(Created page with "==1 Title, abstract and keywords<!-- Your document should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviatio...") |
|||

Line 1: | Line 1: | ||

− | + | Published in ''Computers and Structures'' Vol. 17 (3), pp. 407-426, 1983<br /> | |

+ | doi: 10.1016/0045-7949(83)90133-5 | ||

+ | == Abstract == | ||

− | + | In this paper a finite strip formulation which allows to treat bridges, axisymmetric shells or plate structures of constant transverse cross section in an easily and unified manner is presented. The formulation is based on Mindlin's shell plate theory. One dimensional finite elements are used to discretize the transverse section and Fourier expansions are used to define the longitudinal/circumferential behavior of the structure. The element used is the simple two noded strip element with just one single integrating point. This allows to obtain all the element matrices in an explicit and economical form. Numerical examples for a variety of straight and curve bridges, axisymmetric shells and plate structures which show the efficiency of the formulation and accuracy of the linear strip element are given. | |

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + |

Published in *Computers and Structures* Vol. 17 (3), pp. 407-426, 1983

doi: 10.1016/0045-7949(83)90133-5

In this paper a finite strip formulation which allows to treat bridges, axisymmetric shells or plate structures of constant transverse cross section in an easily and unified manner is presented. The formulation is based on Mindlin's shell plate theory. One dimensional finite elements are used to discretize the transverse section and Fourier expansions are used to define the longitudinal/circumferential behavior of the structure. The element used is the simple two noded strip element with just one single integrating point. This allows to obtain all the element matrices in an explicit and economical form. Numerical examples for a variety of straight and curve bridges, axisymmetric shells and plate structures which show the efficiency of the formulation and accuracy of the linear strip element are given.

Back to Top

Published on 01/01/1983

DOI: 10.1016/0045-7949(83)90133-5

Licence: CC BY-NC-SA license