You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
<!-- metadata commented in wiki content
2
==Applications of a Rotation-Free Triangular Element for Finite Strain Analysis of Thin Shells and Membranes==
3
4
'''Fernando G. Flores1Eugenio Oñate 2'''
5
-->
6
7
==Abstract==
8
9
This paper shows applications of a recently developed shell element to the analysis of thin shell and membrane structures. The element is a three node triangle with only translational DOFs (rotation free) that uses the configuration of the three adjacent elements to evaluate the strains. This allows to compute (constant) bending strains and (linear) membrane strains. A total Lagrangian formulation is used. Strains are defined in terms of the principal stretches. This allows to consider rubber materials and other type of materials using the Hencky stress-strain pair. An explicit central difference scheme is used to integrate the momentum equations. Several examples, including inflation and deflation of membranes   show the excellent convergence properties and robustness of the element for large strain analysis of thin shells and membranes.
10
11
'''Keywords''' airbag inflation, deflation, shell triangular elements, rotation free, membranes
12
13
==1 Introduction==
14
15
The simulation of the inflation of membrane structures is normally performed with membrane finite elements, i.e. no bending stiffness included.  The formulation of such elements is simple as they only require <math display="inline">C^{0}</math> continuity <span id='citeF-1'></span>[[#cite-1|[1]]], in contrast with elements based on thin shell theory where <math display="inline">C^{1}</math> continuity implies important obstacles <span id='citeF-2'></span>[[#cite-2|[2]]] in the development of conforming elements.  Triangular elements are naturally preferred as they can easily adapt to arbitrary geometries and due to the robustness of the associated mesh generators.
16
17
When only the final configuration of the membrane is of interest implicit programs are normally used, including special algorithms due to the lack of stiffness of the membrane when no tensile stresses are yet present.  When the inflation/deflation process is of interest, the use of programs with explicit integration of the momentum equations are largely preferred.  In the latter case linear strain triangles are normally not effective, specially when contact between surfaces is present. This implies a fine discretization of constant strain triangles to capture the details, what makes simulation quite expensive due to the time increment limitations. In this paper a triangular finite element with similar convergence properties to the linear strain triangle, but without its drawbacks, is used.
18
19
Membrane structures components have some, although small, bending stiffness that in most of the cases is sensibly disregarded. However in many cases it may be convenient to include bending energy in the models due to the important regularization effect it supposes. Shell elements are of course more expensive due the increase in degrees of freedom (rotations) and integration points (through the thickness). In the last few years shell elements without rotation degrees of freedom have been developed (see <span id='citeF-3'></span>[[#cite-3|[3]]]&#8211;<span id='citeF-10'></span>[[#cite-10|[10]]] among others), which make shell elements more efficient for both implicit and explicit integrators.
20
21
The outline of this papers is as follows. Next section summarizes the rotation-free shell triangle used <span id='citeF-10'></span>[[#cite-10|[10]]]. Sec. [[#3 Convergence Studies |3]] shows convergence properties of the element in 2-d plane stress problems and 3-d linear bending/membrane problems. Sec. [[#4 Thin Shells and Membranes  |4]] presents examples of inflation/deflation of membranes with and without bending stiffness. Finally Sec. [[#5 Concluding Remarks |5]] summarizes some conclusions.
22
23
==2 Formulation of the Rotation Free Shell Triangle==
24
25
The rotation-free EBST (for Enhanced Basic Shell Triangle) element has three nodes with three displacement degrees of freedom at each node. An element patch is defined by the central triangle and the three adjacent elements (Fig.&nbsp;[[#img-1|1]]). This patch helps to define the membrane strains and curvature field within the central triangle (the EBST element) in terms of the displacement of the six patch nodes.
26
27
The node-ordering in the patch is the following (see Fig.&nbsp;[[#img-1|1]].a)
28
29
<div id='img-1'></div>
30
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
31
|-
32
|[[Image:Draft_Samper_933320449-fig1.png|600px|Patch of elements for strain computation. (a)in spatial coordinates (b)in natural coordinates]]
33
|- style="text-align: center; font-size: 75%;"
34
| colspan="1" | '''Figure 1:''' Patch of elements for strain computation. (a)in spatial coordinates (b)in natural coordinates
35
|}
36
37
* The nodes in the main element (M) are numbered locally as 1, 2 and 3. They are defined counter-clockwise around the positive normal
38
39
* The sides in the main element are numbered locally as 1, 2, and 3. They are defined by the local node opposite to the side
40
41
* The adjacent elements (which are part of the cell) are numbered with the number associated to the common side
42
43
* The extra nodes of the cell are numbered locally as 4, 5 and 6, corresponding to nodes on adjacent elements opposite to sides 1, 2  and 3 respectively
44
45
* The connectivities in the adjacent elements are defined beginning with the extra node.
46
47
Any convenient in plane <math display="inline">\left(\mathbf{t}_{1},\mathbf{t}_{2}\right)</math> local cartesian coordinate system can be defined for the patch, with <math display="inline">\mathbf{t}_{3}</math> the unit normal to the plane.The main features of the element formulation are the following:
48
49
<ol>
50
51
<li>The geometry of the patch formed by the central element and the three adjacent elements is ''quadratically interpolated'' from the position of the six nodes in the patch  </li>
52
53
<li>The membrane strains are assumed to vary ''linearly'' within the central triangle and are expressed in terms of the (continuous) values of the deformation gradient at the mid side points of the triangle  </li>
54
55
<li>An assumed ''constant curvature'' field within the central triangle is obtained using the values of the (continuous) deformation gradient at the mid side points. </li>
56
57
</ol>
58
59
Details of the derivation of the EBST element are given below.
60
61
===2.1 Definition of the Element Geometry and Computation of Membrane Strains===
62
63
As mentioned above a quadratic approximation of the geometry of the patch of four elements is chosen using the position of the six nodes. It is useful to define the patch in the isoparametric space using the nodal positions given in the Table [[#table-1|1]] (see also Fig.&nbsp;[[#img-1|1]].b).
64
65
66
{|  class="floating_tableSCP wikitable" style="text-align: center; margin: 1em auto;min-width:50%;"
67
|+ style="font-size: 75%;" |<span id='table-1'></span>Table. 1 Isoparametric coordinates of the six nodes in the patch of Fig.&nbsp;[[#img-1|1]].b
68
|- style="border-top: 2px solid;"
69
|         
70
| 1 
71
| 2 
72
| 3 
73
| 4 
74
| 5 
75
| 6  
76
|- style="border-top: 2px solid;"
77
| <math display="inline">\xi </math>  
78
| 0 
79
| 1 
80
| 0 
81
| 1 
82
| -1 
83
| 1  
84
|- style="border-top: 2px solid;border-bottom: 2px solid;"
85
| <math display="inline">\eta </math> 
86
| 0 
87
| 0 
88
| 1 
89
| 1 
90
| 1 
91
| -1 
92
93
|}
94
95
The quadratic interpolation for the geometry is defined by
96
97
<span id="eq-1"></span>
98
{| class="formulaSCP" style="width: 100%; text-align: left;" 
99
|-
100
| 
101
{| style="text-align: left; margin:auto;width: 100%;" 
102
|-
103
| style="text-align: center;" | <math>{\mathbf{\varphi }}=\sum _{i=1}^{6}N_{i}{\mathbf{\varphi }}_{i}   </math>
104
|}
105
| style="width: 5px;text-align: right;white-space: nowrap;" | (1)
106
|}
107
108
with <math display="inline">{\mathbf{\varphi }}_{i}</math> being the position vector of node <math display="inline">i</math>, <math display="inline">\zeta =1-\xi -\eta </math> and
109
110
{| class="formulaSCP" style="width: 100%; text-align: left;" 
111
|-
112
| 
113
{| style="text-align: left; margin:auto;width: 100%;" 
114
|-
115
| style="text-align: center;" | <math>\begin{array}{ccc}N_{1}=\zeta +\xi \eta  &  & N_{4}=\frac{\zeta }{2}\left(\zeta -1\right) \\ N_{2}=\xi +\eta \zeta  &  & N_{5}=\frac{\xi }{2}\left(\xi -1\right) \\ N_{3}=\eta +\zeta \xi  &  & N_{6}=\frac{\eta }{2}\left(\eta -1\right) \end{array}</math>
116
|}
117
| style="width: 5px;text-align: right;white-space: nowrap;" | (2)
118
|}
119
120
this interpolation allows to compute the displacement gradients at selected points in order to use an assumed strain approach. The computation of the gradients is performed at the mid side points of the central element (M) denoted by <math display="inline">G_{1}</math>, <math display="inline">G_{2}</math> and <math display="inline">G_{3}</math> in Fig.&nbsp;[[#img-1|1]].b. This choice has the advantage that gradients at the three mid side points depend only on the nodes belonging to the two elements adjacent to each side. When gradients are computed at the common mid-side point of two adjacent elements, the same values are obtained, as the coordinates of the same four points are used. This in practice means that the gradients at the mid-side points are independent of the element where they are computed.
121
122
The deformation gradient at the mid-side points of the element are obtained from the quadratic interpolations (1) as
123
124
<span id="eq-3"></span>
125
{| class="formulaSCP" style="width: 100%; text-align: left;" 
126
|-
127
| 
128
{| style="text-align: left; margin:auto;width: 100%;" 
129
|-
130
| style="text-align: center;" | <math>\left ({\mathbf{\varphi }}_{^{\prime }\alpha }\right)_{G_{i}}={\mathbf{\varphi }} _{^{\prime }\alpha }^{i}=\left[\sum _{j=1}^{3}N_{j,\alpha }^{i}{\mathbf{\varphi }} _{j}\right]+N_{i+3,\alpha }^{i}\{\mathbf{\varphi }}_{i+3} \quad ,\quad \alpha=1,2 \quad ,\quad i=1,2,3</math>
131
|}
132
| style="width: 5px;text-align: right;white-space: nowrap;" | (3)
133
|}
134
135
In Eq.([[#eq-3|3]]) <math display="inline">( \cdot )^i</math> denotes values computed at the ith mid-side point.
136
137
The cartesian derivatives of the shape functions are computed at the original configuration by the standard expression
138
139
{| class="formulaSCP" style="width: 100%; text-align: left;" 
140
|-
141
| 
142
{| style="text-align: left; margin:auto;width: 100%;" 
143
|-
144
| style="text-align: center;" | <math>\left[ \begin{array}{c}N_{i,1} \\ N_{i,2}\end{array} \right]=\mathbf{J}^{-1}\left[ \begin{array}{c}N_{i,\xi } \\ N_{i,\eta }\end{array} \right] </math>
145
|}
146
| style="width: 5px;text-align: right;white-space: nowrap;" | (4)
147
|}
148
149
where the Jacobian matrix at the original configuration is
150
151
{| class="formulaSCP" style="width: 100%; text-align: left;" 
152
|-
153
| 
154
{| style="text-align: left; margin:auto;width: 100%;" 
155
|-
156
| style="text-align: center;" | <math>\mathbf{J=}\left[ \begin{array}{cc}\vec{\mathbf{\varphi }}_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{1} & \vec{\mathbf{\varphi }}_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{1} \\ \vec{\mathbf{\varphi }}_{^{\prime }\xi }^{0}\cdot \mathbf{t}_{2} & \vec{\mathbf{\varphi }}_{^{\prime }\eta }^{0}\cdot \mathbf{t}_{2} \end{array} \right] </math>
157
|}
158
| style="width: 5px;text-align: right;white-space: nowrap;" | (5)
159
|}
160
161
Once the deformation gradient is obtained, any convenient strain measure can be coupled. The membrane strains within the central triangle are now obtained using a linear assumed membrane strain field <math display="inline">\hat{\vec{\mathbf{\varepsilon }}}_{m}</math>, i.e.
162
163
{| class="formulaSCP" style="width: 100%; text-align: left;" 
164
|-
165
| 
166
{| style="text-align: left; margin:auto;width: 100%;" 
167
|-
168
| style="text-align: center;" | <math>{\mathbf{\varepsilon }}_{m}=\hat {\mathbf{\varepsilon }}_{m} </math>
169
|}
170
| style="width: 5px;text-align: right;white-space: nowrap;" | (6)
171
|}
172
173
with
174
175
<span id="eq-7"></span>
176
{| class="formulaSCP" style="width: 100%; text-align: left;" 
177
|-
178
| 
179
{| style="text-align: left; margin:auto;width: 100%;" 
180
|-
181
| style="text-align: center;" | <math>\hat{\vec{\mathbf{\varepsilon }}}_{m}=(1-2\zeta )\vec{\mathbf{\varepsilon }}_{m}^{1}+(1-2\xi ) \vec{\mathbf{\varepsilon }}_{m}^{2}+(1-2\eta )\vec{\mathbf{\varepsilon }}_{m}^{3}=\sum _{i=1}^{3} \bar{N}_{i}\vec{\mathbf{\varepsilon }}_{m}^{i}   </math>
182
|}
183
| style="width: 5px;text-align: right;white-space: nowrap;" | (7)
184
|}
185
186
where <math display="inline">\vec{\mathbf{\varepsilon }}_{m}^{i}</math> are the membrane strains computed at the three mid side points <math display="inline">G_{i}</math> (<math display="inline">i=1,2,3</math> see Fig.&nbsp;[[#img-2|2]]). In ([[#eq-7|7]])
187
188
{| class="formulaSCP" style="width: 100%; text-align: left;" 
189
|-
190
| 
191
{| style="text-align: left; margin:auto;width: 100%;" 
192
|-
193
| style="text-align: center;" | <math>\bar{N}_{1}=(1-2\zeta )\quad , \quad \bar{N}_{2}=(1-2\xi ) \quad \hbox{and} \quad \bar{N}_{3}=(1-2\eta ) </math>
194
|}
195
| style="width: 5px;text-align: right;white-space: nowrap;" | (8)
196
|}
197
198
If, for example, Green-Lagrange strains are used,
199
200
<span id="eq-9"></span>
201
{| class="formulaSCP" style="width: 100%; text-align: left;" 
202
|-
203
| 
204
{| style="text-align: left; margin:auto;width: 100%;" 
205
|-
206
| style="text-align: center;" | <math>\varepsilon _{m_{ij}}=\frac{1}{2}(\vec{\mathbf{\varphi }}_{^{\prime }i}\cdot  \vec{\mathbf{\varphi }}_{^{\prime }j}-\delta _{ij})   </math>
207
|}
208
| style="width: 5px;text-align: right;white-space: nowrap;" | (9)
209
|}
210
211
substituting ([[#eq-3|3]]) into ([[#eq-9|9]]) and using the usual membrane strain vector <span id='citeF-11'></span>[[#cite-11|[11]]]
212
213
{| class="formulaSCP" style="width: 100%; text-align: left;" 
214
|-
215
| 
216
{| style="text-align: left; margin:auto;width: 100%;" 
217
|-
218
| style="text-align: center;" | <math>\vec{\mathbf{\varepsilon }}_{m}=[\varepsilon _{m_{11}},\varepsilon  _{m_{12}},\varepsilon _{m_{12}}]^{T} </math>
219
|}
220
| style="width: 5px;text-align: right;white-space: nowrap;" | (10)
221
|}
222
223
equation ([[#eq-7|7]]) gives
224
225
{| class="formulaSCP" style="width: 100%; text-align: left;" 
226
|-
227
| 
228
{| style="text-align: left; margin:auto;width: 100%;" 
229
|-
230
| style="text-align: center;" | <math>\vec{\mathbf{\varepsilon }}_{m}=\sum _{i=1}^{3}\frac{1}{2}\bar{N}_{i}\left\{ \begin{array}{c}\vec{\mathbf{\varphi }}_{^{\prime }1}^{i}\cdot \vec{\mathbf{\varphi }}_{^{\prime }1}^{i}-1 \\ \vec{\mathbf{\varphi }}_{^{\prime }2}^{i}\cdot \vec{\mathbf{\varphi }}_{^{\prime }2}^{i}-1 \\ 2\vec{\mathbf{\varphi }}_{^{\prime }1}^{i}\cdot \vec{\mathbf{\varphi }}_{^{\prime }2}^{i} \end{array} \right\} </math>
231
|}
232
| style="width: 5px;text-align: right;white-space: nowrap;" | (11)
233
|}
234
235
The virtual membrane strains are expressed by
236
237
<span id="eq-12"></span>
238
{| class="formulaSCP" style="width: 100%; text-align: left;" 
239
|-
240
| 
241
{| style="text-align: left; margin:auto;width: 100%;" 
242
|-
243
| style="text-align: center;" | <math>\delta \vec{\mathbf{\varepsilon }}_{m}=\sum _{i=1}^{3}\bar{N}_{i}\left\{ \begin{array}{c}\vec{\mathbf{\varphi }}_{^{\prime }1}^{i}\cdot \delta \vec{\mathbf{\varphi }}_{^{\prime  }1}^{i} \\ \vec{\mathbf{\varphi }}_{2}^{i}\cdot \delta \vec{\mathbf{\varphi }}_{^{\prime }2}^{i} \\ \delta \vec{\mathbf{\varphi }}_{^{\prime }1}^{i}\cdot \vec{\mathbf{\varphi }}_{^{\prime  }2}^{i}+\vec{\mathbf{\varphi }}_{^{\prime }1}^{i}\cdot \delta \vec{\mathbf{\varphi }}_{2}^{i} \end{array} \right\} .   </math>
244
|}
245
| style="width: 5px;text-align: right;white-space: nowrap;" | (12)
246
|}
247
248
===2.2 Computation of Curvatures===
249
250
The curvatures (second fundamental form) of the middle surface are defined by []
251
252
{| class="formulaSCP" style="width: 100%; text-align: left;" 
253
|-
254
| 
255
{| style="text-align: left; margin:auto;width: 100%;" 
256
|-
257
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\frac{1}{2}\left(\vec{\mathbf{\varphi }}_{^{\prime }\alpha  }\cdot \mathbf{t}_{3^{\prime }\beta }+\vec{\mathbf{\varphi }}_{^{\prime }\beta }\cdot  \mathbf{t}_{3^{\prime }\alpha }\right)=-\mathbf{t}_{3}\cdot \vec{\mathbf{\varphi }} _{{\prime }\alpha \beta }\quad ,\quad \alpha ,\beta =1,2 </math>
258
|}
259
| style="width: 5px;text-align: right;white-space: nowrap;" | (13)
260
|}
261
262
We will assume the following constant curvature field within each element
263
264
<span id="eq-14"></span>
265
{| class="formulaSCP" style="width: 100%; text-align: left;" 
266
|-
267
| 
268
{| style="text-align: left; margin:auto;width: 100%;" 
269
|-
270
| style="text-align: center;" | <math>\kappa _{\alpha \beta }=\hat{\kappa }_{\alpha \beta }   </math>
271
|}
272
| style="width: 5px;text-align: right;white-space: nowrap;" | (14)
273
|}
274
275
where <math display="inline">\hat{\kappa }_{\alpha \beta }</math> is the assumed constant curvature field obtained as
276
277
<span id="eq-15"></span>
278
{| class="formulaSCP" style="width: 100%; text-align: left;" 
279
|-
280
| 
281
{| style="text-align: left; margin:auto;width: 100%;" 
282
|-
283
| style="text-align: center;" | <math>\hat{\kappa }_{\alpha \beta }=-\frac{1}{A_{M}^{0}}\int _{A_{M}^{0}}\mathbf{t} _{3}\cdot \vec{\mathbf{\varphi }}_{^{\prime }\beta \alpha }\;dA^{0}   </math>
284
|}
285
| style="width: 5px;text-align: right;white-space: nowrap;" | (15)
286
|}
287
288
and <math display="inline">A_{M}^{0}</math> is the area (in the original configuration) of the central element in the patch.
289
290
Substituting ([[#eq-15|15]]) into ([[#eq-14|14]]) and integrating by parts the area integral gives the curvature vector <span id='citeF-11'></span>[[#cite-11|[11]]] within the element in terms of the following closed line integral
291
292
<span id="eq-16"></span>
293
{| class="formulaSCP" style="width: 100%; text-align: left;" 
294
|-
295
| 
296
{| style="text-align: left; margin:auto;width: 100%;" 
297
|-
298
| style="text-align: center;" | <math>\mathbf{\kappa }=\left\{ \begin{array}{c}\kappa _{11} \\ \kappa _{22} \\ 2\kappa _{12} \end{array} \right\}=\frac{1}{A_{M}^{0}}\int _{\Gamma _{M}^{0}}\left[ \begin{array}{cc}-n_{1} & 0 \\ 0 & -n_{2} \\ -n_{2} & -n_{1} \end{array} \right]\left[ \begin{array}{c}\mathbf{t}_{3}\cdot \vec{\mathbf{\varphi }}_{^{\prime }1} \\ \mathbf{t}_{3}\cdot \vec{\mathbf{\varphi }}_{^{\prime }2} \end{array} \right]d\Gamma ^{0}   </math>
299
|}
300
| style="width: 5px;text-align: right;white-space: nowrap;" | (16)
301
|}
302
303
where <math display="inline">n_{i}</math> are the components (in the local system) of the normals to the element sides in the initial configuration <math display="inline">\Gamma _{M}^{0}</math>.
304
305
For the definition of the normal vector <math display="inline">\mathbf{t}_{3}</math>, the linear interpolation of the position vector over the central element is used.
306
307
{| class="formulaSCP" style="width: 100%; text-align: left;" 
308
|-
309
| 
310
{| style="text-align: left; margin:auto;width: 100%;" 
311
|-
312
| style="text-align: center;" | <math>\vec{\mathbf{\varphi }}^{M} = \sum _{i=1}^{3} L_{i}^{M} \vec{\mathbf{\varphi }}_{i} </math>
313
|}
314
| style="width: 5px;text-align: right;white-space: nowrap;" | (17)
315
|}
316
317
where <math display="inline">L_{i}^{M}</math> are the standard linear shape functions of the central triangle (area coordinates) <span id='citeF-11'></span>[[#cite-11|[11]]]. In this case the tangent plane components are
318
319
{| class="formulaSCP" style="width: 100%; text-align: left;" 
320
|-
321
| 
322
{| style="text-align: left; margin:auto;width: 100%;" 
323
|-
324
| style="text-align: center;" | <math>\vec{\mathbf{\varphi }}_{^{\prime }\alpha }^{M} = \sum _{i=1}^{3} L_{i,\alpha }^{M} \vec{\mathbf{\varphi }} _{i} \quad ,\quad \alpha=1,2 </math>
325
|}
326
| style="width: 5px;text-align: right;white-space: nowrap;" | (18)
327
|}
328
329
<span id="eq-19"></span>
330
{| class="formulaSCP" style="width: 100%; text-align: left;" 
331
|-
332
| 
333
{| style="text-align: left; margin:auto;width: 100%;" 
334
|-
335
| style="text-align: center;" | <math>\mathbf{t}_{3}=\frac{\vec{\mathbf{\varphi }}_{\prime{1}}^{M}\times \vec{\mathbf{\varphi }}_{\prime{2}}^{M}}{\left\vert \vec{\mathbf{\varphi }}_{\prime{1}}^{M}\times \vec{\mathbf{\varphi }}_{\prime{2}}^{M}\right\vert } =\lambda \;\vec{\mathbf{\varphi }}_{1}^{M}\times \vec{\mathbf{\varphi }}_{2}^{M}  .  </math>
336
|}
337
| style="width: 5px;text-align: right;white-space: nowrap;" | (19)
338
|}
339
340
From these expressions it is also possible to compute in the original configuration the element area <math display="inline">A^{0}_{M}</math>, the outer normals <math display="inline">\left( n_{1},n_{2}\right)^{i}</math> at each side and the side lengths <math display="inline">l_{i}^{M}</math>. Equation ([[#eq-19|19]]) also allows to evaluate the thickness ratio <math display="inline">\lambda </math> in the deformed configuration and the actual normal <math display="inline">\mathbf{t}_{3}</math>.
341
342
Direction '''t'''<math display="inline">_{3}</math> can be seen as a reference direction. If a different direction than that given by ([[#eq-19|19]]) is chosen, at an angle <math display="inline">\theta </math> with the former, this has an influence of order <math display="inline">\theta ^{2}</math> in the computation of the curvatures (see ([[#eq-23|23]]) below). This justifies ([[#eq-19|19]]) for the definition of '''t'''<math display="inline">_{3}</math> as a function exclusively of the three nodes of the central triangle, instead of using the 6-node isoparametric interpolation.
343
344
The numerical evaluation of the line integral in ([[#eq-16|16]]) results in a sum over the integration points at the element boundary which are, in fact, the same points used for evaluating the gradients when computing the membrane strains. As one integration point is used over each side, it is not necessary to distinguish between sides (<math display="inline">i</math>) and integration points (<math display="inline">G_{i}</math>).
345
346
The explicit form of the gradient evaluated at each side <math display="inline">G_{i}</math> ([[#eq-3|3]]) from the quadratic interpolation is
347
348
<span id="eq-20"></span>
349
{| class="formulaSCP" style="width: 100%; text-align: left;" 
350
|-
351
| 
352
{| style="text-align: left; margin:auto;width: 100%;" 
353
|-
354
| style="text-align: center;" | <math>\left[ \begin{array}{c}\vec{\mathbf{\varphi }}_{\prime 1}^{i} \\ \vec{\mathbf{\varphi }}_{\prime 2}^{i} \end{array} \right]=\left[ \begin{array}{cccc}N_{1,1}^{i} & N_{2,1}^{i} & N_{3,1}^{i} & N_{i+3,1}^{i} \\ N_{1,2}^{i} & N_{2,2}^{i} & N_{3,2}^{i} & N_{i+3,2}^{i} \end{array} \right]\left[ \begin{array}{c}\vec{\mathbf{\varphi }}_{1} \\ \vec{\mathbf{\varphi }}_{2} \\ \vec{\mathbf{\varphi }}_{3} \\ \vec{\mathbf{\varphi }}_{i+3} \end{array} \right] .  </math>
355
|}
356
| style="width: 5px;text-align: right;white-space: nowrap;" | (20)
357
|}
358
359
We note again that the gradient at each mid side point <math display="inline">G_{i}</math> depends only on the coordinates of the three nodes of the central triangle and on those of an additional node in the patch, associated to the side <math display="inline">i</math> where the gradient is computed.
360
361
In this way the curvatures can be computed by
362
363
{| class="formulaSCP" style="width: 100%; text-align: left;" 
364
|-
365
| 
366
{| style="text-align: left; margin:auto;width: 100%;" 
367
|-
368
| style="text-align: center;" | <math>\mathbf{\kappa }=2\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M} \end{array} \right]\left[ \begin{array}{c}\mathbf{t}_{3}\cdot \vec{\mathbf{\varphi }}_{^{\prime }1}^{i} \\ \mathbf{t}_{3}\cdot \vec{\mathbf{\varphi }}_{^{\prime }2}^{i} \end{array} \right] </math>
369
|}
370
| style="width: 5px;text-align: right;white-space: nowrap;" | (21)
371
|}
372
373
An alternative form to express the curvatures, which is useful when their variations are needed, is to define the vectors
374
375
<span id="eq-22"></span>
376
{| class="formulaSCP" style="width: 100%; text-align: left;" 
377
|-
378
| 
379
{| style="text-align: left; margin:auto;width: 100%;" 
380
|-
381
| style="text-align: center;" | <math>\mathbf{h}_{ij}=\sum _{k=1}^{3}\left(L_{k,i}^{M}\vec{\mathbf{\varphi }}_{\prime  j}^{k}+L_{k,j}^{M}\vec{\mathbf{\varphi }}_{^{\prime }i}^{k}\right)  </math>
382
|}
383
| style="width: 5px;text-align: right;white-space: nowrap;" | (22)
384
|}
385
386
This gives
387
388
<span id="eq-23"></span>
389
{| class="formulaSCP" style="width: 100%; text-align: left;" 
390
|-
391
| 
392
{| style="text-align: left; margin:auto;width: 100%;" 
393
|-
394
| style="text-align: center;" | <math>\kappa _{ij}=\mathbf{h}_{ij}\cdot \mathbf{t}_{3}  </math>
395
|}
396
| style="width: 5px;text-align: right;white-space: nowrap;" | (23)
397
|}
398
399
The variation of the curvatures can be obtained as
400
401
<span id="eq-24"></span>
402
{| class="formulaSCP" style="width: 100%; text-align: left;" 
403
|-
404
| 
405
{| style="text-align: left; margin:auto;width: 100%;" 
406
|-
407
| style="text-align: center;" | <math>\delta \mathbf{\kappa } =  2\sum _{i=1}^{3}\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M} \end{array} \right]\left\{\sum _{i=1}^{3}\left[ \begin{array}{c}N_{j,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}) \\ N_{j,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}_{j}) \end{array} \right]+\left[ \begin{array}{c}N_{i+3,1}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}^{i+3}) \\ N_{i+3,2}^{i}(\mathbf{t}_{3}\cdot \delta \mathbf{u}^{i+3}) \end{array} \right]\right\}</math>
408
|-
409
| style="text-align: center;" | <math>  - \sum _{i=1}^{3}\left[ \begin{array}{c}(L_{i,1}^{M}\varrho _{11}^{1}+L_{i,2}^{M}\varrho _{11}^{2}) \\ (L_{i,1}^{M}\varrho _{22}^{1}+L_{i,2}^{M}\varrho _{22}^{2}) \\ (L_{i,1}^{M}\varrho _{12}^{1}+L_{i,2}^{M}\varrho _{12}^{2}) \end{array} \right](\mathbf{t}_{3}\cdot \delta \mathbf{u}_{i})  </math>
410
|}
411
| style="width: 5px;text-align: right;white-space: nowrap;" | (24)
412
|}
413
414
where the projections of the vectors <math display="inline">\mathbf{h}_{ij}</math> over the contravariant base vectors <math display="inline">\tilde{\vec{\mathbf{\varphi }}}_{^{\prime }\alpha }^{M}</math> have been included
415
416
<span id="eq-25"></span>
417
{| class="formulaSCP" style="width: 100%; text-align: left;" 
418
|-
419
| 
420
{| style="text-align: left; margin:auto;width: 100%;" 
421
|-
422
| style="text-align: center;" | <math>\varrho _{ij}^{\alpha }=\mathbf{h}_{ij}\cdot \tilde{\vec{\mathbf{\varphi }}}_{^{\prime  }\alpha }^{M}\quad ,\quad \alpha ,i,j=1,2   </math>
423
|}
424
| style="width: 5px;text-align: right;white-space: nowrap;" | (25)
425
|}
426
427
with
428
429
{| class="formulaSCP" style="width: 100%; text-align: left;" 
430
|-
431
| 
432
{| style="text-align: left; margin:auto;width: 100%;" 
433
|-
434
| style="text-align: center;" | <math>\tilde{\vec{\mathbf{\varphi }}}_{^{\prime }1}^{M}  = \lambda \;\vec{\mathbf{\varphi }} _{^{\prime }2}^{M}\times \mathbf{t}_{3} </math>
435
| style="width: 5px;text-align: right;white-space: nowrap;" | (26)
436
|-
437
| style="text-align: center;" | <math> \tilde{\vec{\mathbf{\varphi }}}_{^{\prime }2}^{M}  = -\lambda \;\vec{\mathbf{\varphi }} _{^{\prime }1}^{M}\times \mathbf{t}_{3} </math>
438
| style="width: 5px;text-align: right;white-space: nowrap;" | (27)
439
|}
440
|}
441
442
In above expressions superindexes in <math display="inline">L_{j}^{M}</math> and <math display="inline">\delta \mathbf{u} _{j}^{k}</math> refer to element numbers whereas subscripts denote node numbers. As before the superindex <math display="inline">M</math> denotes values in the central triangle (Fig.&nbsp;[[#img-1|1]].a). Note that as expected the curvatures (and their variations) in the central element are a function of the nodal displacements of the six nodes in the four elements patch.
443
444
Details of the derivation of ([[#eq-12|12]]) and ([[#eq-24|24]]) can be found in <span id='citeF-10'></span>[[#cite-10|[10]]]. The explicit expressions of the membrane  and curvature matrices  can be found in <span id='citeF-12'></span>[[#cite-12|[12]]]. The derivation of the element stiffnes matrix is described in <span id='citeF-10'></span><span id='citeF-12'></span>[[#cite-10|[10,12]]]. Also in <span id='citeF-10'></span><span id='citeF-12'></span>[[#cite-10|[10,12]]] details of the quasi-static formulation and the fully explicit dynamic formulation are given.
445
446
It must be noted that while the membrane strains are linear the curvature strains are constant. A full numerical integration of the stiffness matrix terms requires three points for the membrane part and one point for the bending part. Numerical experiments show that:
447
448
* when using one or three integration points the element is free of spurious energy modes and passes the patch test
449
450
* for initial curved surfaces the element with full (three point) integration leads to some membrane locking. This defect dissapears if one integration point is used for the membrane stiffness term.
451
452
It can also be observed that:
453
454
* for large strain elastic or elastic-plastic problems membrane and bending parts can not be integrated separately, and a numerical integration trought the thickness must be performed
455
456
* for explicit integrators (hydro codes) is much more effective to use only one integration point for both the membrane and bending parts.
457
458
Above arguments lead to reccomended the use of one integration point for both membrane and bending parts. This element is termed EBST1 to distinguish from the fully integrated one.
459
460
===2.3 Boundary Conditions===
461
462
Elements at the domain boundary, where an adjacent element does not exist, deserve a special attention. The treatment of essential boundary conditions associated to translational constraints is straightforward, as they are the degrees of freedom of the element. The conditions associated to the normal vector are crucial in this formulation for bending. For clamped sides or symmetry planes, the normal vector <math display="inline">\mathbf{t}_{3}</math> must be kept fixed (clamped case), or constrained to move in the plane of symmetry (symmetry case). The former case can be seen as a special case of the latter, so we will consider symmetry planes only. This restriction can be imposed through the definition of the tangent plane at the boundary, including the normal to the plane of symmetry <math display="inline">\vec{\mathbf{\varphi }} _{^{\prime }n}^{0}</math> that does not change during the process.
463
464
<div id='img-2'></div>
465
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
466
|-
467
|[[Image:Draft_Samper_933320449-fig2.png|600px|Local cartesian system for the treatment of symmetry boundary conditions]]
468
|- style="text-align: center; font-size: 75%;"
469
| colspan="1" | '''Figure 2:''' Local cartesian system for the treatment of symmetry boundary conditions
470
|}
471
472
The tangent plane at the boundary (mid-side point) is expressed in terms of two orthogonal unit vectors referred to a local-to-the-boundary Cartesian system (see Fig.&nbsp;[[#img-2|2]]) defined as
473
474
{| class="formulaSCP" style="width: 100%; text-align: left;" 
475
|-
476
| 
477
{| style="text-align: left; margin:auto;width: 100%;" 
478
|-
479
| style="text-align: center;" | <math>\left[\vec{\mathbf{\varphi }} _{^{\prime }n}^{0},\;\bar{\vec{\mathbf{\varphi }}}_{^{\prime }s} \right] </math>
480
|}
481
| style="width: 5px;text-align: right;white-space: nowrap;" | (28)
482
|}
483
484
where vector <math display="inline">\vec{\mathbf{\varphi }} _{^{\prime }n}^{0}</math> is fixed during the process while direction <math display="inline">\bar{\vec{\mathbf{\varphi }}}_{^{\prime }s}</math> emerges from the intersection of the symmetry plane with the plane defined by the central element (<math display="inline">M</math>). The plane (gradient) defined by the central element in the selected original convective Cartesian system (<math display="inline">\mathbf{t}_{1},\mathbf{t}_{2} </math>) is
485
486
{| class="formulaSCP" style="width: 100%; text-align: left;" 
487
|-
488
| 
489
{| style="text-align: left; margin:auto;width: 100%;" 
490
|-
491
| style="text-align: center;" | <math>\left[\vec{\mathbf{\varphi }} _{^{\prime }1}^{M},\;\vec{\mathbf{\varphi }} _{^{\prime }2}^{M}\right] </math>
492
|}
493
| style="width: 5px;text-align: right;white-space: nowrap;" | (29)
494
|}
495
496
the intersection line (side <math display="inline">i</math>) of this plane with the plane of symmetry can be written in terms of the position of the nodes that define the side (<math display="inline">j </math> and <math display="inline">k</math>) and the original length of the side <math display="inline">l_{i}^{M}</math>, i.e.
497
498
{| class="formulaSCP" style="width: 100%; text-align: left;" 
499
|-
500
| 
501
{| style="text-align: left; margin:auto;width: 100%;" 
502
|-
503
| style="text-align: center;" | <math>\vec{\mathbf{\varphi }} _{^{\prime }s}^{i}=\frac{1}{l_{i}^{M}}\left(\vec{\mathbf{\varphi }} _{k}- \vec{\mathbf{\varphi }} _{j}\right) </math>
504
|}
505
| style="width: 5px;text-align: right;white-space: nowrap;" | (30)
506
|}
507
508
That together with the outer normal to the side <math display="inline">\mathbf{n}^{i} =\left[ n_{1},n_{2}\right]^{T}=\left[\mathbf{n\cdot t}_{1},\mathbf{n\cdot t}_{2} \right]^{T}</math> (resolved in the selected original convective Cartesian system) leads to
509
510
{| class="formulaSCP" style="width: 100%; text-align: left;" 
511
|-
512
| 
513
{| style="text-align: left; margin:auto;width: 100%;" 
514
|-
515
| style="text-align: center;" | <math>\left[ \begin{array}{c}\vec{\mathbf{\varphi }} _{^{\prime }1}^{iT} \\ \vec{\mathbf{\varphi }} _{^{\prime }2}^{iT} \end{array} \right]=\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1} \end{array} \right]\left[ \begin{array}{c}\vec{\mathbf{\varphi }} _{^{\prime }n}^{iT} \\ \vec{\mathbf{\varphi }} _{^{\prime }s}^{iT} \end{array} \right] </math>
516
|}
517
| style="width: 5px;text-align: right;white-space: nowrap;" | (31)
518
|}
519
520
where, noting that <math display="inline">\lambda </math> is the determinant of the gradient, the normal component of the gradient <math display="inline">\vec{\mathbf{\varphi }} _{^{\prime }n}^{i}</math> can be approximated by
521
522
{| class="formulaSCP" style="width: 100%; text-align: left;" 
523
|-
524
| 
525
{| style="text-align: left; margin:auto;width: 100%;" 
526
|-
527
| style="text-align: center;" | <math>\vec{\mathbf{\varphi }} _{^{\prime }n}^{i}=\frac{\vec{\mathbf{\varphi }} _{^{\prime }n}^{0}}{\lambda  |\vec{\mathbf{\varphi }} _{^{\prime }s}^{i}|} </math>
528
|}
529
| style="width: 5px;text-align: right;white-space: nowrap;" | (32)
530
|}
531
532
In this way the contribution of the gradient at side <math display="inline">i</math> to vectors <math display="inline">\mathbf{h}_{\alpha \beta }</math> ([[#eq-22|22]]) results in
533
534
{| class="formulaSCP" style="width: 100%; text-align: left;" 
535
|-
536
| 
537
{| style="text-align: left; margin:auto;width: 100%;" 
538
|-
539
| style="text-align: center;" | <math>\left[ \begin{array}{c}\mathbf{h}_{11}^{T} \\ \mathbf{h}_{22}^{T} \\ 2\mathbf{h}_{12}^{T} \end{array} \right]^{i}=2\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M} \end{array} \right]\left[ \begin{array}{c}\vec{\mathbf{\varphi }} _{^{\prime }1}^{iT} \\ \vec{\mathbf{\varphi }} _{^{\prime }2}^{iT} \end{array} \right]=2\left[ \begin{array}{cc}L_{i,1}^{M} & 0 \\ 0 & L_{i,2}^{M} \\ L_{i,2}^{M} & L_{i,1}^{M} \end{array} \right]\left[ \begin{array}{cc}n_{1} & -n_{2} \\ n_{2} & n_{1} \end{array} \right]\left[ \begin{array}{c}\vec{\mathbf{\varphi }} _{^{\prime }n}^{iT} \\ \vec{\mathbf{\varphi }} _{^{\prime }s}^{iT} \end{array} \right] </math>
540
|}
541
| style="width: 5px;text-align: right;white-space: nowrap;" | (33)
542
|}
543
544
For a simple supported (hinged) side, the problem is not completely defined. The simplest choice is to neglect the contribution to the side rotations from the adjacent element missing in the patch in the evaluation of the curvatures via ([[#eq-16|16]]) <span id='citeF-6'></span><span id='citeF-8'></span>[[#cite-6|[6,8]]]. This is equivalent to assume that the gradient at the side is equal to the gradient in the central element. More precise changes can be however introduced to account for the different natural boundary conditions. One may assume that the curvature normal to the side is zero, and consider a contribution of the missing side to introduce this constraint. As the change of curvature parallel to the side is zero along the hinged side, both things lead to zero curvatures in both directions. For the case of a triangle with two sides associated to hinged sides, the normal curvatures to both sides must be set to zero.
545
546
For a free edge the same approximation can be used but due to Poisson's effect this will lead to some error.
547
548
For the membrane formulation of the EBST element, the gradient at the mid-side point of the boundary is assumed to be equal to the gradient of the main triangle.
549
550
===2.4 Constitutive Models===
551
552
In the numerical experiments presented below two constitutive models have been used. A standard linear elastic orthotropic material and a hyper-elastic material for rubbers.
553
554
For the case of rubbers, the Ogden <span id='citeF-13'></span>[[#cite-13|[13]]] model extended to the compressible range is considered. The material behaviour is characterized by the strain energy density per unit undeformed volume defined as
555
556
{| class="formulaSCP" style="width: 100%; text-align: left;" 
557
|-
558
| 
559
{| style="text-align: left; margin:auto;width: 100%;" 
560
|-
561
| style="text-align: center;" | <math>\psi =\frac{K}{2}\left(\ln J\right)^{2}+\sum _{p=1}^{N}\frac{\mu _{p}}{\alpha _{p}}\left[J^{-\frac{\alpha _{p}}{3}}\left(\sum _{i=1}^{3}\lambda  _{i}^{\alpha _{p}-1}\right)-3\right] </math>
562
|}
563
| style="width: 5px;text-align: right;white-space: nowrap;" | (34)
564
|}
565
566
where <math display="inline">K</math> is the bulk modulus of the material, <math display="inline">\lambda _{i}</math> are the principal strain ratios, <math display="inline">J</math> is the determinant of the deformation gradient <math display="inline">\mathbf{F}</math> (<math display="inline">J=\lambda _{1}\lambda _{2}\lambda _{3}</math>), <math display="inline">N</math>, <math display="inline">\mu _{i}</math> and <math display="inline">\alpha _{i}</math> are material parameters, <math display="inline">\mu _{i}\,,\,\alpha _{i}</math> are real numbers such that <math display="inline">\mu _{i}\alpha _{i}>0</math> <math display="inline"> (\forall i=1,N)</math> and <math display="inline">N</math> is a positive integer.
567
568
==3 Convergence Studies ==
569
570
In this section three examples are presented to show the convergence properties and the performance of present element. Examples are solved with a implicit program capable of dealing static/dynamic problems with moderate non-linearities.
571
572
===3.1 Cook's Membrane Problem===
573
574
One of the main targets of the rotation-free triangular element is to obtain a membrane element with a behaviour similar to the linear strain triangle (LST). Such capacity is studied in this example <span id='citeF-14'></span>[[#cite-14|[14]]] corresponding to a problem with an important amount of shear energy involved. This problem is also intended also to assess the ability of the element to distort. Figure [[#img-3|3]].a shows the geometry of a tapered panel clamped on one side and with a uniformly distributed shear load in the opposite side. Figure [[#img-3|3]].b presents the vertical displacement of point '''C''' (mid point of the loaded side) for the uniformly refined meshes considered as a function of the total number of nodes in the mesh.
575
576
<div id='img-3'></div>
577
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
578
|-
579
|[[Image:Draft_Samper_933320449-fig3a.png|282px|]]
580
|[[Image:Draft_Samper_933320449-fig3b.png|378px|Cook's membrane problem. (a) Geometry and load (b) Vertical displacement of point C for different meshes]]
581
|- style="text-align: center; font-size: 75%;"
582
| colspan="2" | '''Figure 3:''' Cook's membrane problem. (a) Geometry and load (b) Vertical displacement of point C for different meshes
583
|}
584
585
For the EBST element with three integration points, it can be seen that for the coarsest mesh (two linear elements), the measured displacement is slightly superior than the constant strain triangle (CST); but when the mesh is refined, values rapidly catch up with those obtained with the linear strain triangle.  The element with only one integration point (EBST1) shows excellent predictions for coarse meshes and fast convergence properties for the reported displacement.
586
587
===3.2 Cylindrical Roof===
588
589
In this example an effective membrane interpolation is of primary importance. Hence this is good test to assess the rotation-free element. The geometry is a cylindrical roof supported by a rigid diaphragm at both ends and it is loaded by a uniform dead weight (see Fig.&nbsp;[[#img-4|4]].a). Only one quarter of the structure is meshed due to symmetry conditions. Unstructured and structured meshes are considered. In the latter case two orientations are possible (Fig.&nbsp;[[#img-4|4]].a shows orientation B).
590
591
<div id='img-4'></div>
592
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
593
|-
594
|[[Image:Draft_Samper_933320449-fig4.png|600px|Cylindrical roof under dead weight. E=3×10⁶, ν=0.0, Thickness =3.0, shell weight =0.625 per unit area. (a)Geometry. (b)Normalized displacement of point “C” for different meshes]]
595
|- style="text-align: center; font-size: 75%;"
596
| colspan="1" | '''Figure 4:''' Cylindrical roof under dead weight. <math>E=3\times{10}^{6}</math>, <math>\nu=0.0</math>, Thickness =3.0, shell weight =0.625 per unit area. (a)Geometry. (b)Normalized displacement of point “C” for different meshes
597
|}
598
599
Figure&nbsp;[[#img-4|4]].b shows the normalized vertical displacement of the midpoint of the free side (point-C) over both (<math display="inline">A</math> and <math display="inline">B</math>) structured and (<math display="inline">U</math>) unstructured meshes as a function of the number of free degrees of freedom. Value used for normalization is <math display="inline">u_{C}=-3.610</math> as quoted in <span id='citeF-15'></span>[[#cite-15|[15]]].
600
601
An excellent convergence of the EBST element can be seen.  The version with only one integration point (EBST1) presents a behaviour a little more flexible and converges from above.  For non-structured meshes the result converges to the reference value but a bit more slowly.
602
603
===3.3 Inflation of a Sphere===
604
605
As the EBST element uses a quadratic interpolation of geometry, the existance of  membrane locking must be assessed. For this example an originally curved surface is considered, where a standard linear strain triangle would lead to membrane locking. The example is the inflation of a spherical shell under internal pressure. An incompressible Mooney-Rivlin constitutive material have been considered. The Ogden parameters are <math display="inline">N=2</math>, <math display="inline">\alpha _{1}=2</math>, <math display="inline">\mu _{1}=40</math>, <math display="inline">\alpha _{2}=-2</math>, <math display="inline">\mu _{2}=-20</math>. Due to the simple geometry an analytical solution exists <span id='citeF-16'></span>[[#cite-16|[16]]] (with <math display="inline">\gamma =R/R^{\left( 0\right)}</math>):
606
607
{| class="formulaSCP" style="width: 100%; text-align: left;" 
608
|-
609
| 
610
{| style="text-align: left; margin:auto;width: 100%;" 
611
|-
612
| style="text-align: center;" | <math> p=\frac{h^{\left( 0\right) }}{R^{\left( 0\right) }\gamma ^{2}}\frac{dW}{d\gamma }=\frac{8h^{\left( 0\right) }}{R^{\left( 0\right) }\gamma ^{2} }\left( \gamma ^{6}-1\right) \left( \mu _{1}-\mu _{2}\gamma ^{2}\right) </math>
613
|}
614
|}
615
616
In this numerical simulation the same geometric and material parameters used in <span id='citeF-9'></span>[[#cite-9|[9]]] have been adopted: <math display="inline">R^{\left( 0\right) }=1</math> and <math display="inline">h^{\left( 0\right) }=0.02</math>. The three meshes considered to evaluate convergence are shown in Fig.&nbsp;[[#img-5|5]].a-c. The EBST1 element has been used. The value of the actual radius as a function of the internal pressure is  plotted in Fig. [[#img-5|5]].d for the different meshes and is also compared with the analytical solution. It can be seen that with a few degrees of freedom it is possible to obtain an excellent agreement for the range of strains considered. The final value corresponds to a thickness radius ratio of <math display="inline">h/R=0.00024</math>. No membrane locking has therefore been detected in this problem.
617
618
<div id='img-5'></div>
619
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
620
|-
621
|[[Image:Draft_Samper_933320449-fig5.png|599px|Inflation of sphere of Mooney-Rivlin material. (a)-(c) EBST1 meshes used in the analysis (d)Radius as a function of the internal pressure]]
622
|- style="text-align: center; font-size: 75%;"
623
| colspan="1" | '''Figure 5:''' Inflation of sphere of Mooney-Rivlin material. (a)-(c) EBST1 meshes used in the analysis (d)Radius as a function of the internal pressure
624
|}
625
626
==4 Thin Shells and Membranes  ==
627
628
Results for examples with geometric and material non-linearities are presented next using the EBST1 element <span id='citeF-10'></span>[[#cite-10|[10]]]. Due to the features of the modelled problems, with strong non linearities associated to instabilities and contact, a code with explicit integration of the dynamic equilibrium equations has been used <span id='citeF-17'></span>[[#cite-17|[17]]]. This code allows to obtain pseudo-static solutions through dynamic relaxation. In most of the examples contact situations appear, including contact with walls, objects or self contact due to folds and wrinkles. A standard penalty formulation is used for contact assumed frictionless in  the cases.
629
630
===4.1 Inflation/Deflation of a Circular Airbag===
631
632
This example has been taken from <span id='citeF-9'></span>[[#cite-9|[9]]] where it is shown that the final configuration is mesh dependent due to the strong instabilities leading to a non-uniqueness of the solution.  In <span id='citeF-9'></span>[[#cite-9|[9]]] it is also discussed the important regularizing properties of the bending energy, that when disregarded leads to massive wrinkling in the compressed zones.
633
634
<div id='img-6'></div>
635
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
636
|-
637
|[[Image:Draft_Samper_933320449-fig6.png|600px|Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending effects included (b) membrane solution only]]
638
|- style="text-align: center; font-size: 75%;"
639
| colspan="1" | '''Figure 6:''' Inflation of a circular airbag. Deformed configurations for final pressure. (a) bending effects included (b) membrane solution only
640
|}
641
642
The airbag geometry is initially circular with an undeformed radius of <math display="inline">0.35</math>. The constitutive material is a linear isotropic elastic one with modulus of elasticity <math display="inline">E=6\times{10}^{7}</math> and Poisson's ratio <math display="inline">\nu=0.3</math>. Arbitrarily only one quarter of the geometry has been modelled. Only the normal displacement to the original plane is constrained along the boundaries. The thickness considered is <math display="inline">h=0.0004</math> and the inflation pressure is <math display="inline">5000</math>. Using a density <math display="inline">\delta=1000</math>, pressure is linearly increased from 0 to the final value in <math display="inline">t=0.1</math>.
643
644
With comparative purposes and also to backup the comments in Ref. <span id='citeF-9'></span>[[#cite-9|[9]]] two analyses have been performed, a purely membrane one and one including bending effects.  Figure [[#img-6|6]] shows the final deformed configurations for a mesh with 10201 nodes and 20000 elements. The figure on the left (a) corresponds to a full analysis including bending and the right figure (b) is a pure membrane analysis.
645
646
We note that when the bending energy is included a more regular final pattern is obtained. Also the final pattern is rather independent of the discretization (note that the solution is non unique due to the strong instabilities). On the other hand, the pure membrane solution shows a a noteworthy increment of “numerical” wrinkles.
647
648
Figure [[#img-7|7]] shows the results obtained for the de-inflation process for three different times. Column on the left corresponds to the analysis with bending energy included.  Note that the spherical membrane falls down due to the self weight.  The final configuration is of course non-unique.
649
650
<div id='img-7'></div>
651
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
652
|-
653
|[[Image:Draft_Samper_933320449-fig7.png|545px|Deflation of a circular air-bag. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution]]
654
|- style="text-align: center; font-size: 75%;"
655
| colspan="1" | '''Figure 7:''' Deflation of a circular air-bag. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution
656
|}
657
658
===4.2 Inflation of a Square Air-bag===
659
660
This example has also been taken from <span id='citeF-9'></span>[[#cite-9|[9]]]. Again the final configuration is mesh dependent due to the strong instabilities leading to a non-uniqueness of the solution.
661
662
The air bag geometry is initially square with an undeformed diagonal of <math display="inline">1.20</math>. The constitutive material is a linear isotropic elastic one with modulus of elasticity <math display="inline">E=5.88\times{10}^{8}</math> and Poisson's ratio <math display="inline">\nu=0.4</math>. Only one quarter of the geometry has been modelled due to symmetry. Only the normal to the original plane is constrained along the boundaries. The thickness considered is <math display="inline">h=0.001</math> and the inflation pressure is <math display="inline">5000</math>. Using a density <math display="inline">\delta=1000</math>, pressure is linearly increased from 0 to the final value in <math display="inline">t=0.1</math>.
663
664
Two analyses have been performed, a purely membrane one and another one including bending effects. Figure [[#img-8|8]] shows the final deformed configurations for three meshes with 289, 1089 and 4225 nodes. The top row corresponds to a full analysis including bending and the central row is a pure membrane analysis. The bottom row is also an analysis including bending where the mesh orientation has been changed.
665
666
The top and bottom lines show the final shapes change according to the degree of discretization and mesh orientation due to instabilities and non uniqueness of the solution. The central row shows the pure membrane solution with a wrinkling pattern where the width of the wrinkle is the length of the element.
667
668
<div id='img-8'></div>
669
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
670
|-
671
|[[Image:Draft_Samper_933320449-fig8.png|500px|Inflation of a square air-bag. Deformed configurations for three different meshes with 800, 3136 and 12416 degrees of freedom]]
672
|- style="text-align: center; font-size: 75%;"
673
| colspan="1" | '''Figure 8:''' Inflation of a square air-bag. Deformed configurations for three different meshes with 800, 3136 and 12416 degrees of freedom
674
|}
675
676
===4.3 Inflation of a Square Airbag Against a Spherical Object===
677
678
The last example of this kind is the inflation of a square airbag supporting a spherical object. This example resembles a problem studied (numerically and experimentally) in <span id='citeF-18'></span>[[#cite-18|[18]]], where fluid-structure interaction is the main subject. Here fluid is not modelled, and a uniform pressure is applied over all the internal surfaces. The lower surface part of the airbag is limited by a rigid plane and on the upper part a spherical dummy object is set to study the interaction between the airbag and the object.
679
680
The airbag geometry is initially square with an undeformed side length of <math display="inline">0.643</math>. The constitutive material used is a linear isotropic elastic one with modulus of elasticity <math display="inline">E=5.88\times{10}^{8}</math> and Poisson's ratio <math display="inline">\nu=0.4</math>. Only one quarter of the geometry has been modelled due to symmetry.  The thickness considered is <math display="inline">h=0.00075</math> and the inflation pressure is <math display="inline">250000</math>. Using a density <math display="inline">\delta=1000</math>, pressure is linearly increased from 0 to the final value in <math display="inline">t=0.15</math>. The spherical object has a radius <math display="inline">r=0.08</math> and a mass of <math display="inline">4.8</math> (one quarter), and is subjected to gravity load during all the process.
681
682
<div id='img-9'></div>
683
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
684
|-
685
|[[Image:Draft_Samper_933320449-fig9.png|461px|Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution]]
686
|- style="text-align: center; font-size: 75%;"
687
| colspan="1" | '''Figure 9:''' Inflation of a square airbag against an spherical object. Deformed configurations for different times. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution
688
|}
689
690
The mesh includes 8192 EBST1 elements and 4225 nodes on each surface of the airbag. Figure&nbsp;[[#img-9|9]] shows the deformed configurations for three different times. The sequence on the left of the figure corresponds to an analysis including full bending effects and the sequence on the right is the result of a pure membrane analysis.
691
692
===4.4 Inflation/Deflation of a Closed Tube===
693
694
<div id='img-10'></div>
695
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
696
|-
697
|[[Image:Draft_Samper_933320449-fig10.png|461px|Inflation and deflation of a closed tube. L=6, D=2, h=5×10⁻⁴. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution]]
698
|- style="text-align: center; font-size: 75%;"
699
| colspan="1" | '''Figure 10:''' Inflation and deflation of a closed tube. <math>L=6</math>, <math>D=2</math>, <math>h=5\times  10^{-4}</math>. Left figure: results obtained with the full bending formulation. Right figure: results obtained with a pure membrane solution
700
|}
701
702
The last problem is the study of the inflating and de-inflating of a tube with a semi-spherical end cap.  The tube diameter is <math display="inline">D=2</math>, its total length is <math display="inline">L=6</math> and the thickness <math display="inline">h=5\times 10^{-4}</math>.  The material has the following properties <math display="inline">E=4\times 10^{8}</math>, <math display="inline">\nu =0.35 </math>, <math display="inline">\varrho =2\times 10^{3}</math>.  The tube is inflated fast until a pressure of <math display="inline">10^4</math> and when pressure is released the tube de-inflates and falls under self weight.  The analysis is performed with a mesh of 16704 EBST1 elements and 8501 nodes modelling a quarter of the geometry.  A rigid frictionless base is supposed below.  Self contact is also included to avoid penetrations.  The evolution of the tube walls during the de-inflating process can be seen in Fig.&nbsp;[[#img-10|10]].  Note that the central part collapses as expected, while a great part of the semi-spherical cap remains unaltered.  For this very thin shell, the differences between a full bending solution and a pure membrane solution are less marked. It must be noted that present element does not presents problems in the very thin  limit as the formulation is based on classical thin shell theory and the rotational variables have been elliminates. So the time increment is independent of the thickness.
703
704
===4.5 Inflation of a Tubular Arch===
705
706
The last example is the analysis of a tubular arch. This kind of archs  are joined together to form large inflatable structures to be used  for different purposes.  The analized tubular arch has a internal diameter of <math display="inline">0.9</math>; is total length  is <math display="inline">11.0</math> and the heigth is <math display="inline">4.5</math>. The tube thickness is <math display="inline">3 \times  10^{-4}</math>, the  constitutive material is polyamid with  Young modulus <math display="inline">E=2.45\times 10^8</math>  and Poisson ratio <math display="inline">\nu=0.35</math>. Due to geometric symmetrys one quarter of  the tube was discretized with 33600 triangular elements (17061 nodes).  The simulation includes two stages. First the tube is left fall down  under gravity action. Second an internal pressure of <math display="inline">p=883</math> is applied  in a short time and kept constant afterwards until the full inflation  of the tube is reached.
707
708
Figure 11 shows deformed configurations for different instants of the  process.
709
710
<div id='img-11'></div>
711
{| class="floating_imageSCP" style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
712
|-
713
|[[Image:Draft_Samper_933320449-tubo3.png|600px|Inflation of a tubular arch. (a) Deflated tube. (b),(c) Deformed configuration during the inflation process. (d) Final inflated configuration]]
714
|- style="text-align: center; font-size: 75%;"
715
| colspan="1" | '''Figure 11:''' Inflation of a tubular arch. (a) Deflated tube. (b),(c) Deformed configuration during the inflation process. (d) Final inflated configuration
716
|}
717
718
==5 Concluding Remarks ==
719
720
We have presented in the paper the formulation of a rotation-free enhanced basic shell triangle (EBST) using an assumed strain approach. The element is based on an assumed constant curvature field expressed in terms of the nodal deflections of a patch of four elements and an assumed linear membrane strain field for the in-plane behaviour. A simple and economic version of the element using a single integration point has been presented. The EBST1 element has proven to be an excellent candidate for solving practical engineering shell and membrane problems involving complex geometry, dynamics, material non linearity and frictional contact conditions. In the simulation of membranes, bending have been included to avoid massive wrinkling in the compressed zones. The inclusion of bending energy (two integration points through the thickness instead of one) represents an increase of 40% of CPU time.
721
722
==Acknowledgments==
723
724
The first author is a member of the scientific staff of the Science Research Council of Argentina (CONICET). The support provided by grants of CONICET and Agencia Córdoba Ciencia S.E. and the support of the company QUANTECH (<code>www.quantech.es</code>) providing the code STAMPACK are gratefully acknowledged.
725
726
==References==
727
728
<div id="cite-1"></div>
729
[[#citeF-1|[1]]]  Taylor RL (2001) Finite element analysis of membrane structures. Publication 203, CIMNE, Barcelona
730
731
<div id="cite-2"></div>
732
[[#citeF-2|[2]]]   Oñate E (1994) A review of some finite element families for thick and thin plate and shell analysis. Publication 53, CIMNE, Barcelona
733
734
<div id="cite-3"></div>
735
[[#citeF-3|[3]]]  Hampshire JK, Topping BHV, Chan HC (1992) Three node triangular elements with one degree of freedom per node. Engng Comput 9:49&#8211;62
736
737
<div id="cite-4"></div>
738
[4]  Phaal R, Calladine CR (1992) A simple class of finite elements for plate and shell problems. II: An element for thin shells with only translational degrees of freedom. Num Meth Engng 35:979&#8211;996
739
740
<div id="cite-5"></div>
741
[5]  Oñate E, Cervera M. (1993) Derivation of thin plate bending elements with one degree of freedom per node. Engineering Computations 10:553&#8211;561
742
743
<div id="cite-6"></div>
744
[[#citeF-6|[6]]]  Oñate E, Zárate F (2000) Rotation-free plate and shell triangles. Num Meth Engng 47:557&#8211;603
745
746
<div id="cite-7"></div>
747
[7]  Cirak F, Ortiz M (2000) Subdivision surfaces: A new paradigm for thin-shell finite element analysis. Num Meths Engng 47:2039&#8211;2072
748
749
<div id="cite-8"></div>
750
[[#citeF-8|[8]]]  Flores FG, Oñate E (2001) A basic thin shell triangle with only translational DOFs for large strain plasticity. Num Meths Engng 51:57&#8211;83
751
752
<div id="cite-9"></div>
753
[[#citeF-9|[9]]]  Cirak F, Ortiz M (2001) Fully <math>C^{1}</math>-conforming subdivision elements for finite deformations thin-shell analysis. Num Meths Engng 51:813&#8211;833
754
755
<div id="cite-10"></div>
756
[[#citeF-10|[10]]]  Flores FG, Oñate E. (2003) Improvements in the membrane behaviour of the three node rotation-free BST shell triangle using an assumed strain approach. Comput Meth Appl Mech Engng (in press)
757
758
<div id="cite-11"></div>
759
[[#citeF-11|[11]]]  Zienkiewicz OC, Taylor RL (2000) The finite element method. Vol II: Solid Mechanics, Butterworth-Heinemann, place?
760
761
<div id="cite-12"></div>
762
[[#citeF-12|[12]]]   Oñate E, Flores FG (2004) Advances in the formulation of the rotation-free basic shell. Comput Meth Appl Mech Engng (in press)
763
764
<div id="cite-13"></div>
765
[[#citeF-13|[13]]]  Ogden RW (1972)  Large deformation isotropic elasticity: on the correlation of theory and experiments for incompressible rubberlike solids. Proc Royal Society London A326:565&#8211;584
766
767
<div id="cite-14"></div>
768
[[#citeF-14|[14]]]  Cook RD (1974) Improved two-dimensional finite element, ASCE J Struct Div 100(ST6):1851&#8211;1863
769
770
<div id="cite-15"></div>
771
[[#citeF-15|[15]]]  Huang HC (1989) Static and Dynamic Analysis of Plates and Shells. Springer-Verlag, Berlin
772
773
<div id="cite-16"></div>
774
[[#citeF-16|[16]]]  Needleman A (1977) Inflation of spherical rubber ballons. Solids and Structures 13:409&#8211;421
775
776
<div id="cite-17"></div>
777
[[#citeF-17|[17]]]  STAMPACK (2003) A General Finite Element System for Sheet Stamping and Forming Problems, Quantech ATZ, Barcelona
778
779
<div id="cite-18"></div>
780
[[#citeF-18|[18]]]  Marklund PO. Nilsson L (2002) Simulation of airbag inflation processes using a coupled fluid structure approach. Computational Mechanics 29:289&#8211;297
781

Return to Flores Onate 2005b.

Back to Top

Document information

Published on 01/01/2005

DOI: 10.1007/1-4020-3317-6_5
Licence: CC BY-NC-SA license

Document Score

0

Views 57
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?