(Created page with "==1 Title, abstract and keywords<!-- Your document should start with a concise and informative title. Titles are often used in information-retrieval systems. Avoid abbreviatio...") |
|||

Line 1: | Line 1: | ||

− | + | Published in ''Engineering Computations'' Vol. 12 (3), pp. 245-262, 1995<br /> | |

+ | doi: 10.1108/02644409510799587 | ||

+ | == Abstract == | ||

− | + | This paper shows a generalization of the classic isotropic plasticity theory to be applied to orthotropic or anisotropic materials. This approach assumes the existence of a real anisotropic space, and other fictitious isotropic space where a mapped fictitious problem is solved. Both spaces are related by means of a linear transformation using a fourth order transformation tensor that contains all the information concerning the real anisotropic material. The paper describes the basis of the spaces transformation proposed and the expressions of the resulting secant and tangent constitutive equations. Also details of the numerical integration of the constitutive equation are provided. Examples of application showing the good performance of the model for analysis of orthotropic materials and fibre‐reinforced composites are given | |

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + |

Published in *Engineering Computations* Vol. 12 (3), pp. 245-262, 1995

doi: 10.1108/02644409510799587

This paper shows a generalization of the classic isotropic plasticity theory to be applied to orthotropic or anisotropic materials. This approach assumes the existence of a real anisotropic space, and other fictitious isotropic space where a mapped fictitious problem is solved. Both spaces are related by means of a linear transformation using a fourth order transformation tensor that contains all the information concerning the real anisotropic material. The paper describes the basis of the spaces transformation proposed and the expressions of the resulting secant and tangent constitutive equations. Also details of the numerical integration of the constitutive equation are provided. Examples of application showing the good performance of the model for analysis of orthotropic materials and fibre‐reinforced composites are given

Back to Top

Published on 04/01/19

Submitted on 04/01/19

DOI: 10.1108/02644409510799587

Licence: CC BY-NC-SA license

Are you one of the authors of this document?