [[#img-14|14g.]] and [[#img-14|14h.]] the wave finally hits a lateral wall (introduced in the model to stop the lateral effects) producing drop separations, and then coming back toward to the left as a new wave.
822
823
<div id='img-14'></div>
824
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
825
|-
826
|[[Image:Draft_Samper_616988227_8284_monograph-Fig9.png|551px|Wave breaking on a beach. Comparison with analytical results at different time steps. Top: PFEM solution. Bottom: Analytical solution.]]
827
|- style="text-align: center; font-size: 75%;"
828
| colspan="1" | '''Figure 14:''' Wave breaking on a beach. Comparison with analytical results at different time steps. Top: PFEM solution. Bottom: Analytical solution.
829
|}
830
831
The ability of the PFEM to accurately simulate the various stages of the wave breaking is noteworthy.
832
833
In order to show the power of the PFEM, the same problem was solved in a 3D domain. Now, the initial position of the wave was given an oblique angle with the beach line. In this way,  3D effects show more clearly. When the wave  hits the slope, the crest of the wave accelerates differently accordingly with the depth, inducing the wave to correct its oblique position and break parallel to the beach. The results may be seen in Figure [[#img-15|15]] for different time steps.
834
835
<div id='img-15'></div>
836
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
837
|-
838
|[[Image:draft_Samper_616988227-Fig10.png|282px|Breaking wave on a beach. Oblique wave on a 3D domain.]]
839
|- style="text-align: center; font-size: 75%;"
840
| colspan="1" | '''Figure 15:''' Breaking wave on a beach. Oblique wave on a 3D domain.
841
|}
842
843
===10.4 Fixed ship hit by wave===
844
845
This  example is a very schematic representation of a ship when  is hit by a big wave. The ship can not move and initially the free-surface near the ship is horizontal. Fixed nodes represent the ship as well as the domain walls. The example tests the suitability of the PFEM to solve water-wall contact situations even in the presence of curved walls. Note the breaking and splashing of the waves under the ship prow and the rebound of the incoming wave. It is also interesting to see the different water-wall contact situations at the internal and external ship surfaces and the moving free-surface at the back of the ship.
846
847
===10.5 Horizontal motion of a rigid ship in a reservoir===
848
849
In the next example (Figure [[#img-17|17]]) the same ship of the previous example moves now horizontally at a fixed velocity in a water reservoir. The free-surface, which was initially horizontal, takes the correct position at the ship prow and stern. Again, the complex water-wall contact problem is naturally solved in the curved prow region.
850
851
852
<div id='img-16'></div>
853
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
854
|-
855
|[[File:Onate_et_al_2004b_5600_28a.JPG|300px]]
856
|[[File:Onate_et_al_2004b_7538_28b.JPG|300px]]
857
|-
858
|[[File:Onate_et_al_2004b_9973_28c.JPG|300px]]
859
|[[File:Onate_et_al_2004b_3769_28d.JPG|300px]]
860
|-
861
|[[File:Onate_et_al_2004b_7465_28e.JPG|300px]]
862
|[[File:Onate_et_al_2004b_9319_28f.JPG|300px]]
863
|-
864
|[[File:Onate_et_al_2004b_5598_28g.JPG|300px]]
865
|[[File:Onate_et_al_2004b_5720_28h.JPG|300px]]
866
|-
867
|[[File:Onate_et_al_2004b_8316_28i.JPG|300px]]
868
|[[File:Onate_et_al_2004b_7709_28j.JPG|300px]]
869
|-
870
|[[File:Onate_et_al_2004b_9481_28k.JPG|300px]]
871
|[[File:Onate_et_al_2004b_8125_28l.JPG|300px]]
872
|-
873
|[[File:Onate_et_al_2004b_2642_28m.JPG|300px]]
874
|[[File:Onate_et_al_2004b_5323_28n.JPG|300px]]
875
|- style="text-align: center; font-size: 75%;"
876
| colspan="2" | '''Figure 16:''' Fixed ship hit by incoming  wave
877
|}
878
879
<div id='img-17'></div>
880
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
881
|-
882
|[[File:Onate_et_al_2004b_7894_29a.JPG|300px]]
883
|[[File:Onate_et_al_2004b_3442_29b.JPG|300px]]
884
|-
885
|[[File:Onate_et_al_2004b_2060_29c.JPG|300px]]
886
|[[File:Onate_et_al_2004b_6860_29d.JPG|300px]]
887
|-
888
|[[File:Onate_et_al_2004b_6920_29e.JPG|300px]]
889
|[[File:Onate_et_al_2004b_4947_29f.JPG|300px]]
890
|-
891
|[[File:Onate_et_al_2004b_3272_29g.JPG|300px]]
892
|[[File:Onate_et_al_2004b_6940_29h.JPG|300px]]
893
|-
894
|[[File:Onate_et_al_2004b_2663_29i.JPG|300px]]
895
|[[File:Onate_et_al_2004b_7621_29j.JPG|300px]]
896
|-
897
|[[File:Onate_et_al_2004b_2037_29k.JPG|300px]]
898
|[[File:Onate_et_al_2004b_5169_29L.JPG|300px]]
899
|-
900
|[[File:Onate_et_al_2004b_1056_29m.JPG|300px]]
901
|[[File:Onate_et_al_2004b_9832_29n.JPG|300px]]
902
|- style="text-align: center; font-size: 75%;"
903
| colspan="2" | '''Figure 17:''' Moving ship with fixed velocity
904
|}
905
906
===10.6 Semi-submerged rotating water mill===
907
908
The  example shown in Figure [[#img-18|18]] is the analysis of a rotating water mill semi-submerged in water. The blades of the mill are treated as a rigid body with an imposed rotating velocity, while the water is initially in a stationary  flat position. Fluid structure interactions with free-surfaces and water fragmentation are well reproduced in this example.
909
910
<div id='img-18'></div>
911
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
912
|-
913
|[[File:Onate_et_al_2004b_3199_30a.JPG|200px]]
914
|[[File:Onate_et_al_2004b_1707_30b.JPG|200px]]
915
|[[File:Onate_et_al_2004b_1621_30c.JPG|200px]]
916
|-
917
|[[File:Onate_et_al_2004b_2226_30d.JPG|200px]]
918
|[[File:Onate_et_al_2004b_2241_30e.JPG|200px]]
919
|[[File:Onate_et_al_2004b_9693_30f.JPG|200px]]
920
|-
921
|[[File:Onate_et_al_2004b_2188_30g.JPG|200px]]
922
|[[File:Onate_et_al_2004b_8847_30h.JPG|200px]]
923
|[[File:Onate_et_al_2004b_8645_30i.JPG|200px]]
924
|-
925
|[[File:Onate_et_al_2004b_7496_30j.JPG|200px]]
926
|[[File:Onate_et_al_2004b_4725_30k.JPG|200px]]
927
|[[File:Onate_et_al_2004b_2514_30l.JPG|200px]]
928
|- style="text-align: center; font-size: 75%;"
929
| colspan="3" | '''Figure 18:''' Rotating water mill.
930
|}
931
932
===10.7 Floating wood piece===
933
934
The next example shows an initially stationary recipient with a floating piece of wood where a wave is produced on the left side. The wood has been simulated by a liquid of higher viscosity as described in Section [[#9 Modelling a “Rigid” Structure as a Viscous Fluid|9]]. The wave intercepts the wood piece producing a breaking wave and displacing the floating wood as shown in Figure [[#img-19|19]].
935
936
<div id='img-19'></div>
937
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
938
|-
939
|[[Image:Draft_Samper_616988227_3737_monograph-Fig11.png|400px|]]
940
|-
941
|[[Image:Draft_Samper_616988227_3385_monograph-Fig12.png|400px|Floating wood piece hit by a wave]]
942
|- style="text-align: center; font-size: 75%;"
943
| colspan="1" | '''Figure 19:''' Floating wood piece hit by a wave
944
|}
945
946
===10.8 Ships hit by an incoming wave===
947
948
In the example of Figure [[#img-20|20]] the motion of a fictitious rigid ship hit by an incoming wave is analyzed.  The dynamic motion of the ship is induced by the resultant of the pressure and the viscous forces acting on the ship boundaries.  The horizontal displacement of the gravity center of the ship was fixed to zero. In this way, the ship moves only vertically although it can freely rotate. The position of the ship boundary at each time step defines a moving boundary condition for the free surface particles in the fluid. Figure [[#img-20|20]] shows instants of the motion of the ship and the surrounding fluid. It is interesting to see the breaking of a wave on the ship prow as well as on the stern when the wave goes back. Note that some water drops slip over the ship deck.
949
950
Figure [[#img-21|21]] shows the analysis of a similar problem using precisely the same approach. The section of the ship analyzed corresponds now to that of a real container ship. Different to the previous case the rigid ship is  free to move laterally due to the sea wave forces. The objective of the study was to assess the influence of the stabilizers in the ship roll. The figures show clearly how the PFEM predicts the ship and wave motions in a realistic manner.
951
952
<div id='img-20'></div>
953
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
954
|-
955
|[[Image:draft_Samper_616988227-Figure7_con231.png|360px|Motion of a rigid ship hit by an incoming wave. The ship is modelled as a rigid solid restrained to move in the vertical direction.]]
956
|- style="text-align: center; font-size: 75%;"
957
| colspan="1" | '''Figure 20:''' Motion of a rigid ship hit by an incoming wave. The ship is modelled as a rigid solid restrained to move in the vertical direction.
958
|}
959
960
<div id='img-21'></div>
961
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
962
|-
963
|[[Image:draft_Samper_616988227-Figure33.png|360px|Ship with stabilizers hit by a lateral wave ]]
964
|- style="text-align: center; font-size: 75%;"
965
| colspan="1" | '''Figure 21:''' Ship with stabilizers hit by a lateral wave 
966
|}
967
968
===10.9 Tank-ship hit by a lateral wave===
969
970
Figure [[#img-22|22]] represents a transversal section of a tank-ship and a wave approaching it. The tank-ship is modelled as a rigid body and it carries a liquid inside which can move freely within the ship domain.
971
972
<div id='img-22'></div>
973
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
974
|-
975
| style="text-align: center; font-size: 85%;"| time[sec]: 0.000000
976
|-
977
|[[Image:draft_Samper_616988227-TankShip1a.png|400px|]]
978
|-
979
|style="text-align: center; font-size: 85%;"| time[sec]: 1.950000
980
|-
981
|[[Image:draft_Samper_616988227-TankShip1b.png|400px|]]
982
|-
983
|style="text-align: center; font-size: 85%;"| time[sec]: 3.000000
984
|-
985
|[[Image:draft_Samper_616988227-TankShip1c.png|400px|]]
986
|-
987
|style="text-align: center; font-size: 85%;"| time[sec]: 4.950000
988
|-
989
|[[Image:draft_Samper_616988227-TankShip1d.png|400px]]
990
|-
991
| style="text-align: center; font-size: 85%;"| time[sec]: 6.150000
992
|-
993
| [[Image:Draft_Samper_616988227_7396_test-TankShip1e.png|400px|]]
994
|-
995
| style="text-align: center; font-size: 85%;"| time[sec]: 8.550000
996
|-
997
|[[Image:Draft_Samper_616988227_7396_test-TankShip1e.png|400px|]]
998
|- style="text-align: center; font-size: 75%;"
999
| colspan="1" | '''Figure 22:''' Tank-ship carrying an internal liquid hit by wave. Ship and fluids motion  at different time steps
1000
|}
1001
1002
Initially (<math display="inline">t = 0.0</math>) the ship is released from a fixed position and the equilibrium configuration found is consistent with Archimedes principle. During the following time steps the external wave hits the ship and both the internal and the external fluids interact with the ship boundaries. At times <math display="inline">t=6.15</math> and 8.55 breaking waves and some water drops slipping along the ship deck can be observed. Figure [[#img-23|23]] shows the pressure pattern at two time steps.
1003
1004
<div id='img-23'></div>
1005
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1006
|-
1007
|[[File:Onate_et_al_2004b_9207_35a.JPG|400px|XXXXXXXX]]
1008
|-
1009
|[[File:Onate_et_al_2004b_8110_35b.JPG|400px]]
1010
|- style="text-align: center; font-size: 75%;"
1011
| colspan="1" | '''Figure 23:'''Tank ship under lateral wave. Pressure distribution at two time steps.
1012
|}
1013
1014
===10.10 Rigid cube falling into a water container===
1015
1016
In the next  example a  solid cube is initially  free and falls into a container of water recipient. In this example, the rigid solid is modeled first as a fictitious fluid with a higher viscosity,  similarly as for  the floating solid of Section [[#10.7 Floating wood piece|10.7.]] The results of this analysis are shown in Figure [[#img-24|24]]. Note that the method reproduces very well the interaction of the cube with the free surface as well as the overall sinking process. A small deformation of the cube is produced. This can be reduced by increasing further the fictitious viscosity of the cube particles.
1017
1018
<div id='img-24'></div>
1019
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1020
|-
1021
|[[File:Onate_et_al_2004b_5462_36.JPG|500px]]
1022
|- style="text-align: center; font-size: 75%;"
1023
| colspan="1" | '''Figure 24:''' Solid cube falling into a recipient with water. The cube is modelled as a very viscous fluid
1024
|}
1025
1026
The same problem is analyzed again considering now the cube as a  rigid solid subjected to  pressure and viscous forces acting in its boundaries. The resultant of the fluid forces and the weight of the cube are applied to the center of the cube. These forces govern the displacement of the cube which is computed by solving  the dynamic equations of motion as described in the fractional step algorithm of Section [[#5 Fractional Step Method for Fluid-Structure Interaction Analysis|5]], similarly as for the rigid ships of the three previous examples. Here again  the moving cube contours define a boundary condition for the fluid particles at each time step.
1027
1028
Initially the solid falls  freely due to the gravity forces (Figure [[#img-25|25]]). Once in contact with the water surface, the Alpha-Shape method recognizes the different boundary contours which are shown with a thick line in the figure.  The pressure  and viscous forces are evaluated in all the domain and in particular on the cube contours. The fluid forces introduce a negative acceleration in the vertical motion until, once the cube is completely inside the water, the vertical  velocity  becomes zero. Then,  buoyancy  forces bring the cube up to the free-surface. It is interesting to observe that there is a rotation of the cube. The reason is that the center of the floating forces is higher in the rotated position than in the initial ones.
1029
1030
<div id='img-25'></div>
1031
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1032
|-
1033
||[[File:Onate_et_al_2004b_2674_37a.JPG]]
1034
|[[File:Onate_et_al_2004b_2539_37b.JPG]]
1035
|[[File:Onate_et_al_2004b_3158_37c.JPG]]
1036
|-
1037
|[[File:Onate_et_al_2004b_9470_37d.JPG]]
1038
|[[File:Onate_et_al_2004b_1216_37e.JPG]]
1039
|[[File:Onate_et_al_2004b_7672_37f.JPG]]
1040
|-
1041
|[[File:Onate_et_al_2004b_6839_37g.JPG]]
1042
|[[File:Onate_et_al_2004b_6554_37h.JPG]]
1043
|[[File:Onate_et_al_2004b_6623_37i.JPG]]
1044
|- style="text-align: center; font-size: 75%;"
1045
| colspan="3" | '''Figure 25:''' Cube falling into a recipient with water. The cube is modelled as a rigid solid. Motion of the cube and free surface positions at different time steps.
1046
|}
1047
1048
Figure [[#img-26|26]] shows a repetition of the same problem showing now all the finite elements in the mesh discretizing the fluid. We recall that in all the  problems here described the mesh in the fluid domain ''is regenerated at each time step'' combining linear triangles and quadrilateral elements as described in Section [[#7 Generation of a New Mesh|7]]. Note that some fluid particles separate from the fluid domain. These particles are treated as free boundary points with zero pressure and hence fall  due to gravity.
1049
1050
<div id='img-26'></div>
1051
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1052
|-
1053
|[[File:Onate_et_al_2004b_1751_38a.JPG|200px]]
1054
|[[File:Onate_et_al_2004b_5905_38b.JPG|200px]]
1055
|-
1056
|[[File:Onate_et_al_2004b_1114_38c.JPG|200px]]
1057
|[[File:Onate_et_al_2004b_5890_38d.JPG|200px]]
1058
|-
1059
|[[File:Onate_et_al_2004b_3408_cont_a.JPG|200px]]
1060
|[[File:Onate_et_al_2004b_1166_cont_b.JPG|200px]]
1061
|-
1062
|[[File:Onate_et_al_2004b_4300_cont_c.JPG|200px]]
1063
|[[File:Onate_et_al_2004b_5716_cont_d.JPG|200px]]
1064
|- style="text-align: center; font-size: 75%;"
1065
| colspan="2" | '''Figure 26:''' Cube falling in a water recipient. The cube is modeled as a  rigid solid. The finite element meshes generated at the selected instants are shown.
1066
|}
1067
1068
1069
It is interesting to see that the final position of the cube is different from that of Figure [[#img-25|25]]. This is due to the unstable character of the cube motion. A small difference in the numerical computations (for instance in the mesh generation process) shifts the movement of the cube towards the right or the left. Note  that a final rotated equilibrium position is found in both cases.
1070
1071
===10.11 The Rayleigh-Bénard Instability===
1072
1073
This example shows that the PFEM can also be successfully used to solve fluid flow problems traditionally analyzed with Eulerian formulations. The problem solved is that of a heated thin cavity containing a fluid. The flow pattern yields the so called Rayleigh-Bénard hydrodynamical instability giving a roll pattern along the cavity. In this case the Lagrangian fluid flow equations are solved together with the heat transfer equation also written in a Lagrangian manner. As mentioned at the introduction of Section [[#10 Examples|10]] a value of <math display="inline">\theta _1=0</math> has been taken in this example.  Details of the solution scheme using a Boussinesq approximatlions for the coupling between the heat transfer equation and the flow equations are given in Aubry ''et al.'' (2004) <span id="citeF-1"></span>[[#cite-1|[1]]].
1074
1075
The bottom and upper part are isothermal with a  temperature of <math display="inline">21^\circ C</math> for the bottom and <math display="inline">19^\circ C</math> for the top. The initial and  reference temperature in the fluid is <math display="inline">20^\circ </math> C and the side parts are  adiabatic. The Rayleigh number is <math display="inline">10^5</math> and the Prandtl number is <math display="inline">10^{-1}</math>. The mesh has 35500 nodes and 69700 elements at the beginning of the  analysis. The numerical computations start with the fluid at rest as the initial conditions.  For rigid-rigid boundary conditions, the critical value of the  Rayleigh number is 1708 so that the flow is here supercritical. However, a  quasi-steady state is reached, with periodic oscillations of the temperature  and the cells.  Figure [[#img-27|27]] shows results of the temperature and velocity field showing the development of rolls. Numerical results have been plotted using the GiD pre/postprocessing system developed at CIMNE [Gid (2004) <span id="citeF-14"></span>[[#cite-14|[14]]]]. More details on the application of the PFEM to this problem can be found in Aubry ''et al.'' (2004) <span id="citeF-1"></span>[[#cite-1|[1]]].
1076
1077
1078
<div id='img-25'></div>
1079
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1080
|-
1081
|[[Image:Draft_Samper_616988227_5859_test-tempnode400.png|300px|]]
1082
|-
1083
| (a)
1084
|-
1085
| [[Image:Draft_Samper_616988227_9566_test-temp400a.png|300px|temp400a.ps]]
1086
|-
1087
| (b)
1088
|-
1089
|[[Image:Draft_Samper_616988227_4131_test-vel400b.png|300px|vel400b.ps]]
1090
|-
1091
|(c)
1092
|-
1093
|[[Image:Draft_Samper_616988227_2681_test-tempnode400zoom.png|300px|]]
1094
|-
1095
|(d)
1096
|-
1097
|[[Image:Draft_Samper_616988227_7618_test-veltemp-400c.png|300px|]]
1098
|-
1099
|(e)
1100
|- style="text-align: center; font-size: 75%;"
1101
| colspan="1" | '''Figure 27:''' Rayleigh-Bénard instability with <math>Ra =10^5</math> and <math>Pr=10^{-1}</math>. (a) Temperature field. (b) Detail of temperature field. (c) Velocity norm field. (d) Detail of velocity norm field plotted on each particle. (e) Velocity vectors on temperature field
1102
|}
1103
1104
==11 CONCLUSIONS==
1105
1106
The particle finite element method (PFEM) seems ideal to treat problems involving fluids with free surface and submerged or floating structures within a unified Lagrangian finite element framework. Problems such as the analysis of fluid-structure interactions, large motion of  fluid or solid particles, surface waves, water splashing, separation of water drops, etc. can be easily solved with the PFEM. The success of the method lies in the accurate and efficient solution of the equations of an incompressible fluid and of solid dynamics using a stabilized finite element method via a fractional step scheme allowing the use of low order elements with equal order interpolation for all the variables. Other essential solution ingredients are the efficient regeneration of the finite element mesh using an extended Delaunay tesselation, the meshless finite element interpolation (MFEM) and the identification of the boundary nodes using an Alpha Shape type technique. The examples presented have shown the potential of the PFEM for solving a wide class of practical FSI problems.
1107
1108
==Acknowledgements==
1109
1110
Thanks are given to Prof. R.L Taylor for many useful suggestions and to Mr. Nestor Calvo for this help in the development of the mesh generation process using the extended Delaunay technique.
1111
1112
==Appendix==
1113
1114
From Eqs.([[#eq-7|7]]) and ([[#eq-3|3]]) it can be obtained (taking into account the definition of the stresses <math display="inline">\sigma _{ij}</math> and Eqs.([[#eq-5|5]]))
1115
<span id="eq-A.1"></span>
1116
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1117
|-
1118
| 
1119
{| style="text-align: left; margin:auto;width: 100%;" 
1120
|-
1121
| style="text-align: center;" | <math>{\partial r_d \over \partial x_i}=-{1\over a_i} \left[\bar r_{m_i}-{h_j\over 2} {\partial r_{m_i} \over \partial x_j}\right]-  {\rho u_i h_k\over 2a_i} {\partial r_d \over \partial x_k}\quad i,j=1,n_d\quad ,\quad  k\not =i</math>
1122
|}
1123
| style="width: 5px;text-align: right;white-space: nowrap;" |  (A.1)
1124
|}
1125
1126
where
1127
<span id="eq-A.2a"></span>
1128
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1129
|-
1130
| 
1131
{| style="text-align: left; margin:auto;width: 100%;" 
1132
|-
1133
| style="text-align: center;" | <math>a_i = {2\mu \over 3} </math>
1134
|}
1135
| style="width: 5px;text-align: right;white-space: nowrap;" |  (A.2a)
1136
|}
1137
1138
and
1139
<span id="eq-A.2b"></span>
1140
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1141
|-
1142
| 
1143
{| style="text-align: left; margin:auto;width: 100%;" 
1144
|-
1145
| style="text-align: center;" | <math>\bar r_{m_i}=\rho {\partial u_i \over \partial t} + {\partial p \over \partial x_i}-{\partial  \over \partial x_j} (2\mu \dot \varepsilon _{ij}) - b_i</math>
1146
|}
1147
| style="width: 5px;text-align: right;white-space: nowrap;" |  (A.2b)
1148
|}
1149
1150
Substituting Eq.([[#eq-A.1|A.1]]) into Eq.([[#eq-8|8]]) and retaining the terms involving the derivatives of <math display="inline">r_{m_i}</math> with respect to <math display="inline">x_i</math> only, leads to the following expression for the stabilized mass balance equation
1151
<span id="eq-A.3"></span>
1152
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1153
|-
1154
| 
1155
{| style="text-align: left; margin:auto;width: 100%;" 
1156
|-
1157
| style="text-align: center;" | <math>\displaystyle{r_d - \sum \limits _{i=1}^{n_d} \tau _i {\partial r_{m_i} \over \partial x_i}=0}</math>
1158
|}
1159
| style="width: 5px;text-align: right;white-space: nowrap;" |  (A.3)
1160
|}
1161
1162
with
1163
<span id="eq-A.4"></span>
1164
{| class="formulaSCP" style="width: 100%; text-align: left;" 
1165
|-
1166
| 
1167
{| style="text-align: left; margin:auto;width: 100%;" 
1168
|-
1169
| style="text-align: center;" | <math>\tau _i = {3h_i^2\over 8\mu }</math>
1170
|}
1171
| style="width: 5px;text-align: right;white-space: nowrap;" |  (A.4)
1172
|}
1173
1174
==References==
1175
1176
<div id="cite-1"></div>
1177
[[#citeF-1|[1]]] Aubry, R., Idelsohn, S.R. and Oñate, E. (2004). Particle finite element method in fluid mechanics including thermal convection-diffusion. ''Computer & Structures'', submitted.
1178
1179
<div id="cite-2"></div>
1180
[[#citeF-2|[2]]]  Chorin, A.J. (1967). A numerical solution for solving incompressible viscous flow problems. ''J. Comp. Phys.'', '''2''': 12&#8211;26.
1181
1182
<div id="cite-3"></div>
1183
[[#citeF-3|[3]]]  Codina, R. (2002). Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. ''Comput. Methods Appl. Mech. Engrg.'', '''191''': 4295&#8211;4321..
1184
1185
<div id="cite-4"></div>
1186
[[#citeF-4|[4]]]  Codina, R., Vazquez, M.  and Zienkiewicz, O.C. (1998).  A general algorithm for compressible and incompressible flow - Part III. The semi-implicit form. ''Int. J. Num. Meth. in Fluids'', '''27''': 13&#8211;32.
1187
1188
<div id="cite-5"></div>
1189
[[#citeF-5|[5]]]  Codina, R. and Blasco, J. (2000). Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient operator. ''Comput. Methods in Appl. Mech. Engrg.'', '''182''': 277&#8211;301.
1190
1191
<div id="cite-6"></div>
1192
[[#citeF-6|[6]]]  Codina, R. and Zienkiewicz, O.C. (2002). CBS versus GLS stabilization of the incompressible Navier-Stokes equations and the role of the time step as stabilization parameter. ''Communications in Numerical Methods in Engineering'', '''18 (2)''': 99&#8211;112.
1193
1194
<div id="cite-7"></div>
1195
[[#citeF-7|[7]]]  Cruchaga, M.A.  and Oñate, E. (1997). A finite element formulation for incompressible flow problems using a generalized streamline operator. ''Comput. Methods in Appl. Mech. Engrg.'', '''143''': 49&#8211;67..
1196
1197
<div id="cite-8"></div>
1198
[[#citeF-8|[8]]]  Cruchaga, M.A.  and Oñate, E. (1999). A generalized streamline finite element approach for the analysis of incompressible flow problems including moving surfaces. ''Comput. Methods in Appl. Mech. Engrg.'', '''173''': 241&#8211;255..
1199
1200
<div id="cite-9"></div>
1201
[[#citeF-9|[9]]]  J. Donea and A. Huerta, ''Finite Element Methods for Flow Problems''. Wiley, 2003.
1202
1203
<div id="cite-10"></div>
1204
[[#citeF-10|[10]]]  Edelsbrunner, H.  and Mucke, E.P. (1999). Three dimensional alpha shapes. ''ACM Trans. Graphics'', '''13''': 43&#8211;72.
1205
1206
<div id="cite-11"></div>
1207
[[#citeF-11|[11]]] Franca, L.P.  and Frey, S.L. (1992). Stabilized finite element methods:  II. The incompressible Navier-Stokes equations. ''Comput. Method Appl.  Mech. Engrg.'', '''99''': 209&#8211;233.
1208
1209
<div id="cite-12"></div>
1210
[[#citeF-12|[12]]]  García, J.  and Oñate, E. (2003). An unstructured finite element solver for ship hydrodynamic problems. in ''J. Appl. Mech.'', '''70''': 18&#8211;26, January.
1211
1212
<div id="cite-13"></div>
1213
[[#citeF-13|[13]]]  George. (1991). ''Automatic mesh generation. Application to the finite element method'', J. Wiley.
1214
1215
<div id="cite-14"></div>
1216
[[#citeF-14|[14]]]  GiD. (2004). The personal pre/postprocessor. CIMNE, Barcelona, www.gidhome.com.
1217
1218
<div id="cite-15"></div>
1219
[[#citeF-15|[15]]]  Hansbo, P.  and Szepessy, A. (1990). A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations. ''Comput. Methods Appl. Mech. Engrg.'', '''84''': 175&#8211;192.
1220
1221
<div id="cite-16"></div>
1222
[[#citeF-16|[16]]]  Hughes, T.J.R., Franca, L.P.  and Balestra, M. (1986). A new finite element formulation for computational fluid dynamics. V Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accomodating equal order interpolations. ''Comput. Methods Appl. Mech. Engrg.'', '''59''': 85&#8211;89.
1223
1224
<div id="cite-17"></div>
1225
[[#citeF-17|[17]]]  Hughes, T.J.R., Franca, L.P. and Hulbert, G.M. (1989). A new finite  element formulation for computational fluid dynamics: VIII. The  Galerkin/least-squares method for advective-diffusive equations. '' Comput. Methods Appl. Mech. Engrg.'', '''73''': 173&#8211;189.
1226
1227
<div id="cite-18"></div>
1228
[[#citeF-18|[18]]]  Hughes, T.J.R., Hauke, G.  and Jansen, K. (1994). Stabilized finite  element methods in fluids: Inspirations, origins, status and recent  developments. in: ''Recent Developments in Finite Element Analysis''. A Book Dedicated to Robert L. Taylor,  T.J.R. Hughes, E. Oñate and  O.C. Zienkiewicz (Eds.), CIMNE, Barcelona, Spain, pp. 272&#8211;292.
1229
1230
<div id="cite-19"></div>
1231
[[#citeF-19|[19]]]  Idelsohn, S.R., Oñate, E., Del Pin F.  and Calvo, N. (2002). Lagrangian formulation: the only way to solve some free-surface fluid mechanics problems. ''Fith World Congress on Computational Mechanics'', Mang HA, Rammerstorfer FG and Eberhardsteiner J. (eds), July 7&#8211;12, Viena, Austria.
1232
1233
<div id="cite-20"></div>
1234
[[#citeF-20|[20]]]  Idelsohn, S.R., Oñate, E., Calvo, N.  and del Pin, F. (2003a). The meshless finite element method.  ''Int. J. Num. Meth. Engng.'', '''58''','''6''': 893&#8211;912.
1235
1236
<div id="cite-21"></div>
1237
[[#citeF-21|[21]]]   Idelsohn, S.R., Oñate, E. and Del Pin, F. (2003b). A lagrangian meshless finite element method applied to fluid-structure interaction problems. in ''Computer and Structures'', '''81''': 655&#8211;671.
1238
1239
<div id="cite-22"></div>
1240
[[#citeF-22|[22]]]  Idelsohn, S.R., Calvo, N.  and Oñate, E. (2003c). Polyhedrization of an arbitrary point set. ''Comput. Method Appl. Mech. Engng.'',  '''192''' (22-24): 2649&#8211;2668.
1241
1242
<div id="cite-23"></div>
1243
[[#citeF-23|[23]]]   Idelsohn, S.R., Oñate, E. and Del Pin, F. (2004). The particle finite element method a powerful tool to solve incompressible flows with free-surfaces and breaking waves. ''Int. J. Num. Meth. Engng.'', submitted.
1244
1245
<div id="cite-24"></div>
1246
[[#citeF-24|[24]]]  Irons, B.M. (1970). A frontal solution program. ''Int. J. Num. Meth. Engng.'', '''2''': 5&#8211;32.
1247
1248
<div id="cite-25"></div>
1249
[[#citeF-25|[25]]] Koshizuka, S.  and Oka, Y. (1996). Moving particle semi-implicit method for fragmentation of incompressible fluid. ''Nuclear Engng. Science'', '''123''': 421&#8211;434.
1250
1251
<div id="cite-26"></div>
1252
[[#citeF-26|[26]]]  Laitone, E.V. (1960). The second approximation to cnoidal waves. ''J. Fluids Mech.'', '''9''': 430.
1253
1254
<div id="cite-27"></div>
1255
[[#citeF-27|[27]]]   Oñate, E.  (1998). Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. ''Comput. Meth. Appl. Mech. Engng.'', '''151''': 233&#8211;267.
1256
1257
<div id="cite-28"></div>
1258
[[#citeF-28|[28]]]  Oñate, E. (2000). A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. ''Comp. Meth. Appl. Mech. Engng.'', '''182''' (1&#8211;2): 355&#8211;370.
1259
1260
<div id="cite-29"></div>
1261
[[#citeF-29|[29]]]  Oñate, E. (2004). Possibilities of finite calculus in computational mechanics. ''Int. J. Num. Meth. Engng.'', '''60''' (1): 255&#8211;281.
1262
1263
<div id="cite-30"></div>
1264
[[#citeF-30|[30]]]  Oñate, E.  and Idelsohn, S.R. (1998). A mesh free finite point method for advective-diffusive transport and fluid flow problems. ''Computational Mechanics'', '''21''': 283&#8211;292.
1265
1266
<div id="cite-31"></div>
1267
[[#citeF-31|[31]]]  Oñate, E., Sacco, C.  and  Idelsohn, S.R. (2000). A finite point method for incompressible flow problems. ''Comput. and Visual. in Science'', '''2''': 67&#8211;75.
1268
1269
<div id="cite-32"></div>
1270
[[#citeF-32|[32]]] Oñate, E. and García, J. (2001). A finite element method for  fluid-structure interaction with surface waves using a finite calculus formulation. ''Comput. Meth. Appl. Mech. Engrg.'', '''191''': 635&#8211;660.
1271
1272
<div id="cite-33"></div>
1273
[[#citeF-33|[33]]]  Oñate, E., Idelsohn, S.R. and Del Pin, F. (2003). Lagrangian formulation for incompressible fluids using finite calculus and the finite element method. in ''Numerical Methods for Scientific Computing Variational Problems and Applications'', Y. Kuznetsov, P. Neittanmaki and O. Pironneau (Eds.), CIMNE, Barcelona.
1274
1275
<div id="cite-34"></div>
1276
[[#citeF-34|[34]]]  Oñate, E., García, J.  and Idelsohn, S.R. (2004). Ship hydrodynamics. In ''Encyclopedia of Computational Mechanics'', E. Stein, R. de Borst and T.J.R. Hughes (Eds), J. Wiley.
1277
1278
<div id="cite-35"></div>
1279
[[#citeF-35|[35]]]   Radovitzki, R.  and Ortiz, M. (1998). Lagrangian finite element analysis of a Newtonian flows. ''Int.  J. Num. Meth. Engng.'', '''43''': 607&#8211;619.
1280
1281
<div id="cite-36"></div>
1282
[[#citeF-36|[36]]]  Sheng, C., Taylor, L.K. and Whitfield, D.L. (1996). Implicit lower-upper/approximate-factorization schemes for incompressible flows'' ''Journal of Computational Physics'', '''128 (1)''', 32&#8211;42, 1996
1283
1284
<div id="cite-37"></div>
1285
[[#citeF-37|[37]]]  Storti, M., Nigro, N. and Idelsohn, S.R. (1995). Steady state incompressible flows using explicit schemes with an optimal local preconditioning. ''Computer Methods in Applied Mechanics and Engineering'', '''124''': 231&#8211;252.
1286
1287
<div id="cite-38"></div>
1288
[[#citeF-38|[38]]]  Tezduyar, T.E.,  Behr, M.  and Liou, J. (1992a). A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces - The Deforming-Spatial-Domain/Space-Time Procedure: I. The Concept and the Preliminary Numerical Tests. ''Computer Methods in Applied Mechanics and Engineering'', '''94''', 339&#8211;351.
1289
1290
<div id="cite-39"></div>
1291
[[#citeF-39|[39]]]  Tezduyar, T.E.,  Behr, M., Mittal, S. and J. Liou (1992b). A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces - The Deforming-Spatial-Domain/Space-Time Procedure: II. Computation of Free-surface Flows, Two-liquid Flows, and Flows with Drifting Cylinders. ''Computer Methods in Applied Mechanics and Engineering'', '''94''', 353&#8211;371..
1292
1293
<div id="cite-40"></div>
1294
[[#citeF-40|[40]]]  Tezduyar, T. (2001). Finite Element Interface-Tracking and Interface-Capturing Techniques for Flows with Moving Boundaries and Interfaces ASME Paper IMECE2001/HTD-24206, Proceedings of the ''ASME Symposium on Fluid-Physics and Heat Transfer for Macro- and Micro-Scale Gas-Liquid and Phase-Change Flows'', ASME, New York, New York, CD-ROM.
1295
1296
<div id="cite-41"></div>
1297
[[#citeF-41|[41]]]  Tezduyar, T.E., Mittal, S., Ray, S.E.  and Shih, R. (1992). Incompressible flow computations with stabilized bilinear and linear equal order interpolation velocity&#8211;pressure elements. ''Comput. Methods Appl. Mech. Engrg.'', '''95''': 221&#8211;242.
1298
1299
<div id="cite-42"></div>
1300
[[#citeF-42|[42]]]  Thompson, J.F., Soni, B.K.  and Weatherill, N.P.  (Eds.) (1999). ''Handbook of Grid Generation'', CRC Press.
1301
1302
<div id="cite-43"></div>
1303
[[#citeF-43|[43]]]  Zienkiewicz, O.C.  and  Taylor, R.L. (2000). ''The finite element method''. 5th Edition, 3 Volumes, Butterworth&#8211;Heinemann.
1304

Return to Onate et al 2004b.

Back to Top