You do not have permission to edit this page, for the following reason:

You are not allowed to execute the action you have requested.


You can view and copy the source of this page.

x
 
1
Published in ''Computers and Fluids'' Vol. 36 (1), pp. 92-112, 2007<br />
2
DOI: 10.1016/j.compfluid.2005.07.003
3
==Abstract==
4
5
A stabilized finite element method (FEM) for the multidimensional steady state advection-diffusion-absorption equation is presented. The stabilized formulation is based on the modified governing differential equations derived via the Finite Calculus (FIC) method. For 1D problems the stabilization terms act as a nonlinear additional diffusion governed by a single stabilization parameter. It is shown that for multidimensional problems an orthotropic stabilizing diffusion must be added along the principal directions of  curvature of the solution. A simple iterative algorithm yielding a stable and accurate solution for all the range of physical parameters and boundary conditions is described. Numerical results for 1D and 2D problems with sharp gradients are presented showing the effectiveness and accuracy of the new stabilized formulation.
6
7
==1 INTRODUCTION==
8
9
Considerable effort has been spent in recent years to derive finite element methods (FEM) <span id='citeF-1'></span>[[#cite-1|1]] for the solution of the advection-diffusion-reaction equation. In this work we will focus on the so called ''exponential regime'' originated by large absorptive (dissipative) reaction terms. Here the solutions are of the form of real exponential functions.  Numerical schemes  find difficulties to approximating the sharp gradients appearing in the neighborhood of boundary and internal layers due to high Peclet and/or Damköhler numbers. Non physical oscilaltory solution are found with the standard Galerkin FEM unless some stabilization procedure is used.
10
11
Stabilized methods to tackle this problem have been based on  streamline-upwind/Petrov-Galerkin (SUPG)  <span id='citeF-2'></span>[[#cite-2|2]], Galerkin/least-squares <span id='citeF-5'></span>[[#cite-5|5]], Subgrid Scale (SGS) <span id='citeF-5'></span>[[#cite-5|5]] and Residual Free Bubbles <span id='citeF-14'></span>[[#cite-14|14]] finite element methods. While a single stabilization parameter suffices to yield stabilized (and even nodally exact results) for the one-dimensional (1D) advection-diffusion and the diffusion-reaction equations (Vol. 3 in <span id='citeF-1'></span>[[#cite-1|1]] and <span id='citeF-8'></span>[[#cite-8|8]]), this is not the case for the diffusion-advection-reaction equation. Here, in general,  ''two stabilization parameters'' are needed in order to ensure a stabilized solution for all range of physical parameters and boundary conditions <span id='citeF-4'></span>[[#cite-4|4]]. As reported in <span id='citeF-12'></span>[[#cite-12|12]] the SUPG, GLS and SGS methods with a single stabilization parameter fail to obtain a stabilized solution for some specific boundary conditions in the exponential regime with negative (absorption) terms when there is a negative streamwise gradient of the solution.
12
13
Oñate ''et al.'' [18] have recently presented a stabilized FEM for the advection-diffusion absorption equation based on the use of a single stabilization parameter which has the form of a diffusion term. In [18] the formulation is detailed for 1D problems and only a brief introduction to the multidimensional case is given. This paper extends the ideas presented in [18] and provides evidence of the effectiveness and accuracy of the new formulation to deal with multidimensional advection-diffusion-absorption  problems  with sharp gradients.
14
15
The stabilized formulation is based on the standard Galerkin FEM solution of the modified governing differential equations derived via the ''Finite Calculus'' (FIC) method [19&#8211;20]. The FIC equations are obtained by expressing the balance of fluxes in a domain of finite size. This introduces additional stabilizing terms in the differential equations of the infinitessimal theory which are a function of the balance domain dimensions. Although the FIC&#8211;FEM formulation here presented is general, we will restrict its application in this work to linear finite element approximations only.
16
17
The Galerkin FIC-FEM formulation  described here introduces naturally an additional nonlinear dissipation term into the discretized equations which is governed by a ''single stabilization parameter''. In the absence of the absorption term the formulation simplifies to the standard Petrov-Galerkin approach for the advection-diffusion problem For the diffusion-absorption case the diffusion-type stabilization term is identical to that recently obtained by Felippa and Oñate using a variational FIC approach  <span id='citeF-15'></span>[[#cite-15|15]]. The general nonlinear form of the stabilization parameter  is a function of the signs of the solution and   its first and second derivatives. This introduces a non-linearity in the solution scheme and a simple iterative algorithm  is described. A simpler constant expression of the stabilization parameter is also presented.
18
19
Details of the 1D formulation and its extension to deal with multidimensional problems are given. For the multidimensional case Oñate ''et al.'' <span id='citeF-27'></span>[[#cite-27|27]] have recently shown that a general form of the stabilization parameters can be found by writting the FIC equations along the principal curvature directions of the solution. The resulting FIC-FEM formulation is equivalent in this case (for linear elements) to adding a stabilizing diffusion matrix to the standard infinitessimal equation. The stabilizing diffusion matrix depends on the signs of the solution and its derivatives and on the velocities along the principal curvature directions of the solution. This introduces a nonlinearity in the solution process. We present a simple iterative scheme based in assuming that  the main principal curvature direction at each  point is coincident with the gradient vector direction. In the last part of the paper we present a collection of 1D and 2D examples showing the effectiveness and accuracy of the new FIC-FEM formulation for different values of the advective and absorptive terms.
20
21
==2 FIC FORMULATION OF THE 1D STATIONARY ADVECTION-DIFFUSION-ABSORPTION EQUATION==
22
23
The governing equation for the 1D stationary advection-diffusion-absorption problem can be written in the FIC formulation as
24
25
{| class="formulaSCP" style="width: 100%; text-align: left;" 
26
|-
27
| 
28
{| style="text-align: left; margin:auto;" 
29
|-
30
| style="text-align: center;" | <math>r - \underline{{h\over 2} {dr\over dx}}{h\over 2} {dr\over dx}=0\quad \hbox{in } x \in (0,L) </math>
31
|}
32
| style="width: 5px;text-align: right;" | (1)
33
|}
34
35
{| class="formulaSCP" style="width: 100%; text-align: left;" 
36
|-
37
| 
38
{| style="text-align: left; margin:auto;" 
39
|-
40
| style="text-align: center;" | <math>-u\phi + k {d\phi \over dx} +q^p - \underline{{h\over 2} r}{h\over 2} r=0\quad \hbox{on }\Gamma _q  </math>
41
|}
42
| style="width: 5px;text-align: right;" | (2)
43
|}
44
45
{| class="formulaSCP" style="width: 100%; text-align: left;" 
46
|-
47
| 
48
{| style="text-align: left; margin:auto;" 
49
|-
50
| style="text-align: center;" | <math>\phi -\phi ^p =0 \quad \hbox{on }\Gamma _\phi  </math>
51
|}
52
| style="width: 5px;text-align: right;" | (3)
53
|}
54
55
where
56
57
{| class="formulaSCP" style="width: 100%; text-align: left;" 
58
|-
59
| 
60
{| style="text-align: left; margin:auto;" 
61
|-
62
| style="text-align: center;" | <math>r =:-u {d\phi \over dx} +{d\over dx} \left(k{d\phi \over dx}\right)- s\phi + Q  </math>
63
|}
64
| style="width: 5px;text-align: right;" | (4)
65
|}
66
67
In above equations <math display="inline">\phi </math> is the state variable, <math display="inline">x \in [0,L]</math> is the problem domain, <math display="inline">L</math> is the domain length, <math display="inline">u</math> is the velocity field, <math display="inline">k\ge 0</math> is the diffusion, <math display="inline">s\ge 0</math> is the absorption, dissipation or destruction source parameter, <math display="inline">Q</math> is a constant source term, <math display="inline">q^p</math> and <math display="inline">\phi ^p</math> are the prescribed values of the total flux and the unknown function at the Neumann and Dirichlet boundaries <math display="inline">\Gamma _q</math> and <math display="inline">\Gamma _\phi </math>, respectively and <math display="inline">h</math> is a ''characteristic length'' which plays the role of a stabilization parameter. In the 1D problem <math display="inline">\Gamma _\phi </math> and <math display="inline">\Gamma _q</math> consist of four combinations at the end points of the problem domain.
68
69
Eqs.(1) and (2) are obtained by expressing the balance of fluxes in an arbitrary 1D domain of finite size within the problem domain and at the Neumann boundary, respectively. The variations of the transported variables within the balance domain are approximated by Taylor series expansions retaining one order higher terms than in the infinitessimal theory [19,20]. The underlined stabilizing terms in Eqs.(1) and (2) emanate from these higher order expansions. Note that as the characteristic length parameter <math display="inline">h</math> tends to zero the FIC differential equations gradually recover the standard infinitessimal form.
70
71
Successful applications of the FIC method to a variety of problems in computational mechanics can be found in [19&#8211;30,37].
72
73
==3 FINITE ELEMENT FORMULATION==
74
75
We will construct a standard finite element discretization <math display="inline">\left\{l^e\right\}</math> of the 1D analysis domain length <math display="inline">L</math> with index <math display="inline">e</math> ranging from 1 to the number of elements <math display="inline">N</math> <span id='citeF-1'></span>[[#cite-1|1]]. The state variable <math display="inline">\phi </math> is approximated by <math display="inline">\bar \phi </math> over the analysis domain. The approximated variable <math display="inline">\bar \phi </math> is interpolated within each element with <math display="inline">n</math> nodes in the standard manner, i.e.
76
77
{| class="formulaSCP" style="width: 100%; text-align: left;" 
78
|-
79
| 
80
{| style="text-align: left; margin:auto;" 
81
|-
82
| style="text-align: center;" | <math>\phi \simeq \bar \phi \quad \hbox{for}\quad x \in [0,L]</math>
83
|}
84
| style="width: 5px;text-align: right;" |  (5a)
85
|}
86
87
with
88
89
{| class="formulaSCP" style="width: 100%; text-align: left;" 
90
|-
91
| 
92
{| style="text-align: left; margin:auto;" 
93
|-
94
| style="text-align: center;" | <math>\bar \phi =\sum \limits _{i=1}^n N_i \phi _i</math>
95
|}
96
| style="width: 5px;text-align: right;" |  (5b)
97
|}
98
99
where <math display="inline">N_i</math> are the element shape functions and <math display="inline">\phi _i</math> are nodal values of the approximate function <math display="inline">\bar \phi </math>. Substituting Eq.(5a) into Eqs.(1) and (2) gives
100
101
{| class="formulaSCP" style="width: 100%; text-align: left;" 
102
|-
103
| 
104
{| style="text-align: left; margin:auto;" 
105
|-
106
| style="text-align: center;" | <math>\bar r - {h\over 2} {d\bar r\over dx} =r_\Omega \quad \hbox{in } x\in (0,L) </math>
107
|}
108
|}
109
110
{| class="formulaSCP" style="width: 100%; text-align: left;" 
111
|-
112
| 
113
{| style="text-align: left; margin:auto;" 
114
|-
115
| style="text-align: center;" | <math>-u\bar \phi + k {d\bar \phi \over dx} +q^p - {h\over 2} \bar r=r_q\quad \hbox{on }\Gamma _q  </math>
116
|}
117
| style="width: 5px;text-align: right;" | (6)
118
|}
119
120
{| class="formulaSCP" style="width: 100%; text-align: left;" 
121
|-
122
| 
123
{| style="text-align: left; margin:auto;" 
124
|-
125
| style="text-align: center;" | <math>\bar \phi -\phi ^p =r_\phi \quad \hbox{on }\Gamma _\phi  </math>
126
|}
127
| style="width: 5px;text-align: right;" | (7)
128
|}
129
130
where <math display="inline">\bar r =r(\bar \phi )</math> and <math display="inline">r_\Omega , r_q</math> and <math display="inline">r_\phi </math> are the residuals of the approximate solution in the problem domain and on the Neumann and Dirichlet boundaries <math display="inline">\Gamma _q</math> and <math display="inline">\Gamma _\phi </math>, respectively.
131
132
The weighted residual form of Eqs.(6)&#8211;(8) is written as
133
134
{| class="formulaSCP" style="width: 100%; text-align: left;" 
135
|-
136
| 
137
{| style="text-align: left; margin:auto;" 
138
|-
139
| style="text-align: center;" | <math>\int _L W_i \left(\bar r - {h\over 2} {d\bar r\over dx}\right)dx + \left[\hat W_i \left(-u \bar \phi + k {d\bar \phi \over dx} +q_p - {h\over 2} \bar r \right)\right]_{\Gamma _q} =0 </math>
140
|}
141
| style="width: 5px;text-align: right;" | (8)
142
|}
143
144
where <math display="inline">W_i(x)</math> and <math display="inline">\hat W_i</math> are test functions satisfying <math display="inline">W_i =\hat W_i =0</math> on <math display="inline">\Gamma _\phi </math>.
145
146
Assuming smooth enough solutions and integrating by parts the term involving <math display="inline">h</math> in the first integral gives for <math display="inline">\hat W_i=-W_i</math>
147
148
{| class="formulaSCP" style="width: 100%; text-align: left;" 
149
|-
150
| 
151
{| style="text-align: left; margin:auto;" 
152
|-
153
| style="text-align: center;" | <math>\int _L W_i \bar r d x - \left[W_i \left(-u \bar \phi + k {d\bar \phi \over dx} +q^p \right)\right]_{\Gamma _q} +\sum \limits _e \int _{l^e} {h\over 2} {dW_i\over dx} \bar r dx =0</math>
154
|}
155
| style="width: 5px;text-align: right;" | (9)
156
|}
157
158
The third term in Eq.(10) is computed as the sum of the integrals over the element interiors, therefore allowing for the space derivatives of <math display="inline">\bar r</math> to be discontinuous. Also in  Eq.(10) <math display="inline">h</math> has been assumed to be constant within each element, (i.e. <math display="inline">\displaystyle{dh\over dx}=0</math> within <math display="inline">l^e</math>).
159
160
The  weak form is obtained by integrating by parts the advective and diffusive terms within <math display="inline">\bar r</math> in the first integral of Eq.(10). This gives
161
162
{| class="formulaSCP" style="width: 100%; text-align: left;" 
163
|-
164
| 
165
{| style="text-align: left; margin:auto;" 
166
|-
167
| style="text-align: center;" | <math>\int _L \left[u {dW_i\over dx} \bar \phi - {dW_i\over dx}k {d\bar \phi \over dx}- W_i s \bar \phi + W_i Q\right]dx -  [W_i q^p]_{\Gamma _q} -  \sum \limits _e \int _{l^e} \left(\beta k {dW_i\over dx} {d\bar \phi \over dx} -{h\over 2} {dW_i\over dx}Q\right)dx =0 </math>
168
|}
169
| style="width: 5px;text-align: right;" | (10)
170
|}
171
172
with
173
174
{| class="formulaSCP" style="width: 100%; text-align: left;" 
175
|-
176
| 
177
{| style="text-align: left; margin:auto;" 
178
|-
179
| style="text-align: center;" | <math>\beta = \left[{s\bar \phi \over 2k\bar \phi '}+{u\over 2k}-{\bar \phi ''\over 2\bar \phi '} \right]h </math>
180
|}
181
| style="width: 5px;text-align: right;" | (11)
182
|}
183
184
where a prime denotes the derivative with respect to the space coordinate.
185
186
Wee see clearly that the last term of Eq.(11) introduces within each element an additional diffusion of value <math display="inline">\beta k</math>.
187
188
Substituting expression (5b) into (11) and choosing a Galerkin method with <math display="inline">W_i =N_i</math> within each element gives the discrete system of FE equations written in the standard matrix form as
189
190
{| class="formulaSCP" style="width: 100%; text-align: left;" 
191
|-
192
| 
193
{| style="text-align: left; margin:auto;" 
194
|-
195
| style="text-align: center;" | <math>{K}\bar{\boldsymbol \phi } ={f} </math>
196
|}
197
| style="width: 5px;text-align: right;" | (12)
198
|}
199
200
where <math display="inline">\bar{\boldsymbol \phi }</math> is the vector of nodal unknowns and the element contributions to matrix '''K''' and vector <math display="inline">f</math> are
201
202
{| class="formulaSCP" style="width: 100%; text-align: left;" 
203
|-
204
| 
205
{| style="text-align: left; margin:auto;" 
206
|-
207
| style="text-align: right;" | <math>K_{ij}^e\!\! </math>
208
| style="text-align: center;" | <math>=</math>
209
| <math>\!\! \int _{l^e} \left(-u {dN_i\over dx} N_j + k(1+\beta ) {dN_i\over dx}{dN_j\over dx}+ sN_i N_j\right)dx</math>
210
| style="width: 5px;text-align: right;" | (13)
211
|-
212
| style="text-align: right;" | <math> f_i^e\!\! </math>
213
| style="text-align: center;" | <math>=</math>
214
| <math> \!\! \int _{l^e} \left(N_i + {h\over 2} {dN_i\over dx} \right)Qdx - (N_i q^p)_{\Gamma _q} </math>
215
| style="width: 5px;text-align: right;" | (14)
216
|}
217
|}
218
219
The amount of balancing diffusion in Eq.(14) clearly depends on the (nonlinear) stabilization parameter <math display="inline">\beta </math>. The element and critical  values of <math display="inline">\beta </math> are deduced in the next section for linear two node elements.
220
221
We note that the integral of the term <math display="inline">\displaystyle{h\over 2} \displaystyle{dN_i\over dx}Q</math> in Eq.(15) vanishes after asssembly when <math display="inline">h </math> and <math display="inline">Q</math> are uniform over a patch of linear elements.
222
223
==4 COMPUTATION OF THE STABILIZATION PARAMETER FOR LINEAR ELEMENTS==
224
225
The matrix <math display="inline">{K}^e</math> and the vector <math display="inline">{f}^e</math> for two node linear elements are (for constant values of <math display="inline">u,k</math>, <math display="inline">s</math> and <math display="inline">Q</math>)
226
227
{| class="formulaSCP" style="width: 100%; text-align: left;" 
228
|-
229
| 
230
{| style="text-align: left; margin:auto;" 
231
|-
232
| style="text-align: center;" | <math>{K}^e = - {u\over 2} \left[\begin{matrix}-1 & -1\\ 1 & 1\\\end{matrix}\right]+ {k\over l^e} (1+\beta ^e)  \left[\begin{matrix}1 & -1\\ - 1 & 1\\\end{matrix}\right]+ {sl^e \over 6} \left[\begin{matrix}2 & 1\\ 1 & 2\\\end{matrix}\right]</math>
233
|}
234
| style="width: 5px;text-align: right;" |  (16a)
235
|}
236
237
{| class="formulaSCP" style="width: 100%; text-align: left;" 
238
|-
239
| 
240
{| style="text-align: left; margin:auto;" 
241
|-
242
| style="text-align: center;" | <math>{f}^e = {Ql^e\over 2}\left\{\begin{matrix}1 - \displaystyle{h^e\over 2}\\ 1+ \displaystyle{h^e\over 2}\\\end{matrix}\right\}\qquad + \quad \hbox{boundary term}</math>
243
|}
244
| style="width: 5px;text-align: right;" |  (16a)
245
|}
246
247
In Eqs.(16) index <math display="inline">e</math>denotes element values.
248
249
Assuming <math display="inline">Q=0</math>, a typical stencil for elements of equal size <math display="inline">l</math> can be written as
250
251
{| class="formulaSCP" style="width: 100%; text-align: left;" 
252
|-
253
| 
254
{| style="text-align: left; margin:auto;" 
255
|-
256
| style="text-align: center;" | <math>\begin{array}{r}-\gamma (\bar \phi _{i+1} -\bar \phi _{i-1})-(1+\beta ) \bar \phi _{i-1}+2(1+\beta ) \bar \phi _i - (1+\beta ) \bar \phi _{i+1}+\\ + \displaystyle{w\over 6} (\bar \phi _{i-1}+ 4 \bar \phi _i + \bar \phi _{i+1})=0 \end{array} </math>
257
|}
258
| style="width: 5px;text-align: right;" | (17)
259
|}
260
261
where for simplicity a constant value of <math display="inline">\beta </math> across the mesh has been assumed. In Eq.(17) <math display="inline">\gamma ={ul\over 2k}</math> and <math display="inline">w={sl^2\over 4}</math> are the Peclet number and a velocity independent dimensionless number, respectively.
262
263
From Eq.(17) we deduce
264
265
{| class="formulaSCP" style="width: 100%; text-align: left;" 
266
|-
267
| 
268
{| style="text-align: left; margin:auto;" 
269
|-
270
| style="text-align: center;" | <math>\beta = \gamma \left({\bar \phi _{i+1} -\bar \phi _{i-1}\over \bar \phi _{i+1}- 2\bar \phi _i+  \bar \phi _{i-1} }\right)+ {w\over 6} \left({\bar \phi _{i-1} + 4 \bar \phi _i+\bar \phi _{i+1}\over \bar \phi _{i+1}- 2\bar \phi _i+ \bar \phi _{i+1} }\right)-1 </math>
271
|}
272
| style="width: 5px;text-align: right;" | (18)
273
|}
274
275
In the vecinity of a sharp gradient zone we can take
276
277
{| class="formulaSCP" style="width: 100%; text-align: left;" 
278
|-
279
| 
280
{| style="text-align: left; margin:auto;" 
281
|-
282
| style="text-align: center;" | <math>\begin{array}{l}\bar \phi _{i+1} -\bar \phi _{i-1}\simeq \bar \phi _{max} S_1\\ \bar \phi _{i+1} -2\bar \phi _i+  \bar \phi _{i-1}=\bar \phi _{max} S_2\\ \bar \phi _i+4 \bar \phi _i + \bar \phi _{i+1}= \bar \phi _{i+1}S_0 \end{array} </math>
283
|}
284
| style="width: 5px;text-align: right;" | (19)
285
|}
286
287
where <math display="inline">\bar \phi _{max}</math> is the maximum value of the approximate function <math display="inline">\bar \phi </math> in the patch of elements adjacent to the sharp gradient zone and
288
289
{| class="formulaSCP" style="width: 100%; text-align: left;" 
290
|-
291
| 
292
{| style="text-align: left; margin:auto;" 
293
|-
294
| style="text-align: center;" | <math>S_0= \hbox{sign } (\bar \phi ) ,\quad S_1 = \hbox{sign } \left({d\bar \phi \over dx}\right),\quad S_2 = \hbox{sign } \left({d^2 \bar \phi \over dx^2}\right) </math>
295
|}
296
| style="width: 5px;text-align: right;" | (20)
297
|}
298
299
where sign <math display="inline">\bar{(\cdot )}</math> denotes the sign of the magnitude within the brackets computed at the  patch mid point.
300
301
Substituting Eq.(19) into (18) leads to the following expression of the stabilization parameter
302
303
{| class="formulaSCP" style="width: 100%; text-align: left;" 
304
|-
305
| 
306
{| style="text-align: left; margin:auto;" 
307
|-
308
| style="text-align: center;" | <math>\beta = \left[\left({S_0\over S_2}\right){w\over 6} +\left({S_1\over S_2}\right)  \gamma -1\right] </math>
309
|}
310
| style="width: 5px;text-align: right;" | (21)
311
|}
312
313
The ''element stabilization parameter'' <math display="inline">\beta ^e</math> is now defined as
314
315
{| class="formulaSCP" style="width: 100%; text-align: left;" 
316
|-
317
| 
318
{| style="text-align: left; margin:auto;" 
319
|-
320
| style="text-align: center;" | <math>\begin{array}{l}\beta ^e =\beta \quad \hbox{for } \beta >0\\ \beta ^e =0 \quad \hbox{for } \beta \le 0 \end{array} </math>
321
|}
322
| style="width: 5px;text-align: right;" | (22)
323
|}
324
325
where <math display="inline">\beta </math> is given by Eq.(21) and the signs <math display="inline">S_0</math>, <math display="inline">S_1</math> and <math display="inline">S_2</math> are computed now at the element mid-point.
326
327
It is clear from above that the computation of the stabilization parameter <math display="inline">\beta ^e</math> requires the knowledge of the sign of the numerical solution <math display="inline">\bar \phi </math> and that of the  first and second derivatives of <math display="inline">\bar \phi </math> within each element. This necessarily leads to an iterative scheme. A simple algorithm which provides a stabilized and accurate solution in just two steps is presented below.
328
329
===4.1 Critical stabilization parameter and unstability conditions===
330
331
The following constant value of <math display="inline">\beta </math> over the mesh ensures a stabilized solution for all ranges of <math display="inline">\gamma </math> and <math display="inline">w</math>
332
333
{| class="formulaSCP" style="width: 100%; text-align: left;" 
334
|-
335
| 
336
{| style="text-align: left; margin:auto;" 
337
|-
338
| style="text-align: center;" | <math>\displaystyle{\beta \le \beta _c = {w\over 6} +\vert \gamma \vert -1} </math>
339
|}
340
| style="width: 5px;text-align: right;" | (23)
341
|}
342
343
where <math display="inline">\beta _c </math> is the ''critical stabilization parameter''. Note that <math display="inline">\beta _c</math> corresponds to the maximum value of <math display="inline">\beta </math> in Eq.(21) for <math display="inline">{S_0\over S_2}={S_1\over S_2}=1</math>. A mathematical proof of Eq.(23) is given in [18].
344
345
Clearly the value of <math display="inline">\beta _c</math> of Eq.(23) is meaningful only if <math display="inline">\beta _c >0</math> and this can be taken as an indicator of an unstable solution. Conversely, a value of <math display="inline">\beta _c \le 0</math> indicates that no stabilization is needed.
346
347
===4.2 Iterative solution scheme===
348
349
The following two steps iterative scheme is proposed in order to obtain a stabilized and accurate solution.
350
351
step step
352
353
Compute a first stabilized solution <math display="inline">\bar{\boldsymbol \phi }^1</math> using the critical value <math display="inline">\beta ^e = \beta _c</math> given by Eq.(23). This ensures a stabilized, although sometimes slightly overdiffusive, solution.
354
355
==~&nbsp;==
356
357
step
358
359
Compute the signs of the first and second derivatives of <math display="inline">\bar{\boldsymbol \phi }^1</math> within each element. The second derivative field is obtained as follows
360
361
{| class="formulaSCP" style="width: 100%; text-align: left;" 
362
|-
363
| 
364
{| style="text-align: left; margin:auto;" 
365
|-
366
| style="text-align: center;" | <math>\left({d^2 \bar \phi ^1 \over dx^2}\right)^e= {1\over l^e} \left[\left({d\hat \phi ^1 \over dx}\right)^e_2 - \left({d\hat \phi ^1 \over dx}\right)^e_1\right] </math>
367
|}
368
| style="width: 5px;text-align: right;" | (24)
369
|}
370
371
where <math display="inline">({\hat \cdot })_i^e</math> denotes averaged values of the first derivative at node <math display="inline">i</math> of element <math display="inline">e</math>. At the boundary nodes the constant value of the derivative of <math display="inline">\bar \phi </math> within the element is taken in Eq.(24); i.e. <math display="inline">(\hat{\cdot })_i^e = \left({d\bar \phi \over dx}\right)^{(e)} = {\bar \phi _2 - \bar \phi _1 \over l^e}</math>.
372
373
Compute the enhanced stabilized solution <math display="inline">{\boldsymbol \phi }^2</math> using the element value of <math display="inline">\beta ^e</math> given by Eq.(22).
374
375
In all the 1D examples solved the above two steps have sufficed to obtain a converged stabilized and accurate solution [18]. The reason of this is that  the signs of the first and second derivative fields typically do not change any further after the second step over the elements adjacent to high gradient zones.
376
377
==5 EXTENSION TO MULTI-DIMENSIONAL PROBLEMS==
378
379
Consider the general steady-state advection-diffusion-reaction equation written for the zero constant source case (<math display="inline">Q=0</math>) as
380
381
<span id="eq-25"></span>
382
{| class="formulaSCP" style="width: 100%; text-align: left;" 
383
|-
384
| 
385
{| style="text-align: left; margin:auto;" 
386
|-
387
| style="text-align: center;" | <math>r(\phi ): =- {u}^T {\boldsymbol \nabla } \phi + {\boldsymbol \nabla }^T {D}{\boldsymbol \nabla }\phi - s\phi =0 </math>
388
|}
389
| style="width: 5px;text-align: right;" | (25)
390
|}
391
392
For 2D problems
393
394
<span id="eq-26"></span>
395
{| class="formulaSCP" style="width: 100%; text-align: left;" 
396
|-
397
| 
398
{| style="text-align: left; margin:auto;" 
399
|-
400
| style="text-align: center;" | <math>{u}=[u,v]^T\quad ,\quad {\boldsymbol \nabla }=\left[{\partial  \over \partial x},{\partial  \over \partial y}\right]^T\quad ,\quad {D} =k \left[\begin{matrix}1 &0\\ 0&1\\\end{matrix}\right] </math>
401
|}
402
| style="width: 5px;text-align: right;" | (26)
403
|}
404
405
are respectively the velocity vector, the gradient vector and the diffusivity matrix, respectively. For simplicity we have assumed an isotropic diffusion matrix.
406
407
The FIC form of Eq.([[#eq-25|25]]) is written as
408
409
<span id="eq-27"></span>
410
{| class="formulaSCP" style="width: 100%; text-align: left;" 
411
|-
412
| 
413
{| style="text-align: left; margin:auto;" 
414
|-
415
| style="text-align: center;" | <math>r - \underline{{1\over 2} {h}^T {\boldsymbol \nabla }r}{1\over 2} {h}^T {\boldsymbol \nabla }r=0 </math>
416
|}
417
| style="width: 5px;text-align: right;" | (27)
418
|}
419
420
where <math display="inline">r</math> is the original infinitessimal differential equation as defined in Eq.([[#eq-25|25]]).
421
422
The Dirichlet and boundary conditions of the FIC formulation are
423
424
<span id="eq-28"></span>
425
{| class="formulaSCP" style="width: 100%; text-align: left;" 
426
|-
427
| 
428
{| style="text-align: left; margin:auto;" 
429
|-
430
| style="text-align: center;" | <math>\phi - \phi ^p =0 \quad \hbox{on}\quad \Gamma _\phi   </math>
431
|}
432
| style="width: 5px;text-align: right;" | (28)
433
|}
434
435
<span id="eq-29"></span>
436
{| class="formulaSCP" style="width: 100%; text-align: left;" 
437
|-
438
| 
439
{| style="text-align: left; margin:auto;" 
440
|-
441
| style="text-align: center;" | <math>- {u}^T {n}\phi + {n}^T {D} {\boldsymbol \nabla } \phi + q^p - \underline{{1\over 2} {h}^T {n}r}{1\over 2} {h}^T {n}r=0 \quad \hbox{on}\quad \Gamma _q </math>
442
|}
443
| style="width: 5px;text-align: right;" | (29)
444
|}
445
446
where <math display="inline">n</math> is the normal vector to the boundary where the normal flux is prescribed. As usual index <math display="inline">p</math> denotes the prescribed values.
447
448
In Eqs.([[#eq-27|27]]) and ([[#eq-29|29]]) <math display="inline">{h}=[h_x,h_y]^T</math> is the characteristic vector of the 2D FIC formulation which components play the role of stabilization parameters. The underlined terms in Eqs.([[#eq-27|27]]) and ([[#eq-29|29]]) introduce the necessary stability in the numerical solution [19,20,21].
449
450
If vector '''h'''  is taken to be parallel to the velocity '''u''' the standard SUPG method is recovered [18&#8211;23]. The more general form of '''h''' allows to obtain stabilized finite element solutions in the presence of strong gradients of <math display="inline">\phi </math> near the boundaries (boundary layers) and within the analysis domain (internal layers) <span id='citeF-27'></span>[[#cite-27|27]].  The FIC formulation therefore reproduces the best features of the so called shock-capturing or transverse-dissipation schemes <span id='citeF-2'></span>[[#cite-2|2]].
451
452
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
453
|-
454
|
455
[[File:Draft_Samper_447243531_2415_Fig1.png|600px|]]
456
|- style="text-align: center; font-size: 75%;padding:10px;"
457
| colspan="1" | '''Figure 1'''. Global axes (<math>x,y</math>) and principal curvature axes (<math>\xi ,\eta </math>)
458
|}
459
460
Let us write down the FIC balance equation  in the principal curvature axes of the solution <math display="inline">\xi ,\eta </math> (Figure 1). The FIC balance equation is
461
462
{| class="formulaSCP" style="width: 100%; text-align: left;" 
463
|-
464
| 
465
{| style="text-align: left; margin:auto;" 
466
|-
467
| style="text-align: right;" | 
468
| style="text-align: center;" | 
469
| <math>-u_\xi {\partial \phi  \over \partial \xi }-u_\eta {\partial \phi  \over \partial \eta }+k \left({\partial ^2\phi \over \partial \xi ^2}+ {\partial ^2\phi \over \partial \eta ^2}\right)-s\phi - {h_\xi \over 2} {\partial  \over \partial \xi }\left[-u_\xi {\partial \phi  \over \partial \xi }-u_\eta {\partial \phi  \over \partial \eta }+ k \left({\partial ^2\phi \over \partial \xi ^2}+ {\partial ^2\phi \over \partial \eta ^2}\right)-s\phi \right]</math>
470
|-
471
| style="text-align: right;" | 
472
| style="text-align: center;" | 
473
| <math> - {h_\eta \over 2} {\partial  \over \partial \eta } \left[-u_\xi {\partial \phi  \over \partial \xi }-u_\eta {\partial \phi  \over \partial \eta }+ k \left({\partial ^2\phi \over \partial \xi ^2}+ {\partial ^2\phi \over \partial \eta ^2}\right)-s\phi \right]=0 </math>
474
|}
475
| style="width: 5px;text-align: right;" | (30)
476
|}
477
478
where <math display="inline">u_\xi , u_\eta </math> are the velocities along the principal axes of curvature <math display="inline">\xi </math> and <math display="inline">\eta </math>, respectively.
479
480
As <math display="inline">\xi </math> and <math display="inline">\eta </math> are the principal curvature axes of the solution then
481
482
{| class="formulaSCP" style="width: 100%; text-align: left;" 
483
|-
484
| 
485
{| style="text-align: left; margin:auto;" 
486
|-
487
| style="text-align: center;" | <math>{\partial ^2\phi \over \partial \xi \partial \eta }= {\partial ^2\phi \over \partial \eta \partial \xi }=0 </math>
488
|}
489
| style="width: 5px;text-align: right;" | (31)
490
|}
491
492
Introducing this simplification into Eq.(30) we can rewrite this equation as
493
494
{| class="formulaSCP" style="width: 100%; text-align: left;" 
495
|-
496
| 
497
{| style="text-align: left; margin:auto;" 
498
|-
499
| style="text-align: center;" | <math>\begin{array}{l} -u_\xi \displaystyle {\partial \phi  \over \partial \xi }-u_\eta {\partial \phi  \over \partial \eta }+\left(k + {u_\xi h_\xi \over 2}+ {sh_\xi \over 2} {\partial \phi \over \partial \xi } \left({\partial ^2\phi \over \partial \xi ^2} \right)^{-1}  \right){\partial ^2\phi \over \partial \xi ^2} +\\ \displaystyle + \left(k + {u_\eta h_\eta \over 2}+ {sh_\eta \over 2} {\partial \phi \over \partial \eta } \left({\partial ^2\phi \over \partial \eta ^2} \right)^{-1}\right){\partial ^2\phi \over \partial \eta ^2} - s\phi - k \left({h_\xi \over 2}{\partial ^3 \phi \over \partial \xi ^3}+  {h_\eta \over 2} {\partial ^3 \phi \over \partial \eta ^3}\right)=0 \end{array}</math>
500
|}
501
| style="width: 5px;text-align: right;" |  (32a)
502
|}
503
504
or
505
506
{| class="formulaSCP" style="width: 100%; text-align: left;" 
507
|-
508
| 
509
{| style="text-align: left; margin:auto;" 
510
|-
511
| style="text-align: center;" | <math> -u_\xi {\partial \phi  \over \partial \xi }-u_\eta {\partial \phi  \over \partial \eta }+ k(1+\beta _\xi ) {\partial ^2\phi \over \partial \xi ^2} + k (1+\beta _\eta ) {\partial ^2\phi \over \partial \eta ^2} - s\phi -k \left({h_\xi \over 2}{\partial ^3 \phi \over \partial \xi ^3}+  {h_\eta \over 2} {\partial ^3 \phi \over \partial \eta ^3}\right)=0</math>
512
|}
513
| style="width: 5px;text-align: right;" |  (32b)
514
|}
515
516
We can see clearly from Eq.(33) that the FIC governing equations introduce orthotropic diffusion parameters  of values <math display="inline">{\beta _\xi k }</math> and <math display="inline"> { \beta _\eta k}</math> along the <math display="inline">\xi </math> and <math display="inline">\eta </math> axes, respectively with
517
518
{| class="formulaSCP" style="width: 100%; text-align: left;" 
519
|-
520
| 
521
{| style="text-align: left; margin:auto;" 
522
|-
523
| style="text-align: center;" | <math>\beta _\xi = {u_\xi h_\xi \over 2k} + {sh_\xi \over 2k} {\partial \phi  \over \partial \xi } \left({\partial ^2\phi \over \partial \xi ^2} \right)^{-1},\quad \beta _\eta ={u_\xi h_\xi \over 2k} + {sh_\eta \over 2k} {\partial \phi  \over \partial \eta } \left({\partial ^2\phi \over \partial \eta ^2} \right)^{-1} </math>
524
|}
525
| style="width: 5px;text-align: right;" |  (33)
526
|}
527
528
Also note that the last term of Eq.(32b) will vanish after discretization for linear elements.
529
530
Eq.(32b) can be rewritten in matrix form (neglecting the last term) as
531
532
{| class="formulaSCP" style="width: 100%; text-align: left;" 
533
|-
534
| 
535
{| style="text-align: left; margin:auto;" 
536
|-
537
| style="text-align: center;" | <math>- {u}^{\prime T} {\boldsymbol \nabla }^\prime \phi + {\boldsymbol \nabla }^{\prime T} ({D}+\bar {D}^\prime ) {\boldsymbol \nabla }^{\prime }\phi - s\phi =0 </math>
538
|}
539
|}
540
541
where <math display="inline">{u}^\prime =[u_\xi , u_\eta ]^T</math>, <math display="inline">{\boldsymbol \nabla }^\prime = \left[{\partial \over \partial \xi }, {\partial \over \partial \eta }\right]^T</math>, <math display="inline">D</math> is the “physical” isotropic diffusion matrix and <math display="inline">\bar {D}'</math> is the balancing diffusion matrix in the local axes <math display="inline">\xi </math> and <math display="inline">\eta </math>. The form of this matrix is
542
543
{| class="formulaSCP" style="width: 100%; text-align: left;" 
544
|-
545
| 
546
{| style="text-align: left; margin:auto;" 
547
|-
548
| style="text-align: center;" | <math>\bar {D}^\prime = \left[\begin{array}{cc}\beta _\xi k& 0\\ 0 &\beta _\eta k \end{array}\right] </math>
549
|}
550
| style="width: 5px;text-align: right;" | (34)
551
|}
552
553
The velocities  along the principal curvature axes <math display="inline">u_\xi </math> and <math display="inline">u_\eta </math> can be obtained by projecting the cartesian velocities into the principal curvature axes <math display="inline">\xi </math> and <math display="inline">\eta </math> as
554
555
{| class="formulaSCP" style="width: 100%; text-align: left;" 
556
|-
557
| 
558
{| style="text-align: left; margin:auto;" 
559
|-
560
| style="text-align: center;" | <math>{u}'=\left\{\begin{array}{c}u_\xi \\ u_\eta \end{array}\right\}= {T} {u}  \quad \hbox{with}\quad {T}= \left[\begin{array}{cc}c_\alpha & s_\alpha \\ - s_\alpha & c_\alpha \end{array}\right]\quad ,\quad {u}=\left\{\begin{array}{c}u\\v\end{array}\right\} </math>
561
|}
562
| style="width: 5px;text-align: right;" | (35)
563
|}
564
565
where <math display="inline">c_\alpha =\cos \alpha </math>, <math display="inline">s_\alpha =\sin \alpha </math> and <math display="inline">\alpha </math> is the angle which the <math display="inline">\xi </math> axis forms with the <math display="inline">x</math> axis (Figure 1). Note that as the solution is continuous the principal curvature directions <math display="inline">\xi </math> and <math display="inline">\eta </math> are orthogonal.
566
567
The values of <math display="inline">\beta _\xi </math> and <math display="inline">\beta _\eta </math> are  computed by considering the solution of two uncoupled 1D problems along the <math display="inline">\xi </math> and <math display="inline">\eta </math> directions. This gives from Eqs.(21) and (22)
568
569
{| class="formulaSCP" style="width: 100%; text-align: left;" 
570
|-
571
| 
572
{| style="text-align: left; margin:auto;" 
573
|-
574
| style="text-align: center;" | <math>\beta _\xi = \left[\left({S_0\over S_{\xi _2}}\right){w_\xi \over 6} +  \left({S_{\xi _1}\over S_{\xi _2}}\right)\gamma _\xi -1\right]\quad ,\quad \gamma _\xi = {u_\xi l_\xi \over 2k} \quad ,\quad  w_\xi = {sl^2_\xi \over k}</math>
575
|}
576
| style="width: 5px;text-align: right;" |  (37a)
577
|}
578
579
{| class="formulaSCP" style="width: 100%; text-align: left;" 
580
|-
581
| 
582
{| style="text-align: left; margin:auto;" 
583
|-
584
| style="text-align: center;" | <math>\beta _\eta = \left[\left({S_0\over S_{\eta _2}}\right){w_\eta \over 6} +  \left({S_{\eta _1}\over S_{\eta _2}}\right)\gamma _\eta -1\right]\quad ,\quad \gamma _\eta = {u_\eta l_\eta \over 2k} \quad ,\quad  w_\eta = {sl^2_\eta \over k} </math>
585
|}
586
| style="width: 5px;text-align: right;" |  (37b)
587
|}
588
589
where
590
591
{| class="formulaSCP" style="width: 100%; text-align: left;" 
592
|-
593
| 
594
{| style="text-align: left; margin:auto;" 
595
|-
596
| style="text-align: center;" | <math>\begin{array}{l}S_0 =\hbox{sign }(\bar \phi ) \quad ,\quad S_{\xi _1}= \hbox{sign } \left(\displaystyle{\partial \bar \phi \over \partial \xi }\right)\quad ,\quad  S_{\xi _2}= \hbox{sign } \left(\displaystyle{\partial ^2 \bar \phi \over \partial \xi ^2}\right)\\ S_{\eta _1}= \hbox{sign } \left(\displaystyle{\partial \bar \phi \over \partial \eta }\right)\quad ,\quad  S_{\eta _2}= \hbox{sign } \left(\displaystyle{\partial ^2 \bar \phi \over \partial \eta ^2}\right) \end{array} </math>
597
|}
598
| style="width: 5px;text-align: right;" | (38)
599
|}
600
601
and <math display="inline">\bar \phi </math> is as usual the approximate solution.
602
603
The lengths <math display="inline">l_\xi </math> and <math display="inline">l_\eta </math> are taken as the maximum projection of the velocities <math display="inline">u_\xi </math> and <math display="inline">u_\eta </math> along the element sides (for triangles) and the element diagonals (for quadrilaterals), i.e.
604
605
{| class="formulaSCP" style="width: 100%; text-align: left;" 
606
|-
607
| 
608
{| style="text-align: left; margin:auto;" 
609
|-
610
| style="text-align: center;" | <math>l_i =\max ({d}_j^T {u}_i)\quad ,\quad i=\xi ,\eta </math>
611
|}
612
| style="width: 5px;text-align: right;" |  (39a)
613
|}
614
615
with
616
617
{| class="formulaSCP" style="width: 100%; text-align: left;" 
618
|-
619
| 
620
{| style="text-align: left; margin:auto;" 
621
|-
622
| style="text-align: center;" | <math>\begin{array}{ll}j=1,2,3 \hbox{ (for triangles) and }\\ j=1,2 \hbox{ (for quadrilaterals)}\end{array}</math>
623
|}
624
| style="width: 5px;text-align: right;" |  (39b)
625
|}
626
627
In Eq.(39a) <math display="inline">{u}_\xi </math> and <math display="inline">{u}_\eta </math> contain the global components of the  velocity vectors <math display="inline">\vec u_\xi </math> and <math display="inline">\vec u_\eta </math>, respectively. For triangles <math display="inline">{d}_j</math> are the element side vectors, whereas for quadrilaterals <math display="inline">{d}_j</math> are the element diagonal vectors <span id='citeF-27'></span>[[#cite-27|27]].
628
629
The next step is to transform Eq.(34) to global axes <math display="inline">x,y</math>. The resulting equation is
630
631
{| class="formulaSCP" style="width: 100%; text-align: left;" 
632
|-
633
| 
634
{| style="text-align: left; margin:auto;" 
635
|-
636
| style="text-align: center;" | <math>-{u}^T {\boldsymbol \nabla }\phi +{\boldsymbol \nabla }^T {D}_G {\boldsymbol \nabla }\phi -s\phi=0 </math>
637
|}
638
|}
639
640
where the global diffusion matrix <math display="inline">{D}_G</math> is given by
641
642
{| class="formulaSCP" style="width: 100%; text-align: left;" 
643
|-
644
| 
645
{| style="text-align: left; margin:auto;" 
646
|-
647
| style="text-align: center;" | <math>{D}_G={D}+\bar{D}</math>
648
|}
649
| style="width: 5px;text-align: right;" | (41a)
650
|}
651
652
where the global balancing diffusion matrix <math display="inline">\bar{D}</math> is
653
654
{| class="formulaSCP" style="width: 100%; text-align: left;" 
655
|-
656
| 
657
{| style="text-align: left; margin:auto;" 
658
|-
659
| style="text-align: center;" | <math>\bar {D} = {T}^T \bar {D}^\prime {T}</math>
660
|}
661
| style="width: 5px;text-align: right;" | (41b)
662
|}
663
664
===Remark===
665
666
Similarly as for the 1D problems, a negative value of the parameters <math display="inline">\beta _\xi </math> and <math display="inline">\beta _\eta </math> indicates that no stabilization is needed along the directions <math display="inline">\xi </math> and <math display="inline">\eta </math>, respectively. A zero value of the corresponding stabilization parameter is chosen in this case.
667
668
===Remark===
669
670
The expressions of <math display="inline">\beta _\xi </math> and <math display="inline">\beta _\eta </math> in Eq.(37) can be simplified to
671
672
{| class="formulaSCP" style="width: 100%; text-align: left;" 
673
|-
674
| 
675
{| style="text-align: left; margin:auto;" 
676
|-
677
| style="text-align: center;" | <math>\begin{array}{l}\beta _\xi \simeq \beta _{\xi _c} =\left[\displaystyle{w_\xi \over 6} +|\gamma _\xi | -1\right]\\ \beta _\eta \simeq \beta _{\eta _c} =\left[\displaystyle{w_\eta \over 6} +|\gamma _\eta | -1\right] \end{array} </math>
678
|}
679
| style="width: 5px;text-align: right;" | (42)
680
|}
681
682
This avoids the computation of the sign of the solution and of its first and second derivatives. The expressions of <math display="inline">\beta _{\xi _c}</math> and <math display="inline">\beta _{\eta _c}</math> in Eq.(42) are equivalent to that of the 1D critical stabilization parameter <math display="inline">\beta _c</math> of Eq.(23). The main difference is that the computation of the local directions <math display="inline">\xi </math> and <math display="inline">\eta </math> is still mandatory in the multidimensional case and, therefore, the nonlinearity of the process can not be avoided here.
683
684
===5.1 Computation of the principal curvature axes for linear elements===
685
686
Excellent results have been obtained in our work ''by approximating the main  curvature direction <math>\vec \xi </math> by the direction of the gradient vector'' <math display="inline">{\boldsymbol \nabla } \phi </math>.
687
688
This simplification allows us to estimate the direction <math display="inline">\vec {\xi }</math> in a very economical manner as the gradient vector <math display="inline">{\boldsymbol \nabla } \bar \phi </math> can be directly computed at any point of a linear element. Direction <math display="inline">\vec {\eta }</math> is taken orthogonal to that of <math display="inline">\vec {\xi }</math> in an anti-clockwise sense.
689
690
For linear triangles <math display="inline">{\boldsymbol \nabla }\bar \phi </math> is constant within the element. For four node quadrilaterals <math display="inline">{\boldsymbol \nabla } \bar \phi </math> varies linearly. We have assumed in this case that the direction of <math display="inline">\vec \xi </math> is constant within the element and equal to the direction of vector <math display="inline">{\boldsymbol \nabla } \bar \phi </math> computed at the element center.
691
692
The computation of the signs of the second derivative of <math display="inline">\bar \phi </math> in Eq.(38) involves the following steps: 1) recovery of the cartesian first derivative field at the nodes using a nodal averaging procedure; 2) computation of the second derivative tensor at the element center and 3) transformation of this tensor to the local axes <math display="inline">\xi </math> and <math display="inline">\eta </math>.
693
694
We note that in problems where positive values of <math display="inline">\bar \phi </math> are prescribed at the Dirichlet boundary, the signs of <math display="inline">S_{\xi _2}</math>, <math display="inline">S_{\eta _2}</math> are positive due to the convexity of the numerical solution.
695
696
As mentioned above the dependence of the balancing diffusion matrix <math display="inline">\bar{D}</math> with the principal  curvature directions <math display="inline">\vec \xi </math> and <math display="inline">\vec {\eta }</math> introduces a nonlinearity in the solution process. A simple and effective iterative algorithm is described next.
697
698
===5.2 General iterative scheme===
699
700
A stabilized numerical solution can be found by the following algorithm.
701
702
'''Step 1''' . For elements in the interior of the domain choose <math display="inline">{}^1{\boldsymbol \xi } ={u}</math>, i.e. the gradient direction is taken coincident with the velocity direction. If <math display="inline">{u}=0</math> then <math display="inline">{}^1{\boldsymbol \xi }</math> is taken coincident with the global <math display="inline">{x}</math> axis.
703
704
In elements adjacent to a boundary choose <math display="inline">{}^1{\boldsymbol \xi } ={n }</math> where '''n ''' is the normal to the boundary.
705
706
Compute <math display="inline">{}^1{\boldsymbol \eta }, {}^1\bar  {D}'</math>, <math display="inline">{}^1\bar  {D}</math> and <math display="inline">{}^1{D}_G</math> using the expressions of <math display="inline">\beta _\xi </math> and <math display="inline">\beta _\eta </math> from Eq.(42).
707
708
Solve for <math display="inline">{}^1\bar{\boldsymbol \phi }</math>.
709
710
Verify that the solution is stable. This implies that there are not undershoots or overshoots in the numerical results with respect to the expected physical values. If the numerical solution is unstable, then go to step 2.
711
712
'''Step 2''' . For all elements, compute at the element center <math display="inline">{}^2{\boldsymbol \xi } = {\boldsymbol \nabla }^1\bar \phi </math>. Then compute <math display="inline">{}^2{\boldsymbol \eta } , {}^2\bar{D}'</math>, <math display="inline">{}^2\bar  {D}</math> and <math display="inline">{}^2{D}_G</math> using the expressions of <math display="inline">\beta _\xi </math> and <math display="inline">\beta _\eta </math> from Eqs.(37).
713
714
Solve for <math display="inline">{}^2\bar{\boldsymbol \phi }</math>.
715
716
'''Step 3''' . Estimate the convergence of the process. We have chosen the following convergence norm
717
718
{| class="formulaSCP" style="width: 100%; text-align: left;" 
719
|-
720
| 
721
{| style="text-align: left; margin:auto;" 
722
|-
723
| style="text-align: center;" | <math>\Vert \phi \Vert = {1\over N\bar \phi _{max}} \left[\sum \limits _{j=1}^n \left({}^{i}\bar \phi _j - {}^{i-1}\bar \phi _j \right)^2 \right]^{1/2} \le \varepsilon  </math>
724
|}
725
| style="width: 5px;text-align: right;" | (43)
726
|}
727
728
where <math display="inline">N</math> is the total number of nodes in the mesh and <math display="inline">\phi _{max}</math> is the maximum prescribed value at the Dirichlet boundary (if <math display="inline">\bar \phi _{max}=0</math> then <math display="inline">\bar  \phi _{max}=1</math>). In above steps the left upper indices denote the iteration number.
729
730
In the examples shown in the next section <math display="inline">\varepsilon =10^{-3}</math> has been taken.
731
732
If condition (43) is not satisfied, repeat steps 2 and 3 until convergence.
733
734
===Remark===
735
736
For the advective-diffusive problems (i.e. <math display="inline">s=0</math>) the  expression of the balancing diffusion matrix in the interior elements for step 1 coincides with the standard (linear) SUPG form <span id='citeF-27'></span>[[#cite-27|27]].
737
738
===Remark===
739
740
An  alternative solution scheme is to use a time relaxation technique based in the solution of a pseudo transient problem with a forward Euler scheme and a diagonal mass matrix.
741
742
==6 1D NUMERICAL EXAMPLES==
743
744
The examples presented in this section are solved in a 1D domain discretized with eight two-node linear elements of unit size. The examples are solved with the same Dirichlet conditions <math display="inline">\phi _1^p =8</math> and <math display="inline">\phi _9^p=3</math> and two different values of <math display="inline">\gamma </math> and <math display="inline">w</math> (<math display="inline">\gamma =1, w=20</math> and <math display="inline">\gamma =10, w=20</math>). We note that for both cases the instability condition (<math display="inline">\beta _c>0</math>) is violated and, hence, the Galerkin solution should yield non-physical results.
745
746
Figures 2 and 3 show the numerical results obtained with the standard  Galerkin method (<math display="inline">\beta =0</math>) and using the element (<math display="inline">\beta ^e</math>) and critical (<math display="inline">\beta _c</math>) values of the stabilization parameter  given by Eqs.(22) and (23), respectively. The exact analytical solution is also shown for comparison.
747
748
Table 1 shows the nodal values of the results of the example of Figure 3 for comparison with the 2D solutions presented in the next section.
749
750
The following conclusions are drawn from the 1D results.
751
752
<ol>
753
754
<li>The Galerkin solution (<math display="inline">\beta =0</math>) is unstable for both problems, as expected. </li>
755
756
<li>The solution obtained with the critical value <math display="inline">\beta _c</math> is always stable, although it yields slightly overdiffusive results in both cases. </li>
757
758
<li>The results obtained with <math display="inline">\beta ^e</math>  are less diffusive and more accurate than those obtained with <math display="inline">\beta _c</math>. The explanation is that the sign of the ratio <math display="inline">{S_1/S_2}</math> is negative in the region close to the left end point of the domain. This naturally reduces the value of the stabilizing diffusion parameter <math display="inline">\beta </math> in Eq.(21) with respect to that of <math display="inline">\beta _c</math> in Eq.(23) where the sign effect is not relevant.  </li>
759
760
<li>The FIC algorithm provides a stabilized solution for Dirichlet problems when there is a negative streamwise gradient of the solution. This is an advantage versus SUPG, GLS and SGS methods using a single stabilization parameter which fail in some cases for these type of problems <span id='citeF-12'></span>[[#cite-12|12]]. </li>
761
762
</ol>
763
764
Above conclusions have been confirmed in the solution of a wider collection of 1D problems presented in [18].
765
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
766
|-
767
|[[Image:draft_Samper_447243531-Fig2.png|450px|]]
768
|- style="text-align: center;"
769
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 2'''. <math>\phi _1^p=8, \phi _9^p =3, \gamma =1</math> and <math>\omega =20</math>. FIC results for a mesh of 8 linear elements obtained for <math>\beta =0</math> (Galerkin), <math>\beta ^e</math> and <math>\beta _c</math>. Comparison with the analytical solution.
770
|}
771
772
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
773
|-
774
|[[Image:draft_Samper_447243531-Fig6.png|450px|ϕ₁<sup>p</sup>=8, ϕ₉<sup>p</sup>=3, γ=10 and ω=20. FIC results for a mesh of 8 linear elements obtained for β=0 (Galerkin), β<sup>e</sup> and β<sub>c</sub>. Comparison with the analytical solution.]]
775
|- style="text-align: center;"
776
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 3'''.  <math>\phi _1^p =8, \phi _9^p =3, \gamma =10</math> and <math>\omega =20</math>. FIC results for a mesh of 8 linear elements obtained for <math>\beta =0</math> (Galerkin), <math>\beta ^e</math> and <math>\beta _c</math>. Comparison with the analytical solution.
777
|}
778
779
==7 2D EXAMPLES==
780
781
The analysis domain in the  first two 2D examples presented is a square of size 8 units. The problems are solved first with relatively coarse meshes of <math display="inline">8\times 8</math> four node bi-linear square elements and <math display="inline">8\times 8\times 2</math> linear triangles.
782
783
The boundary conditions for both examples are <math display="inline">\phi ^p =8</math> and <math display="inline">\phi ^p =3</math> at the boundaries <math display="inline">x=0</math> and <math display="inline">x=8</math>, respectively and zero normal flux at <math display="inline">y=0</math> and <math display="inline">y=8</math>. This reproduces the condition of the two 1D examples solved in the previous section. The first example is analized for <math display="inline">{u} = [2,0]^T</math>, <math display="inline">k=1</math> and <math display="inline">s=20</math> giving <math display="inline">w=20</math>, <math display="inline">\gamma _x=1</math> and <math display="inline">\gamma _y=0</math> which corresponds to the first 1D example (Figure 2). The correct solution for this problem has a boundary layer in the vecinity of the  two sides at <math display="inline">x=0</math> and <math display="inline">x=8</math> where <math display="inline">\phi </math> is prescribed (Figure 4). The numerical results obtained with the standard  Galerkin solution  are oscillatory as expected. The stabilized FIC formulation elliminates the oscillations and yields the correct physical solution. Good results are obtained for both meshes of linear rectangles and triangles (Figures 4 and 5).
784
785
Results labelled as FIC-1 and FIC-2 in the figures correspond to those obtained in the first and second iteration of the algorithm presented in Section 5.2, respectively. We note that the FIC-1 results agree precisely with those obtained in the 1D case for <math display="inline">\beta =\beta _c</math>, whereas the FIC-2 results agree with the more accurate 1D values obtained with the element stabilization parameter <math display="inline">\beta ^e</math> (see Figure 2).
786
787
The second example is similar to the first one with <math display="inline">{u} =[20,0]^T</math>, <math display="inline">k=1</math> and <math display="inline">s=20</math> giving <math display="inline">w=20</math>, <math display="inline">\gamma _x =10</math> and <math display="inline">\gamma _y =0</math>. These values correspond to the second 1D problem of the previous section (Figure 3). The Galerkin solution is again oscillatory, whereas the FIC results are physically sound (Figures 6 and 7). Once more  the FIC-1 and FIC-2 results  are in good agreement with the 1D values shown in Figure 3 for <math display="inline">\beta _c</math> and <math display="inline">\beta _e</math>, respectively for both meshes of square and triangular elements. The coincidence of the 1D and 2D results for this problem can be clearly seen in Table 1.
788
789
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
790
|-
791
|
792
[[File:Draft_Samper_447243531_5062_Fig4.png]]
793
|- 
794
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 4'''. 2D advection-conduction-absorption problem over a square domain of size equal to 8 units. <math>\phi ^p =8</math> at <math>x=0</math>, <math>\phi ^p =3</math> at <math>x=8</math>, <math>q_n =0</math> at <math>y=0</math> and <math>y=8</math>. <math>{u} = [2,0]^T</math>, <math>k=1</math>, <math>s=20</math>, <math>w=20</math>, <math>\gamma _x=1</math> and <math>\gamma _y= 0</math>. Galerkin and FIC solutions for a mesh of <math>8 \times 8</math> four node square elements.
795
|}
796
797
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
798
|-
799
|[[File:Draft_Samper_447243531_5330_Fig5.png]]
800
|- 
801
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 5'''. Solution of problem of Figure 4 with a mesh of <math>8 \times 8\times 2</math> linear triangles.
802
|}
803
804
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
805
|-
806
|[[File:Draft_Samper_447243531_5509_Fig6.png]]
807
|- 
808
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 6'''. 2D advection-conduction-absorption problem over a square domain of size equal to 8 units. <math>\phi ^p =8</math> at <math>x=0</math>, <math>\phi ^p =3</math> at <math>x=8</math>, <math>q_n =0</math> at <math>y=0</math> and <math>y=8</math>. <math>{u} = [20,0]^T</math>, <math>k=1</math>, <math>s=20</math>, <math>w=20</math>, <math>\gamma _x=10</math> and <math>\gamma _y= 0</math>. Galerkin and FIC solutions for a mesh of <math>8 \times 8</math> four node square elements.
809
|}
810
811
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
812
|-
813
|[[File:Draft_Samper_447243531_4066_Fig7.png]]
814
|- 
815
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 7'''. Solution of problem of Figure 5 with a mesh of <math>8 \times 8\times 2</math> linear triangles.
816
|}
817
818
<br/>
819
820
821
{| class="wikitable" style="text-align: center; margin: 1em auto;"
822
|+ Table. 1 Comparison of 1D and 2D solutions for the advection-diffusion-absorption problem of Figure 3  (<math>\gamma _x =10</math>, <math>w=20</math>)
823
|- style="border-top: 2px solid;"
824
| colspan='5' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | '''1D'''
825
| colspan='4' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | '''2D (nodes along line A-A')'''
826
|- style="border-top: 2px solid;"
827
| colspan='5' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | Figure 3
828
| colspan='2' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | 4 node quads. (Fig. 6)
829
| colspan='2' style="border-left: 2px solid;border-right: 2px solid;border-left: 2px solid;border-right: 2px solid;" | 3 node triangles (Fig. 7)
830
|- style="border-top: 2px solid;"
831
| style="border-left: 2px solid;border-right: 2px solid;" |  Node 
832
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\bar \phi (\beta =0</math>)
833
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\bar \phi (\beta ^e</math>)
834
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\bar \phi (\beta _c</math>)
835
| style="border-left: 2px solid;border-right: 2px solid;" | <math>\phi </math>(exact)
836
| style="border-left: 2px solid;border-right: 2px solid;" | FIC-1
837
| style="border-left: 2px solid;border-right: 2px solid;" | FIC-2
838
| style="border-left: 2px solid;border-right: 2px solid;" | FIC-1
839
| style="border-left: 2px solid;border-right: 2px solid;" | FIC-2
840
|- style="border-top: 2px solid;"
841
| style="border-left: 2px solid;border-right: 2px solid;" |  1 
842
| style="border-left: 2px solid;border-right: 2px solid;" | 8,00 
843
| style="border-left: 2px solid;border-right: 2px solid;" | 8 
844
| style="border-left: 2px solid;border-right: 2px solid;" | 8 
845
| style="border-left: 2px solid;border-right: 2px solid;" | 8
846
| style="border-left: 2px solid;border-right: 2px solid;" | 8
847
| style="border-left: 2px solid;border-right: 2px solid;" | 8
848
| style="border-left: 2px solid;border-right: 2px solid;" | 8
849
| style="border-left: 2px solid;border-right: 2px solid;" | 8
850
|- style="border-top: 2px solid;"
851
| style="border-left: 2px solid;border-right: 2px solid;" |  2 
852
| style="border-left: 2px solid;border-right: 2px solid;" | 2,94 
853
| style="border-left: 2px solid;border-right: 2px solid;" | 3,06 
854
| style="border-left: 2px solid;border-right: 2px solid;" | 4 
855
| style="border-left: 2px solid;border-right: 2px solid;" | 3,08 
856
| style="border-left: 2px solid;border-right: 2px solid;" | 3,99 
857
| style="border-left: 2px solid;border-right: 2px solid;" | 3,057  
858
| style="border-left: 2px solid;border-right: 2px solid;" | 4,0 
859
| style="border-left: 2px solid;border-right: 2px solid;" | 3,059 
860
|- style="border-top: 2px solid;"
861
| style="border-left: 2px solid;border-right: 2px solid;" |  3 
862
| style="border-left: 2px solid;border-right: 2px solid;" | 1,32 
863
| style="border-left: 2px solid;border-right: 2px solid;" | 1,17 
864
| style="border-left: 2px solid;border-right: 2px solid;" | 2 
865
| style="border-left: 2px solid;border-right: 2px solid;" | 1,19 
866
| style="border-left: 2px solid;border-right: 2px solid;" | 2,00
867
| style="border-left: 2px solid;border-right: 2px solid;" | 1,170 
868
| style="border-left: 2px solid;border-right: 2px solid;" | 2,0 
869
| style="border-left: 2px solid;border-right: 2px solid;" | 1,167
870
|- style="border-top: 2px solid;"
871
| style="border-left: 2px solid;border-right: 2px solid;" |  4 
872
| style="border-left: 2px solid;border-right: 2px solid;" | 1,80 
873
| style="border-left: 2px solid;border-right: 2px solid;" | 0,447 
874
| style="border-left: 2px solid;border-right: 2px solid;" | 1 
875
| style="border-left: 2px solid;border-right: 2px solid;" | 0,457 
876
| style="border-left: 2px solid;border-right: 2px solid;" | 1,00
877
| style="border-left: 2px solid;border-right: 2px solid;" | 0,448 
878
| style="border-left: 2px solid;border-right: 2px solid;" | 1,0 
879
| style="border-left: 2px solid;border-right: 2px solid;" | 0,452
880
|- style="border-top: 2px solid;"
881
| style="border-left: 2px solid;border-right: 2px solid;" |  5 
882
| style="border-left: 2px solid;border-right: 2px solid;" | 0,599 
883
| style="border-left: 2px solid;border-right: 2px solid;" | 0,172 
884
| style="border-left: 2px solid;border-right: 2px solid;" | 0,5 
885
| style="border-left: 2px solid;border-right: 2px solid;" | 0,176 
886
| style="border-left: 2px solid;border-right: 2px solid;" | 0,49 
887
| style="border-left: 2px solid;border-right: 2px solid;" | 0,172
888
| style="border-left: 2px solid;border-right: 2px solid;" | 0,499 
889
| style="border-left: 2px solid;border-right: 2px solid;" | 0,166
890
|- style="border-top: 2px solid;"
891
| style="border-left: 2px solid;border-right: 2px solid;" |  6 
892
| style="border-left: 2px solid;border-right: 2px solid;" | -0,633 
893
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0646 
894
| style="border-left: 2px solid;border-right: 2px solid;" | 0,25 
895
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0677 
896
| style="border-left: 2px solid;border-right: 2px solid;" | 0,248
897
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0648 
898
| style="border-left: 2px solid;border-right: 2px solid;" | 0,2501
899
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0681
900
|- style="border-top: 2px solid;"
901
| style="border-left: 2px solid;border-right: 2px solid;" |  7 
902
| style="border-left: 2px solid;border-right: 2px solid;" | 1,16 
903
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0264 
904
| style="border-left: 2px solid;border-right: 2px solid;" | 0,125 
905
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0261 
906
| style="border-left: 2px solid;border-right: 2px solid;" | 0,125
907
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0255 
908
| style="border-left: 2px solid;border-right: 2px solid;" | 0,1250
909
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0257
910
|- style="border-top: 2px solid;"
911
| style="border-left: 2px solid;border-right: 2px solid;" |  8 
912
| style="border-left: 2px solid;border-right: 2px solid;" | -1,83 
913
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0073
914
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0625
915
| style="border-left: 2px solid;border-right: 2px solid;" | 0,01
916
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0615 
917
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0101 
918
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0624
919
| style="border-left: 2px solid;border-right: 2px solid;" | 0,0072
920
|- style="border-top: 2px solid;border-bottom: 2px solid;"
921
| style="border-left: 2px solid;border-right: 2px solid;" |  9 
922
| style="border-left: 2px solid;border-right: 2px solid;" | 3
923
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
924
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
925
| style="border-left: 2px solid;border-right: 2px solid;" | 3
926
| style="border-left: 2px solid;border-right: 2px solid;" | 3
927
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
928
| style="border-left: 2px solid;border-right: 2px solid;" | 3 
929
| style="border-left: 2px solid;border-right: 2px solid;" | 3
930
931
|}
932
933
Note that, similarly to the 1D case, the FIC-2 results are more accurate (less diffusive) than those obtained in the first iteration (FIC-1). This is due to the more precise evaluation of <math display="inline">\beta _s</math> and <math display="inline">\beta _\eta </math> in Eqs.(37) accounting for the correct sign of all the terms.
934
935
Figures 8&#8211;11 show results for the two 2D problems above described solved now with relatively coarse unstructured meshes of linear triangles and quadrilaterals. The effectiveness and accuracy of the FIC iterative scheme is again noticeable in all cases. Note the agreement of the FIC-2 results of Figures 10 and 11 with the exact solution for the equivalent 1D problem of Figure 3.
936
937
938
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
939
|-
940
|[[File:Draft_Samper_447243531_4598_Fig8.png]]
941
|- 
942
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 8'''. Solution of problem of Figure 4 with an unstructured mesh of 209 four node bi-linear quadrilaterals
943
|}
944
945
946
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
947
|-
948
|[[File:Draft_Samper_447243531_3146_Fig9.png]]
949
|- 
950
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;" |'''Figure 9'''.  Solution of problem of Figure 4 with an unstructured mesh of 176 three node linear triangles
951
|}
952
953
954
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
955
|-
956
|[[File:Draft_Samper_447243531_4133_Fig10.png]]
957
|- 
958
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;" |'''Figure 10'''.  Solution of problem of Figure 6 with an unstructured mesh of 209 four node bi-linear quadrilaterals
959
|}
960
961
962
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
963
|-
964
|[[File:Draft_Samper_447243531_5097_Fig11.png]]
965
|- 
966
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 11'''.  Solution of problem of Figure 6 with an unstructured mesh of 176 three node triangles
967
|}
968
969
970
Figure 12 presents the solution of a similar problem where the values of <math display="inline">\phi </math> are prescribed at the four boundaries. The solution domain has now 10 units and the problem is solved first with a mesh of <math display="inline">10\times 10</math> four node square elements. Details of the physical parameters are given in Figure 12. Excellent results are again obtained with the FIC scheme. Similar good results are obtained with a structured mesh of linear triangles (Figure 13) as well as with  non structured meshes of linear quadrilateral and triangles (Figures 14 and 15).
971
972
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
973
|-
974
|[[File:Draft_Samper_447243531_9361_Fig12.png]]
975
|- 
976
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 12'''.  2D advection-diffusion-absorption problem over a square domain of size equal to 10 units. <math>\phi ^p=50</math> along <math>x=0</math> and <math>y=10</math> and <math>\phi ^p=100</math> along <math>x=10</math> and <math>y=0</math>, <math>{u}= [0,15]^T</math>, <math>k=1</math>, <math>s=12</math>, <math>w=12</math>, <math>\gamma _x=0</math> and <math>\gamma _y= 7.5</math>. Galerkin and FIC solutions for a mesh of <math>10 \times 10</math> four node bi-linear square elements.
977
|}
978
979
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
980
|-
981
|[[File:Draft_Samper_447243531_6440_Fig13.png]]
982
|- 
983
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 13'''.  Solution of the problem of Figure 12 with an unstructured mesh of 432 four node bi-linear quadrilaterals
984
|}
985
986
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
987
|-
988
|[[File:Draft_Samper_447243531_3226_Fig14.png]]
989
|- 
990
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 14'''.  Solution of problem of Figure 12 with an structured mesh of <math>10\times 10\times 2</math>  three node linear triangles
991
|}
992
993
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
994
|-
995
|[[File:Draft_Samper_447243531_6545_Fig15.png]]
996
|- 
997
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 15'''.  Solution of problem of Figure 12 with an unstructured mesh of 780 three node triangles
998
|}
999
1000
1001
The effectiveness of the FIC scheme for a diffusive-absorptive problem with Dirichlet boundary conditions is shown in Figure 16. The results shown have been obtained with structured meshes of linear quadrilateral and triangles. Note that the four boundary layers  are well captured in the first step of the iterative solution. Similar good results have also been obtained with unstructured meshes not shown here.
1002
1003
1004
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1005
|-
1006
|[[File:Draft_Samper_447243531_4306_Fig16.png]]
1007
|- 
1008
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 16'''.   Diffusive-absorptive problem over a square domain of size equal to 10 units. <math>\phi ^p=50</math> over <math>x=0</math> and <math>y=10</math> and <math>\phi ^p=100</math> over <math>x=10</math> and <math>y=0</math>, <math>{u}= [0,0]^T</math>, <math>k=1</math>, <math>s=20</math>, <math>w=20</math>, <math>\gamma _x=0</math> and <math>\gamma _y= 0</math>. Galerkin and FIC solutions obtained with structured  meshes of four node quadrilaterals and linear triangles.
1009
|}
1010
1011
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1012
|-
1013
|[[File:Draft_Samper_447243531_6269_Fig16cont.png]]
1014
|- 
1015
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 16'''.  (cont.)
1016
|}
1017
1018
1019
The final example is a standard benchmark problem of advection-diffusion where sharp layers appear at both the boundary and the interior of the domain. The problem is the advective-diffusive transport of <math display="inline">\phi </math> in a square domain with non uniform Dirichlet conditions, downwards diagonal velocity and zero source terms (i.e. <math display="inline">Q=0</math> and <math display="inline">s=0</math>). Figure 17 displays the SUPG solution and FIC results obtained after two iterations using a structured mesh of <math display="inline">20\times 20</math> linear four node square elements. It is remarkable that the FIC results capture the sharp gradient zones at the boundaries where <math display="inline">\phi </math> is prescribed to zero and at the interior of the domain and elliminate all the spurious oscillations present in the SUPG method.
1020
1021
Similar good results obtained with the FIC method for a wide range of advective-diffusive problems are presented in <span id='citeF-27'></span>[[#cite-27|27]]. Recent applications of the FIC method to incompressible fluid flow problems are reported in [37].
1022
1023
1024
{| style="text-align: center; border: 1px solid #BBB; margin: 1em auto; width: 100%;max-width: 100%;"
1025
|-
1026
|[[File:Draft_Samper_447243531_2098_Fig17.png]]
1027
|- 
1028
| colspan="1" style="text-align: center; font-size: 75%;padding:10px;"| '''Figure 17'''.  Square domain with non uniform Dirichlet conditions, downwards diagonal velocity and zero source. SUPG and FIC solutions obtained with a structured mesh of <math>20\times 20</math> linear four node square elements
1029
|}
1030
1031
==8 CONCLUSIONS==
1032
1033
The FIC-FEM formulation presented allows to obtain a stabilized and accurate solution for the advection-diffusion-absorption equation. For the 1D problem the formulation is equivalent to adding a non-linear diffusion term to the standard discretized equations which is  governed by a single stabilization parameter. The use of the constant critical value of the 1D stabilization parameter  provides a stabilized numerical solution in ''a single step''. A more accurate (less diffusive) solution can be obtained using the two step iterative scheme proposed.
1034
1035
The equivalence of the FIC  method with a nonlinear stabilizing diffusion term extends naturally to multidimensional problems using structured and unstructured meshes. The key step is to express the governing equations of the FIC formulation in the principal curvature directions of the solution. The resulting FIC equation is equivalent to adding a nonlinear diffusion matrix to the infinitessimal governing equations. The solution process becomes non linear and a simple iterative algorithm has been presented. The approximation of the main principal curvature direction by that of the gradient vector simplifies the computations in the iterative scheme. Excellent results have been obtained for all the 2D problems solved in just two iterations for structured and nonstructured meshes.
1036
1037
It is remarkable that, similarly to the 1D case, good stabilized results are obtained in the first iteration of the scheme proposed (FIC-1 results) and this may be sufficient for many practical cases. More accurate (less diffusive) results are obtained by performing a  second iteration at a relatively small additional computational cost.
1038
1039
==ACKNOWLEDGEMENTS==
1040
1041
The authors also thank Profs. C. Felippa and S.R. Idelsohn for many useful discussions.
1042
1043
This work has been sponsored by the ''Ministerio de Educación y Ciencia of Spain''.  Plan Nacional, Project numbers: DPI2001-2193, BIA2003-09078-C02-01, and DPI2004-07410-C03-02.
1044
1045
==References==
1046
1047
<div id="cite-1"></div>
1048
[[#citeF-1|[1]]]  Zienkiewicz O.C.  and  Taylor R.L. ''The Finite Element Method''. Volume 3. 5th Edition, Butterworth-Heinemann, 2001.
1049
1050
<div id="cite-2"></div>
1051
[[#citeF-2|[2]]] Tezduyar T.E. and Park Y.J. Discontinuity-capturing finite element formulations for nonlinear convection-diffusion-reaction equations. ''Comput. Methods Appl. Mech. Engrg.'', 59, 307&#8211;325, 1986.
1052
1053
<div id="cite-3"></div>
1054
[3] Tezduyar T.E., Park Y.J. and Deans H.A. Finite element procedures for time-dependent convection-diffusion-reaction systems. ''Int. J. Num. Meth. Fluids'', 7, 1013&#8211;1033, 1987.
1055
1056
<div id="cite-4"></div>
1057
[[#citeF-4|[4]]]  Idelsohn S., Nigro N. Storti M. and Buscaglia G. A Petrov-Galerkin formulation for advection-reaction-diffusion problems. ''Comput. Methods Appl. Mech. Engrg.'', 136, 27&#8211;46, 1996.
1058
1059
<div id="cite-5"></div>
1060
[[#citeF-5|[5]]]  Codina R. Comparison of some finite element methods for solving the diffusion-convection-reaction equation. ''Comput. Methods Appl. Mech. Engrg.'', 156, 186&#8211;210, 1998.
1061
1062
<div id="cite-6"></div>
1063
[6]  Codina R. On stabilized finite element methods for linear systems of convection-diffusion-reaction equations. ''Comput. Meth. Appl. Mech. Engrg.'', 188, 61&#8211;82, 2000.
1064
1065
<div id="cite-7"></div>
1066
[7]  Burman E. and Ern A. Nonlinear diffusion and discrete maxium principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation. ''Comput. Meth. Appl. Mech. Engrg.'', 191, 3833&#8211;3855, 2002.
1067
1068
<div id="cite-8"></div>
1069
[[#citeF-8|[8]]]  Harari I. and  Hughes T.J.R. Finite element methods for the Helmholtz equation in an exterior domain: model problems. ''Comput. Meth. Appl. Mech. Engrg.'', 87, 59&#8211;96, 1991.
1070
1071
<div id="cite-9"></div>
1072
[9]   Harari I. and  Hughes T.J.R. Galerkin/least squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains. ''Comput. Meth. Appl. Mech. Engrg.'', 98, 411&#8211;454, 1992.
1073
1074
<div id="cite-10"></div>
1075
[10]   Harari I. and  Hughes T.J.R. Stabilized finite element method for steady advection-diffusion with production. ''Comput. Meth. Appl. Mech. Engrg.'', 115, 165&#8211;191, 1994.
1076
1077
<div id="cite-11"></div>
1078
[11]  Harari I., Grosh K., Hughes T.J.R., Malhotra M.,  Pinsky P.M., Stewart J.R. and  Thompson L.L. Recent development in finite element methods for structural acoustics. ''Archives of Computational Mechanics in Engineering'', 3, 2-3, 131&#8211;309, 1996.
1079
1080
<div id="cite-12"></div>
1081
[[#citeF-12|[12]]]  Hauke G. and Garcia-Olivares A. Variational subgrid scale formulations for the advection-diffusion-reaction equation. ''Comput. Methods Appl. Mech. Engrg.'' 2000; 190:6847&#8211;6865.
1082
1083
<div id="cite-13"></div>
1084
[13] Hauke  G. A simple subgrid scale stabilized method for the advection-diffusion reaction equation. ''Comput. Methods Appl. Mech. Engrg.'' 2002; 191:2925&#8211;2947.
1085
1086
<div id="cite-14"></div>
1087
[[#citeF-14|[14]]]  Brezzi F., Hauke G., Marin L.D. and Sangalli S. Link-cutting bubbles for the stabilization of convection-diffusion-reaction problems. ''Mathematical Models and Methods in Applied Sciences'', World Scientific Publishing Company, 2002.
1088
1089
<div id="cite-15"></div>
1090
[[#citeF-15|[15]]]  Felippa C.A. and  Oñate E. Nodally exact Ritz discretization of 1D diffusion-absorption and Helmholtz equations by variational FIC and modified equation methods. Research Report No. PI 237, CIMNE, Barcelona 2004. Submitted to ''Comput. Mechanics''.
1091
1092
<div id="cite-16"></div>
1093
[16]  Idelsohn S.R.,  Heinrich J.C. and Oñate E. Petrov-Galerkin methods for the transient advective-diffusive equation with sharp gradients. ''Int. J. Num. Meth. Engng.'', 39, 1455&#8211;1473, 1996.
1094
1095
<div id="cite-17"></div>
1096
[17]  Harari I. Stability of semidiscrete advection-diffusion in transient computation. Proceedings of ''6th World Congress on Computational Mechanics'', Beijing, Sept. 2004, Z.H. Yao, M.W. Yuan and W.X. Zhong (Eds.), Tsinghua Univ. Press-Springer.
1097
1098
<div id="cite-18"></div>
1099
[18] Oñate E., Miquel, J. and Hauke, G. Stabilized formulation for the advection-diffusion-reaction equations using finite calculus and linear finite elements. Submittted in ''Comput. Methods Appl. Mech. Engrg.'', March 2005.
1100
1101
<div id="cite-19"></div>
1102
[19] Oñate E. Derivation of stabilized equations for  advective-diffusive transport and fluid flow problems.  ''Comput. Methods Appl. Mech. Engrg.'', 151 (1-2), 233&#8211;267, 1998.
1103
1104
<div id="cite-20"></div>
1105
[20]  Oñate E. Possibilities of finite calculus in computational mechanics. ''Int. J. Num. Meth. Engng.'', 60, 255&#8211;281, 2004.
1106
1107
<div id="cite-21"></div>
1108
[21] Oñate E., Manzan M. A general procedure for deriving stabilized space-time finite element methods for advective-diffusive problems. ''Int. J. Num. Meth. Fluids'', 31, 203&#8211;221, 1999.
1109
1110
<div id="cite-22"></div>
1111
[22]  Oñate E., Idelsohn S.R., Zienkiewicz O.C. and Taylor R.L. A finite point method in computational mechanics. Applications to convective transport and fluid flow. ''Int. J. Num. Meth. Engng.'', 39, 3839&#8211;3866, 1996.
1112
1113
<div id="cite-23"></div>
1114
[23]  Oñate E. A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. ''Comput. Methods Appl. Mech. Engrg.'', 182, (1&#8211;2), 355&#8211;370, 2000.
1115
1116
<div id="cite-24"></div>
1117
[24]  Oñate E.,  García J. A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation. in ''Comput. Methods Appl. Mech. Engrg.'', 191 (6-7), 635-660, 2001.
1118
1119
<div id="cite-25"></div>
1120
[25]  Idelsohn S.R., Oñate E. and Del Pin F. A Lagrangian meshless finite element method applied to fluid-structure interaction problems. ''Computers and Structures'', 81, 655&#8211;671, 2003.
1121
1122
<div id="cite-26"></div>
1123
[26]   Oñate E., Idelsohn S.R., Del Pin F. and  Aubry R. The particle finite element method. An overview (PFEM). ''Int. J. Comput. Methods'', 1 (2), 267&#8211;307, 2004.
1124
1125
<div id="cite-27"></div>
1126
[[#citeF-27|[27]]]   Oñate E., García J. and Idelsohn S.R. Ship Hydrodynamics. ''Encyclopedia of Computational Mechanics'', T. Hughes, R. de Borst and E. Stein (Eds.), Vol. 3, Chapter 18, 579&#8211;607, J. Wiley, 2004.
1127
1128
<div id="cite-28"></div>
1129
[28]  Oñate E., Taylor R.L., Zienkiewicz O.C. and  Rojek J. A residual correction method based on finite calculus. ''Engineering Computations'', 20 (5/6), 629&#8211;658, 2003.
1130
1131
<div id="cite-29"></div>
1132
[29] Oñate E., Rojek J., Taylor R.L. and Zienkiewicz O.C. Finite calculus formulation for analysis of incompressible solids using linear triangles and tetrahedra. ''Int. J. Num. Meth. Engng.'', 59 (11), 1473&#8211;1500, 2004.
1133
1134
<div id="cite-30"></div>
1135
[30] Oñate E., Zárate F. and Idelsohn S.R. Finite element formulation for convection-diffusion problems with sharp gradients using finite calculus. ''Comput. Meth. Appl. Mech. Engng.'' Submitted Nov. 2004.
1136
1137
<div id="cite-31"></div>
1138
[31]  Hughes T.J.R. and Mallet M. A new finite element formulations for computational fluid dynamics: IV. A discontinuity capturing operator for multidimensional advective-diffusive system. ''Comput. Methods Appl. Mech. Engrg.'', 58, 329&#8211;336, 1986b.
1139
1140
<div id="cite-32"></div>
1141
[32]  Codina R. A discontinuity-capturing crosswind dissipation for the finite element solution of the convection-diffusion equation. ''Comput. Methods Appl. Mech. Engrg.'', 110, 325&#8211;342, 1993.
1142
1143
<div id="cite-33"></div>
1144
[33]  Hughes T.J.R.,  Mallet M. and Mizukami A. A new finite element formulation for comptutational fluid dynamics: II Beyond SUPG. ''Comput. Methods Appl. Mech. Engrg.'', 54, 341&#8211;355, 1986.
1145
1146
<div id="cite-34"></div>
1147
[34]  Galeo A.C. and  Dutra do Carmo E.G. A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems. ''Comput. Methods Appl. Mech. Engrg.'', 68, 83&#8211;95, 1988.
1148
1149
<div id="cite-35"></div>
1150
[35]  Tezduyar T.E. Adaptive determination of the finite element stabilization parameters. ''Proceedings of the ECCOMAS Computational Fluid Dynamics Conference 2001'', Swansea,  Wales, UK, CD-Rom, 2001.
1151
1152
<div id="cite-36"></div>
1153
[36]  Tezduyar T.E. Computation of moving boundaries and interfaces and stabilization parameters, ''International Journal for Numerical Methods in Fluid'', 43, 555-575, 2003.
1154
1155
<div id="cite-37"></div>
1156
[37] Oñate E., García J., Idelsohn S. and Del Pin F. FIC formulation for finite element analysis of incompressible flows. Eulerian, Lagrangian and ALE approaches. Accepted for publication in ''Computational Methods in Applied Mechanics and Engineering'', 2005.
1157

Return to Onate et al 2004a.

Back to Top

Document information

Published on 01/01/2007

DOI: 10.1016/j.compfluid.2005.07.003
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 14
Views 59
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?