(No difference)

Latest revision as of 12:50, 14 February 2019

Published in Comput. Methods Appl. Mech. Engrg. Vol. 197 (49–50), pp. 4180-4192, 2008
doi: 10.1016/j.cma.2008.04.020

Abstract

Laplace formulations are weak formulations of the Navier–Stokes equations commonly used in computational fluid dynamics. In these schemes, the viscous terms are given as a function of the Laplace diffusion operator only. Despite their popularity, recently, it has been proven that they violate a fundamental principle of continuum mechanics, the principle of objectivity. It is remarkable that such flaw has not being noticed before, neither detected in numerical experiments. In this work, a series of objectivity tests have been designed with the purpose of revealing such problem in real numerical experiments. Through the tests it is shown how, for slip boundaries or free-surfaces, Laplace formulations generate non-physical solutions which widely depart from the real fluid dynamics. These tests can be easily reproduced, not requiring complex simulation tools. Furthermore, they can be used as benchmarks to check consistency of developed or commercial software. The article is closed with a discussion of the mathematical aspects involved, including the issues of boundary conditions and objectivity.

The PDF file did not load properly or your web browser does not support viewing PDF files. Download directly to your device: Download PDF document
Back to Top

Document information

Published on 01/01/2008

DOI: 10.1016/j.cma.2008.04.020
Licence: CC BY-NC-SA license

Document Score

0

Times cited: 3
Views 23
Recommendations 0

Share this document

claim authorship

Are you one of the authors of this document?