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MULTISTEP INTERFACE COUPLING FOR HIGH-ORDER
ADAPTIVE BLACK-BOX MULTIPHYSICS SIMULATIONS

L. François∗, M. Massot†

∗ONERA - The French Aerospace Lab
6 Chemin de la Vauve aux Granges

91123, Palaiseau, France
e-mail: laurent.francois@onera.fr
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Abstract. Many multiphysics problem can be described by the coupling of several models
through physical surfaces. Relying on existing model-specific solvers is very desirable, however
they must be coupled in a way that ensures an accurate and stable coupled simulation. In
this contribution, we present a multistep coupling scheme which relies on the history of the
exchanged quantities to enable a high-order accurate coupling with time adaptation. Explicit
and implicit variants are discussed in details. Numerical experiments conducted with an open-
source demonstrator on a conjugate heat transfer problem show that high-order convergence is
attained, and that stability is favourable compared to other classical approaches.

1 INTRODUCTION

Multiphysics problems often arise in engineering and involve various models, correspond-
ing to different physical phenomena (e.g. solid mechanics, fluid flow) and time scales. Let us
consider the case were each model is a set of evolutive partial differential equations (PDEs)
whose solution depends on time and space. Often, each model is defined on its own specific
spatial domain, and the models are only coupled through lower-dimensional interfaces (e.g.
solid-gas contact surface), as opposed to volume-coupled models, whose domains may overlap.
Implementing a solver that handles all models in a monolithic manner is a complex and time-
consuming endeavour, which may suboptimal and plagued with numerical difficulties due to
the multiscale character of the coupled equations. Usually, each of these models is well-known
and has been implemented in one or multiple solvers, either open-source or commercial. These
physics-specific solvers often rely on numerical methods especially suited to the problem con-
sidered and have been extensively validated. It is therefore very attractive to find a way to
couple these solvers so as to a realise a fully-coupled simulation of the multiphysics problem of
interest. This however requires that the solvers be adequately coupled to correctly capture the
multiphysical and multiscale interactions. In particular, so-called coupling variables must be
exchanged (e.g. heat fluxes) in a manner such that the coupling is accurate in time and stable.
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Let us consider a formulation representative of most coupled problems. We assume that
we possess N coupled PDE models. Let us denote as zi the state vector associated with the
semi-discretisation in space of the i-th subsystem. This vector is subject to the following ODE:

∂tzi = fi(zi, ui) i = 1 . . . N (1)

where ui denotes the input of the subsystem (e.g. boundary conditions), and t is the physical
time. We denote as coupling variables the gathering of all the inputs ui. In its most general
form, ui is an arbitrary function of time and of all the state vectors z1, . . . , zN :

ui,n = hi(z1, . . . , zN) i = 1 . . . N (2)

It is instructive to conduct a short overview of the various methods presented in the literature
for this kind of problem. The simplest strategy, ubiquitous in the literature, is to use existing
solvers for each subsystem, with the coupling variables being exchanged at each coupling time
step. The coupling time step can be adapted based on heuristic criteria, e.g. CFL-condition
obtained from one subsystem. Although the approach allows for dynamic substepping of the
subsystems, the exchanged values are frozen in time during the temporal integration of each
subsystem, therefore the overall order of accuracy cannot exceed one. Also, the explicit nature
of the exchange can hinder the stability of the overall computation.

One other strategy is to solve the problem in a monolithic manner by applying a single time
integration scheme for all the solvers. Explicit algorithms are simple but often inadequate due to
stability constraints. Implicit variants can be obtained by forming and solving an overall implicit
system to be solved involving all subsystem state vectors. This approach is however highly
complex, intrusive, and the associated linear system may be poorly conditioned [1, 2] because
of both the multiscale character and the potentially different discretisations. Alternatively,
the monolithic solution can be obtained without forming the fully-implicit global system, but
by iteratively solving a fixed-point problem on the coupling variables, each iteration requiring
the solution of each subsystem computed in a partitioned manner [3, 4]. This may however
suffer from convergence issues. In both cases, traditional time step selection strategies based on
embedded error estimates [5] may be used. However, the monolithic implicit approach makes
it difficult to use different time schemes for each model, and substepping is not possible, which
may limit the computational efficiency. A variant of this strategy relies on implicit-explicit
(IMEX) schemes [6]: each subsystem is solved implicitly with a common implicit scheme, but
their interactions via the coupling variables are integrated with an explicit companion scheme.
This approach may however suffer from instability when the coupling is strong [4].

A second strategy to compute the coupled solution is based on the idea of waveform relaxation
[7]. The exchanged coupling variables are not considered to be frozen in time over one coupling
time step, instead they are functions of time, usually spline or polynomial interpolants of their
values obtained at various substeps. This approach enables a higher-order convergence [8].
Some methods [9] allow for a dynamic adaptation of the number of interpolation points over a
coupling time step, however dynamic selection of the coupling time step itself is not considered.
Note that most of these strategies are implemented for cases where ui only depends on a single
state vector zj, j ̸= i. This is for instance the case for fluid-structure interactions, where the
pressure imposed on the mechanical structure is computed based on the fluid pressure field
only and, conversely, the displacements imposed on the fluid side is determined solely from the
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structure state. The simpler formulation of the input as ui = gi(t, zj) may however not be
possible to obtain in all cases, e.g. for some specific conjugate heat transfer formulations [10,
Chap. 8]. Finally, such waveform relaxation approaches are by essence implicit and iterative,
i.e. no explicit variants exist. In cases where the coupling does not require the inherent stability
of this implicit scheme, being forced to use such an iterative process may be suboptimal in terms
of computational efficiency.

Another strategy that enables the use of separate solvers for each subsystem with substepping
is that of splitting [11]. The first-order Lie splitting is often referred to as conventional serial
staggered scheme (CSS), while the second-order Strang splitting is referred to as improved serial
staggered scheme (ISS) [12]. This class of methods is simple to implement, yet it cannot go
beyond second-order accuracy without the use of complex or negative time steps within the
splitting scheme. Also, dynamic adaptation of the splitting time step is difficult [13].

Finally, a last strategy has been introduced in the last two decades for the simulation of
coupled multibody mechanical systems [14, 15]. Based on the values of the coupling variables
over a few previous steps, polynomial interpolants are built and used as predictions (extrapo-
lations) of the input of each subsystem, which will be used in place of the true inputs during
the integration of each subsystem. High-order convergence has been demonstrated, as well
as the ability to dynamically adapt the coupling time step [16]. Implicit variants also exist,
which greatly improve the stability of the coupled computation [15]. The name co-simulation
is sometimes used for this approach. It is however slightly misleading, since this term also
refers more generally to the process of coupling existing codes. This strategy has however been
almost exclusively used on mechanical systems, assuming a different formulation of the coupling
variables compared to Equation (2), which is not always suited to the framework of coupled
partial differential equations.

We may list a few desirable features of an ideal coupling strategy. It should use existing
solvers for each subsystem, requiring as few changes as possible to be introduced in these
solvers. It should be able to perform an explicit coupling, or an efficient implicit coupling if
stability demands it. To cope with changing physical time scales and guarantee both stability
and accuracy, the coupling time step should be dynamically adapted. Finally, low to high
orders of convergence in time should be attainable to meet the various accuracy requirements
imposed by the user.

We believe that the last approach is the most suited to meet all these requirements. Therefore
in this work, we present a generic coupling strategy inspired by this last approach. We do
not focus on mechanical systems, but rather demonstrate its applicability on PDE-related
applications, following works initiated in [10, Chap. 8]. We refer to this approach as multistep
coupling due to its similarity with the well-known class of multistep time integration schemes.
We first describe the general framework and give some theoretical results. We then present the
Rhapsopy Python package [17], an open-source framework to demonstrate the applicability
of this method. The proposed coupling strategy is tested on a conjugate heat transfer problem.
High-order convergence in time is confirmed. Stability limits are investigated numerically and
compared with those of other approaches (e.g. IMEX), showing the potential of the method.

2 FORMULATION AND ANALYSIS

In this section, we introduce the coupled strategy for the system (1)-(2) and provide an
overview of its properties.
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2.1 Explicit algorithm

The basic explicit coupling scheme for that system reads:

zi,n+1 = zi,n +∆t Φi(zi,n, ui,n; ∆t) i = 1 . . . N (3)

ui = hi(z1,n, . . . , zN,n) (4)

where Φi denotes the time integrator of the i-th subsystem. Even if the latter is of high order,
the overall coupled result is only first-order accurate due to the frozen values of ui. A natural
idea is to replace these values by functions of time ûi, referred to as predictions, which more
accurately reflect the evolution of the coupling variables. Since the previous scheme is equivalent
to assuming a constant extrapolation in time of the coupling variables over one coupling step,
a way to accomplish this is to build higher-degree polynomial extrapolations based on values
from past coupling times tn−j, j ≥ 0. Using a Newton-type formulation, this reads:

ûi(t) = ui,n +

p∑
j=1

δjui[tn, .., tn−j]

j−1∏
k=0

(t− tn−k) (5)

where δjui denotes the j-th divided difference of ui, defined by the following recurrence formula:

δjui[tn, .., tn−j] =
δj−1ui[tn−1, .., tn−j]− δj−1ui[tn, .., tn−j+1]

tn−j − tn
, with δ0ui[tn] = ui,n (6)

2.2 Implicit algorithm

The previous algorithm is explicit in nature, even if the subsystems are integrated implicitly,
since the coupling variables are extrapolations based on past data points. This may hinder
the stability of the overall coupled computation. A remedy consists in finding a way to let the
future value un+1

i intervene in the definition of ûi.

2.2.1 Predictor-corrector approach

For a given coupling step, a first pragmatic strategy is to perform the explicit coupling
once to obtain new subsystems state zn+1

i . From these, the inputs un+1
i can be evaluated with

the functions hi. Interpolations of the previous coupling values and of these newly obtained
ones can be formed. The integration of the subsystems may be performed once again with
these interpolations as inputs. The whole process can be repeated until convergence. Let us
introduce U = (u1, . . . , uN)

t and Y = (z1, . . . , zN)
t. Figure 1 depicts the procedure. Note that,

at the end of the first iteration, the sampling points for the polynomial approximations shift
from tn . . . tn−p to tn+1 . . . tn−p+1 to maintain the same polynomial degree. We can associate
the operators F to the subsystems integration, H to the coupling variables update, and Ψ to
the construction of the interpolants. The (k+1)-th iteration of the complete procedure can be
formulated in terms of the coupling variables at time tn+1:

Uk+1
n+1 = (Ψ ◦H ◦ F )(Uk

n+1) (7)

which is a simple fixed-point algorithm applied to the problem:

G(Un+1) ≡ Un+1 − (Ψ ◦H ◦ F )(Un+1) = 0 (8)
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2.2.2 Convergence of the fixed-point problem

It can be shown that the operator (Ψ◦H ◦F ) has a Lipschitz constant which is proportional
to ∆t, due to the temporal integration that F represents. Hence, it is a contraction only if
∆t is sufficiently small. Conversely, the convergence of the simple fixed-point algorithm (7)
usually limits the attainable time step to a value which is close to the maximum stable time
step allowed for the explicit coupling, i.e. it does not provide any additional stability.

Dynamic relaxation methods can increase the convergence radius. To improve further, a
Newton method can be applied directly to Equation (8). There has been a growing interest in
Newton-type approaches during the last decade for the solution of such systems arising from
strongly-coupled simulations. In particular, interface quasi-Newton (IQN) methods, which
dynamically construct an approximation of ∂UG, have proved valuable for large-scale problems
[18, 19]. For the low-dimensional test case presented in this paper, we use a simple damped
Newton method, where the Jacobian of G is directly approximated via finite-differences.

Figure 1: Fixed-point procedure for the implicit coupling

2.3 Local truncation error

A simplified analysis can show the dependence of the local error on the degree of the input
approximation. We assume that the integration of the subsystems generates a temporal error
negligible when compared to that induced by the approximation of the coupling variables, i.e.
they closely match the exact integration result:

zi,n+1 = zi,n +

∫ tn+1

tn

fi (zi(t), ûi(t), t) dt (9)

We assume that the functions fi are Lipschitz-continuous with respect to zi and ui:

||fi(za, ua, t)− fi(zb, ub, t)|| ≤ Li,z||za − zb||+ Li,u||ua − ub|| (10)

with Li,z and Li,u positive real constants, and the norm ||·|| is any suitable norm, e.g. L∞-norm.
Now, let us denote the exact solutions of the coupled problems as (zi(t), ui(t)), and the coupled

5



L. François, M. Massot

simulation result as (z̃i(t), ũi(t)). We consider the time step from time tn to tn+1 = tn + ∆t,
with initial conditions z̃i(tn) = zi(tn). We can apply Grönwall’s lemma and obtain:

||z̃i(tn+1)− zi(tn+1)|| ≤
Li,u

Li,z

(exp(Li,z∆t)− 1) max
t∈[tn,tn+1]

||ûi(t)− ui(t)|| (11)

Assuming ûi is a polynomial approximation on [tn, tn+1] of ui with degree pi, i.e. using pi+1
points, the last term is O(∆tpi+1). Taking the first-order Taylor expansion of the exponential,
we obtain the following upper bound:

||ẑi(tn+1)− zi(tn+1)|| = O(∆tpi+2) (12)

The coupling variables ui are updated via Equation (2) at time tn+1, the errors of each
subsystem are involved. Thus, the error on the new coupling variables ui,n+1 satisfies:

||ui,n+1 − ui(tn+1)|| = O(∆tq) with q = min
j
(pj + 2) (13)

Therefore, the local error of the coupled solution is of order q, and the global error is of order
q − 1, equal to the (minimum) number of points used to construct the polynomials. Some
refined analysis for the case of mechanical systems are available [15, 16, 20].

The previous proof is valid for both explicit and implicit simulations. However, it is worth
noting that the overall error constant is not the same. Indeed, it is known that the polyno-
mial approximation error is proportional to

∏N
i=0(t − ti) with t0, . . . , tN the sampling times.

Let us consider the L1-norm of the approximation error on the current coupling time step:
(1/∆t)

∫ tn+1

tn
|u(t) − û(t)|dt. In the interpolation case the error is bounded, whereas in the ex-

trapolation case the error tends to diverge. Comparing this norm for extrapolation (explicit
coupling) and interpolation (implicit coupling) shows that the implicit error constant is ap-
proximately 1 + 4.5p times lower than the explicit one, with p the degree of the approximation
polynomials, e.g. for degrees p = 0 to 5, the implicit coupling is more precise by a factor
1, 5, 9, 13.2, 17.6, 22.1, respectively. This trend will be observed numerically in Section 3.1.
This assumes a constant coupling step size. The situation is even more favourable to implicit
coupling when the time step is gradually increased between the sampling points. Note that the
exact same ratios are found when comparing Adams-Bashforth and Adams-Moulton methods,
which is the motivation behind well-known predictor-corrector schemes [21].

2.4 Adaptation of the coupling time step

Typical coupled simulations are performed with a constant time step, or a time step which
is driven by one of the solver, e.g. based on a fluid model CFL-condition. For the integration
of ODEs, it is well known that dynamic adaptation of the time step provides substantial gains
in computational time and robustness [5]. To the best of our knowledge, very few studies have
focused on providing time adaptation capabilities in multi-physics coupling schemes, which
may be partially explained by the fact that one solver typically dominates the computational
time (typically a fluid flow solver), whereas other solvers and the coupling algorithm itself have
a negligible cost. In that case, the costly solver usually dictates the coupling time step as a
multiple of its own internal time step, and performing an unnecessarily high number of coupling
time steps has a negligible cost overall.
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There may however be cases where each solver can be costly and have sufficiently different
time scales. Then, to avoid an excessive number of solver calls and synchronisations, we should
try to maximise the coupling time step as long as a certain coupling accuracy requirement is
met. Some research [15, 16] has been presented in the co-simulation literature for mechanical
systems. In this section, we introduce two generic error estimates that can be used to drive
the coupling time step: a natural explicit error estimate, and a second estimate inspired by
embedded methods [5] which is especially suited to implicit multistep coupling.

2.4.1 Natural explicit error estimate

A pragmatic error estimate is built by assessing how well the updated coupling variables
ui,n+1 at time tn+1 have been predicted. Let us apply the triangular inequality on the prediction
error with respect to the exact solution:

||ûi(tn+1)− ui(tn+1)|| = ||ûi(tn+1)− (ui,n+1 +O(∆tq))|| ≤ ||ûi(tn+1)− ui,n+1||︸ ︷︷ ︸
ϵui,n+1

+O(∆tq) (14)

For simplicity, let us assume pi = p ∀i ∈ [1, N ]. Then, q = p + 2 and ||ûi(tn+1) − ui(tn+1)||
is of the form O(∆tp+1), thus we see that ϵui,n+1 will converge towards the former true error.

Intuitively, an error control based on the agreement between the polynomial extrapolations
of the coupling variables and their updated values after a coupling time step is reassuring.
Indeed, the accuracy of the predicted evolution of the coupling variables is ensured, therefore
the coupled dynamics will also be correctly computed. However, it is possible that this approach
is too conservative, as we cannot be certain that an error in the coupling variables will translate
into a similar error in the coupled dynamics. We can imagine a situation where some coupling
variables only have a weak impact on the subsystems solutions but may still vary rapidly, i.e.
if ||∂F (Un+1)/∂Un+1|| is low while ||∂H(Yn+1)/∂Yn+1|| is large. Thus forcing a low-coupling
time step to correctly capture their variations, even though the true dynamics of the coupled
system is already well captured. This issue could be circumvented by computing errors on the
subsystems state vectors zi, however these are usually not accessible directly from the solvers.

With the error estimate obtained for a given coupling step size ∆t, the ”optimal” time step
∆t⋆ can be computed, such that the error exactly matches the prescribed tolerance:

∆t⋆ = κ min
i∈[1,N ]

∆t

∣∣∣∣ ϵui,n+1(∆t)

atol + rtol|ui,n+1|

∣∣∣∣
−1

pi+1

(15)

where κ is a safety factor (typically 0.9), atol and rtol are absolute and relative error tolerances.
Use of a PI- or PID-controller to smoothen the time step evolution across multiple steps can
improve robustness [5] but will not be considered in this article.

2.4.2 Embedded error estimate

The previous error estimate can be computed for free. However it suffers from a major
drawback when used in conjunction with an implicit coupling. Indeed, it has the same stability
as the explicit coupling. In the stiff case, the time step will therefore be restricted by the
stability of the explicit extrapolation, not by the actual accuracy of the implicitly-coupled
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result. A remedy we propose is to compare two implicit solutions un+1 and un+1 obtained with
approximations of degrees p and p = p + 1. This is a typical approach for ODE integrators,
e.g. embedded Runge-Kutta methods [5]. This second error estimate takes the form:

ϵui,n+1 = ||ui,n+1 − ui,n+1|| = O
(
∆tp+2

)
(16)

3 NUMERICAL EXPERIMENTS

We have developed an open-source Python demonstrator Rhapsopy, available online [17],
which allows the behaviour of the previous coupling strategy to be investigated on small-scale
test problems. Tutorials in the form of Jupyter notebooks allow for a progressive introduction
to the framework. In this section, we propose to test the coupling strategy on a simple yet
representative application. We focus on a one-dimensional conjugate heat transfer problem,
where two solid slabs exchange heat through an interface, as depicted in Figure 2.

Figure 2: Conjugate heat-transfer problem

Each slab has uniform material properties. The thermal profile T (x, t) is subject to the
following evolution equation, with the continuity of the heat flux across the surface:

ρ±c±∂tT = λ±∂xxT (17)

λ−∂xT |0− = λ+∂xT |0+ (18)

where ρ is the density, c the specific heat, λ the thermal conductivity. We impose zero-flux
Neumann conditions at x = ±L. We semi-discretise in space with a second-order centered
finite-volume scheme with a uniform mesh of 50 cells in each slab. One heat conduction solver
is attributed to each slab. We apply the classical Dirichlet-Neumann coupling at the interface
as sketched in Figure 2: the right slab (+) receives a Dirichlet condition (equivalent to u2

in our initial formulation), whose temperature is obtained by extrapolation of the internal
temperature profile of the left slab (−). The left slab receives a Neumann (heat flux) condition
(u1), which is obtained by extrapolating the internal heat flux field λ+∂xT of the right slab.
We set L = 1, λ± = 1, c± = 1, ρ+ = 1 and ρ− = 5. The initial state is such that T (x < 0) = 0
and T (x > 0) = 1. We compute a monolithic quasi-exact reference solution with the high-
order implicit Radau5 scheme [5] and a relative error tolerance of rtol = 10−12. The obtained
evolution of the surface temperature Ts is plotted in Figure 3.

3.1 Convergence

We now verify the convergence order of the coupled strategy for various polynomial degrees.
We focus on the initial part of the transient, up to tf = 0.04 s. For each order and solution
mode (explicit or implicit), we perform fixed time step simulations with 10 to 1000 steps. To
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Figure 4: Global error on Ts

avoid larger errors caused by the rapid initial evolution of Ts, we start from t = 0.01 s and
use the quasi-exact solution as initial condition. On each coupling interval, the left and right
subsystems are integrated separately with Radau5 and rtol = 10−12. For the implicit coupling,
the fixed-point problem is solved with a damped Newton method with a relative convergence
criteria of 10−9 on the norm of the Newton step. The global error is measured with respect to
the reference solution: err = (1/tf )

∫ tf
0

|Ts(t) − Ts,ref |(t)dt. An iterative starting procedure is
used to ensure that the polynomial approximations reach their full order directly at first step.

Figure 4 shows the resulting convergence curves. We observe that many explicit simula-
tions diverge when the time step is not small enough, and this divergence occurs sooner with
higher-degree extrapolation polynomials. The asymptotic orders of convergence are reached
as expected, thus demonstrating the potential of the strategy. In particular, we highlight the
fact that the traditional first-order coupling is far less accurate than the coupling with linear
predictions. In the asymptotic regime, for a given prediction degree, the ratio of the error
between explicit and implicit coupling is very close to the ratio discussed in Section 2.3, e.g. we
obtain ratios of 1, 5, 9 for degree-0, 1 and 2 predictions, respectively. Note that the error level
cannot go below roughly 10−10 due to the prescribed accuracy for the solution of the fixed-point
problem.

3.2 Stability

The previous convergence results show that, at least for the explicit case, instability may
occur. A thorough theoretical investigation of stability in the context of coupled systems is
a difficult task, and usually no analytical stability limit can be derived, even for simplified
low-dimensional systems [15]. Therefore, we propose instead to investigate the stability of our
coupling strategy numerically. To do so, we consider a similar test case as previously. For each
order and each mode (explicit or implicit), we perform various adaptive coupled simulations
with different error tolerances. As an example, we perform a few coupled simulations with a
3rd-order explicit coupling with rtol ∈ [10−8, 10−1] and we stop after 200 steps. Figure 5 shows
the time step used in each simulation. After an initial transient, the time step settles on a
nearly constant value. The interesting observation is that larger error tolerances lead to the
same limit time step, i.e. for rtol ≤ 10−4, the time step becomes stability-limited. This limit
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value of the coupling step size will be referred to as maximum stable time step. In the context
of ODE integration, this stability-limited behaviour is well known, e.g. [5].

We have used the same approach for other coupling orders and for the implicit case. To
investigate how the coupling strategy behaves with various coupling strengths, we vary the
ratio of densities ρ−/ρ+ from 0.01 to 1000. We note that a Neumann-Dirichlet coupling is only
recommended when ρ− > ρ+ [22]. For comparison, we consider fully-coupled IMEX schemes
as described in [6] which has been discussed in the introduction. We use the KenCarp3 (3rd-
order) and KenCarp58 (5th-order) schemes of the Julia ODE library [23]. We also include the
stability limit obtained when integrating the coupled problem monolithically with the well-
known explicit RK45 method.

Figure 5: Effect of rtol on the coupling time
step (p = 3, explicit, ρ+ = ρ−)

Figure 6: Largest stable time steps for various
methods and orders

The obtained maximum stable time steps are plotted in Figure 6. RK45 closely follows
the stability limit that can be computed analytically for an explicit Euler scheme, i.e. it is
limited by the largest thermal diffusivity. For ρ−/ρ+ < 10, the explicit multistep coupling is not
advantageous over other methods. For higher density ratios, it however becomes very attractive.
The stability limit of the explicit multistep coupling decreases as its order increases, which is
expected due to its similarity with Adams-Bashforth multistep schemes. We note that IMEX
methods produce unstable results for rtol > 10−8, i.e. their error estimates seem untrustworthy
for such a test case. IMEX schemes are only marginally better than our explicit multistep
coupling strategy for low to intermediate density ratios. Also, they cannot be applied as easily
to any coupled system, since they require using a similar implicit scheme in the submodels, and
having access to a split formulation which may be cumbersome to produce from existing codes.

The implicit multistep coupling strategy is much more stable than the other approaches.
For ρ− > ρ+ the stability limit becomes practically unlimited. When investing the evolution
of the time steps in each implicit simulation, no upper asymptotic limit is reached, the time
step simply grows continuously until the maximum allowed physical time is reached. Even in
the case where ρ− < ρ+ (the coupling should be reversed to a Dirichlet-Neumann condition),
the implicit multistep coupling remains robust, though its stability decreases. We also note
that high-order implicit coupling is less stable. Overall, the ratio of the maximum stable time
step is on the order or 100 to 104 compared to the other approaches, which demonstrate the
adequacy of our proposed strategy.
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4 CONCLUSION

We have proposed a new coupling strategy focused on multiphysics applications involving
the use of existing model-specific solvers. The strategy relies on multistep polynomial approx-
imations of the coupling variables, which are used as dynamic inputs for the coupled solvers.
High-order is attainable, and time adaptation is possible thanks to objective and reliable er-
ror estimates. Numerical experiments with the demonstrator code Rhapsopy on a conjugate
heat transfer problem have verified the convergence rates and shown that the stability limit is
advantageous over other classical methods, in particular for the implicit variant of our strategy.

Future work will focus on applying the strategy to other problems of larger-scale, with
an implementation of the coupling algorithm in the high-performance coupling library Cwipi
developed at ONERA. Efficient use of interface quasi-Newton methods will be investigated to
improve the applicability to large-scale cases. Finally, a theoretical analysis of the mathematical
properties of the proposed multistep coupling will be conducted to improve the understanding
of its behaviour.
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[19] A. Santiago, M. Zavala-Aké, R. Borrell, G. Houzeaux, and M. Vázquez. HPC com-
pact quasi-Newton algorithm for interface problems. Journal of Fluids and Structures,
96:103009, 2020.

[20] M. Arnold, C. Clauß, and T. Schierz. Error analysis and error estimates for co-simulation
in FMI for model exchange and co-simulation V2. 0. In Progress in Differential-Algebraic
Equations, pages 107–125. Springer, 2014.

[21] J. Butcher. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons,
Ltd, 2016.

[22] M.B. Giles. Stability analysis of numerical interface conditions in fluid-structure thermal
analysis. International journal for numerical methods in fluids, 25(4):421–436, 1997.

[23] C. Rackauckas and Q. Nie. DifferentialEquations.jl–a performant and feature-rich ecosys-
tem for solving differential equations in Julia. Journal of Open Research Software, 5(1),
2017.

12


