Wastewater treatment plants (WWTP) are complex and dynamic systems whose management and sustainability can be improved by using different modelling and prediction approaches of their work. A machine learning tool for development of model trees was used in this paper in order to develop a model for chemical oxygen demand (COD) in the wastewater effluent from the WWTP with activated sludge to increase its sustainability and helps in its management purposes.Measured data, both in influent and effluent of the WWTP were used for modelling. For the COD model, machine learning tool Weka and algorithm for development of model trees M5P were used.Obtained model has a high descriptive power and correlation coefficient and thus can be used for prediction and modelling purposes, which can help in management and sustainability of the WWTP.Also, the purpose of this paper is to show the benefits of using machine learning tools for developing WWTP models.

Full document

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 25/09/20
Submitted on 13/09/20

DOI: 10.23967/dbmc.2020.144
Licence: CC BY-NC-SA license

Document Score


Views 30
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?