m (Cinmemj moved page Draft Samper 890583136 to Roca et al 2013a)
(No difference)

Latest revision as of 12:19, 9 April 2019

Published in Engineering Structures Vol. 46, pp. 653-670, 2013
doi: 10.1016/j.engstruct.2012.08.005


From the theoretical point of view, systems composed by masonry arches or vaults would require, during construction, the simultaneous activation of all structural elements in order to reach the optimum balance of thrusts. This is not obviously the case of complex ancient masonry constructions, whose long and gradual building process may have contributed to their deformed condition and even to damage.In this paper, the possible influence of the construction process as well as that of later long-term deformation on the final condition of the building is investigated in the case of a complex and large historical structure, namely Mallorca Cathedral. A FE code has been specifically developed for the present study. The code is able to account for construction processes through sequential-evolutionary analyses, with the description of masonry mechanical damage and long-term deformation. The representative bay of the cathedral is analyzed taking into account different construction phases, as emerged from historical research. The response of such substructure to transverse earthquake equivalent forces is then investigated. In this case, the damage model is improved with a local crack-tracking algorithm. This numerical strategy models the tensile damage as distinct cracks, leading to a better prediction of realistic collapsing mechanisms.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2013

DOI: 10.1016/j.engstruct.2012.08.005
Licence: CC BY-NC-SA license

Document Score


Times cited: 46
Views 5
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?