
International Conference on Adaptive Modeling and Simulation
ADMOS 2023

F.Larsson and P.Dı́ez
c©CIMNE, Barcelona, 2023

CLUSTERING-BASED PARAMETRIC SURROGATE
MODELING OF VIBROACOUSTIC PROBLEMS ASSISTED

BY NEURAL NETWORKS AND ACTIVE SUBSPACE
METHOD

HARIKRISHNAN K. SREEKUMAR∗, LUKAS OUTZEN∗,
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Summary. This contribution presents a combined framework to perform parametric
surrogate modeling of vibroacoustic problems that enables efficient training of large-scale
problems. The proposed framework combines the active subspace method to perform
dimensionality reduction of high-dimensional problems and thereafter a clustering-based
approach within the identified active subspace region to yield smaller training clusters.
Finally, a trained neural network assists the cluster classification task for any desired
parameter point so as to query the parametric system response during the online phase.

1 INTRODUCTION

Parametric reduced-order modeling delivers significant advantages in computational
costs for multi-query problems, where the expensive high-fidelity simulations are replaced
with the low-fidelity solutions obtained from the respective reduced-order model repre-
senting the desired parameter domain (pROM). However, the convergence of the pROM
depends on the difficulty to capture the characteristics of the underlying system. Practi-
cal problems in structural dynamics and vibroacoustics, for instance the simulation of an
aircraft involving coupled subsystems [1], possess system responses that are challenging
for existing parametric model order reduction (PMOR) techniques.

In this contribution, we address the above issue for vibroacoustic problems by adopt-
ing an existing clustering-based PMOR modeling approach from [2] thereby producing
pROMs for each of the identified clusters. With this approach, we produce local ROMs
at a number of parameter sample points and clusters are formed according to the dis-
similarity of the underlying Krylov subspace using the Grassmannian metric. Once the
clusters are established, pROMs are generated for each of the clusters using a classical
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Greedy algorithm. Finally in the PMOR online phase, the desired system response at any
parametric setting can be obtained from the respective valid cluster pROM in real-time.
In addition, neural networks (NN) are deployed to learn and predict the expensive cluster
assignment. The major contribution of this paper is the formulation and extension of
the above approach to a high-dimensional parametric setting. The curse of dimension-
ality is addressed using the dimensionality reduction technique of the active subspace
method (ASM). As a result, we propose a combined framework of PMOR training in
active subspaces and clustering-based PMOR assisted by a NN to alleviate the computa-
tional demand to generate a parametric surrogate for complex problems. In this paper, we
present the adaptive algorithms of the proposed framework and demonstrate its potential
using a generic example from vibroacoustics.

2 FUNDAMENTALS

The current section deals with the underlying theory and concepts which are then used
in a combined framework presented later in Section 3.

2.1 Vibroacoustic problem

Modeling structure-borne and air-borne sound is of high interest to adopt necessary
strategies that can enhance acoustic comfort for instance in passenger cabins of an au-
tomobile and aircraft. This includes the modeling of wave propagation through various
physical domains: structural domain, acoustic fluid medium (air) and furthermore the
interaction between them popularly termed as fluid-structure interaction (FSI).

Using the finite element method (FEM), one obtains a second-order dynamic system of
equations that enables solving of complex models for their behavior under various working
conditions. Here for vibroacoustic analysis, we perform analysis in the desired frequency
domain and the coupled system of equations for a simple structural domain coupled to a
fluid medium that is excited on the structural part takes the form:(

−ω2
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]
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0 Kf

])[
xs

xf

]
=

[
fs
0

]
, (1)

where the system matrices M,K ∈ Cn×n represent the mass and stiffness matrices, and
the subscripts s, f, c denote the structural domain, fluid domain and coupling interface
respectively. The solution vector x = (xs,xf ) ∈ Cn is obtained by solving the system
of equations for an excitation represented as f = (fs,0) ∈ Rn. Also, ω is the angular
frequency in rad/s. Due to the wave-resolving nature of FEM, the system matrices are
often huge and increase at higher frequency regions where the wavelength becomes small.

In addition, a number of design and material parameters influence the system which
are of modeling interest so as to perform optimization or uncertainty quantification that
delivers further insights about the model behavior. The underlying material modeling
and finite element types are not discussed further for simplicity and can be referred to
classical FEM literature. As a result, obtaining an accurate parametric surrogate for
such a high-dimensional parametric setting is of high importance to mitigate the high
computational cost involved for the mentioned multi-query problems.
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2.2 Parametric model order reduction with subspace interpolation

A typical second-order system depending on a number of parameters p ∈ Pnp ⊂ Rnp

can be expressed as:

Σ(ω,p) :

{
(−ω2M(p) + K(p)) x(ω,p) = Bu(ω,p)

y(ω,p) = Cx(ω,p)
, (2)

where B ∈ Rn×p and C ∈ Rq×n are the input and output system matrices, u ∈ Rp are
the p inputs and y ∈ Cq contain the q outputs. The system of equations for a generic
vibroacoustic problem in (1) can be translated into the above parametric equation (2)
and constitute the expensive full-order model Σ(ω,p).

PMOR techniques can be deployed to obtain low-fidelity approximations of the expen-
sive model in a desired parametric region. Various approaches exist where the localized
approach using local ROMs is practical to handle large-scale models when compared to
global approaches. The local approach identifies a few local ROMs produced at different
parameter points to represent the desired parameter region. As a result, a query towards
a desired parameter setting can be easily obtained for example using interpolation tech-
niques applied to the identified local ROMs. An overview of the various techniques can be
referred to in [3]. In this contribution, we present results where interpolation is performed
for the underlying subspaces that have been shown to produce accurate pROMs with the
least number of local ROMs.

The aim with PMOR and subspace interpolation, outlined below, is to produce a
parametric surrogate ΣR of the full-order model Σ using projection-based model order
reduction (MOR) techniques. More details on MOR using Krylov-subspace and moment
matching can be referred to in [4, 5]. The expression for the parametric surrogate follows:

ΣR(ω, p̂) :

{
(−ω2MR(p̂) + KR(p̂)) xR(ω, p̂) = BRu(ω, p̂)

yR(ω, p̂) = CRxR(ω, p̂)
, (3)

where the ROM matrices at any desired parameter point p̂ can be obtained with clas-
sical Galerkin projection [ · ]R = VT (p̂) [ · ] V(p̂) with [ · ] : {M(p̂),K(p̂)}. V(p̂) is the
projection basis that is obtained by interpolating subspaces.

As mentioned before, local approaches identify a number of ROMs with projection
bases V1, · · · ,Vk ∈ Cn×r. Interpolation is then performed on the underlying subspace
[6], rather than on the projection matrix directly, based on the Grassmann manifold and
its tangent space. Interpolation of the mapped subspaces can be then performed within
this tangent space for any parameter point p̂. Finally, the orthonormal basis for the
new parameter point p̂ can be obtained by performing a reverse mapping. The method is
relatively accurate due to the interpolation of underlying system characteristics populated
within the projection basis. However, in comparison to other interpolation techniques, the
online phase using subspace interpolation requires access to the system matrices which
may add to the computational cost. For the presented example in Section 4, subspace
interpolation is used as a compromise between training effort and yielded accuracy.
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2.3 Dimensionality reduction using active subspace method

Dimensionality reduction of high-dimensional parametric problems is essentially a re-
quirement for surrogate modeling. A large number of parameters leads to the curse of
dimensionality issue which drastically increases the computational demand and makes
the pROM training unfeasible. The ASM, see [7], is an efficient way to realize a low-
dimensional parametric space where there is a strong anisotropy between the various
parameters. Application to vibroacoustic models and training within the identified active
subspace has shown to yield accurate pROMs with reduced training cost [8].

The gradient-based ASM computes a covariance-style matrix or the active subspace
matrix C ∈ Cnp×np , which can be expressed as for a function f(p) with probability density
function ρ(p) and corresponding gradient in respective parametric directions ∇pf(p):

C =

∫
(∇pf)(∇pf)Tρ(p)dp ≈ C̃ =

1

m
Σm

j=1(∇pfj)(∇pfj)
T . (4)

Monte Carlo integration for gradients ∇pfj evaluated at m parameter points is used to
construct the active subspace matrix. An eigenvalue decomposition is then performed on
matrix C to identify the most dominant eigenpairs defining the active subspace as follows:

C̃ = WΛWT where Λ =

[
Λ1

Λ2

]
and W =

[
W1 W2

]
. (5)

Classifying the eigenvalues Λ and eigenvectors W as per (5) defines the transformation
into active parameters φ and inactive parameters ψ as: φ = WT

1 p, ψ = WT
2 p. Finally,

the original function f(p) depending on the physical parameters can be approximated
with function evaluation in the active subspace g(φ) such that f(p) ≈ g(φ).

2.4 Clustering and cluster assignment using neural networks

The clustering of local ROMs is based on the dissimilarity measure of the Grassmannian
metric that accounts for the distance between the underlying ROM’s subspace. Details of
the same can be referred to [2]. The idea is to compute the Grassmannian distance between
all the local ROMs and to form a distance matrix. The distance matrix D ∈ Rntrain×ntrain

for ntrain local ROMs and respective projection bases can be expressed as [2]:

D(i,j) = dGr(∞,∞)(Vi,Vj) =
1

4

(
|ri − rj|+ Σ

min(ri,rj)
k=1 α2

k

) 1
2
, (6)

where ri, rj are the ROM dimensions of the ith and jth local ROM or the number of
columns in Vi and Vj. The scalars αk denote the principle angles between the two
considered subspaces obtained from the singular values Skk by performing a singular
value decomposition (SVD) on VT

i Vj = USWT delivering αk = arccos(Skk).
Then we perform clustering using the k-medoids algorithm with D as input to form

a few clusters where the PMOR algorithm can be deployed separately to obtain a local
pROM for every cluster [2]. An optimal number of clusters can be determined based
on for example the Silhouette analysis. During the PMOR training phase, the cluster
assignment for the considered training ROMs is known. However to perform the PMOR
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online phase, it is necessary to assign the desired parameter point p̂ to the belonging
cluster. Hence, a NN is deployed to learn the cluster assignment at the PMOR training
phase and predict the cluster assignment during the online phase at negligible costs. The
NNs are trained upon the clustered information, where the inputs to the NN are the
parameter points and the prediction is the belonging cluster label.

3 PROPOSED TRAINING METHODOLOGY

The proposed framework is an extension to the training methodology presented in [8],
which performs PMOR training in the identified active subspace. The current contribution
adds the clustering-based framework after the ASM procedure to perform training on
each of the identified clusters with an objective to enhance the accuracy of the pROM
for complex models and to reduce the computational effort in contrast to training on a
conventional grid. The proposed framework is presented as pseudocode in Algorithm 1.

Algorithm 1 Clustering-based PMOR training algorithm

function performClusteringBasedPmorTraining(Parametrized full system Σ,
frequency range ω = [ωmin : ωmax], parameter domain P ∈ [−1, 1], error tolerance σtol)

Φ = constructActiveSubspace(Σ, P) . See [8]
Ξ = generateSamples(ntrain, Φ) . Generates ntrain samples
D = computeGrassmannianDistanceForAllRoms(Ξ) . Distance matrix (6)
{Ξ1

cluster, · · · ,Ξ
nc
cluster}, labels = performKMedoidsClustering(Ξ, D, nc)

NN = trainNeuralNetworkAndExport({Ξ1
cluster, · · · ,Ξ

nc
cluster}, labels)

for Ξi
cluster in {Ξ1

cluster, · · · ,Ξ
nc
cluster} do

Σi
R,cluster = performPmorTrainingGreedy(Ξi

cluster, ω, σtol) . See Eqn. (3)
end for
return Local pROMs for nc clusters ΣR,cluster, trained NN

end function

Firstly, the active subspace is identified by evaluating the gradients at m random
samples for Monte Carlo integration in (4). Training samples Ξ are then generated for
the active parameter space φ ∈ Φ where we deploy the k-medoids clustering algorithm
from scikit-learn [9] to form nc optimal number of clusters. The clustering algorithm
receives the distance matrix containing the Grassmannian distance between each pair of
training ROM. The clustering algorithm delivers the cluster labels to which the considered
training ROMs are classified thereby yielding clustered training samples Ξ = ∪nc

i=1Ξcluster,i.
For the online phase, a less expensive classifier is required to predict the cluster assignment
as mentioned in Section 2.4. It is to be noted that the clustering was performed with the
Grassmanian distance matrix as input, which is to be replaced in the online phase with
the classifier that takes the desired parameter coordinates as input to predict the cluster
assignment. In the case of a simple classification task, a suitable multi-label classification
algorithm can be used. However, we choose a NN to perform the classification task with
a view of more complex problems where the relationship between a large number of input
parameters and the clustered labels can be accurately predicted by a trained NN. Also,
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deep classifiers based on deep NNs may be deployed for other applications where complex
clustering situations occur. In this contribution, a fully connected NN with a single hidden
layer of size 100 is trained using the machine learning library Keras [10] to incorporate
the relation between the active parameters and the corresponding identified cluster label.
For the numerical example in Section 4, a stratified 10-fold cross-validation accuracy of
98.34% is achieved for the classification task. The trained NN is then exported for serving
the online phase where it predicts the cluster for any parameter point in real-time. As
a final step in Algorithm 1, the PMOR algorithm based on subspace interpolation is
performed on each of the clusters with training samples Ξcluster,i. Hence, a subset of
ROMs is identified in a greedy manner that can represent the individual cluster region.

4 NUMERICAL RESULTS

The presented vibroacoustic benchmark example is a rectangular plate-cavity problem
also considered in [11] and [8]. The model is presented in Fig. 1, where the plate and
fluid medium are discretized with quadratic elements accounting for a total of 10395
degrees of freedom. We consider a simple input-output configuration of exciting the
plate at a single point and observing the pressure response at a node inside the fluid
domain. The model accounts for 8 parameters that include the material and design
parameters with 5% parameter variation from the mean value: (1) in plate domain:
Young’s modulus E = 70 GPa, Poisson’s ratio ν = 0.3, plate density ρs = 2700 kg/m3,
thickness t = 0.003 m, damping constant ηs = 0.05, and (2) from the fluid domain: bulk
modulus Kf = 142360 Pa, fluid density ρf = 1.21 kg/m3 and damping constant ηf = 0.05.
The damping constants account for losses numerically by introducing imaginary values to
the parameters Ê = E(1 + iηs) and K̂f = Kf (1 + iηf ) accordingly. Here, higher values
are chosen for the damping constants to obtain relatively smoother frequency response
functions (FRF). Finally, the analysis is performed in the frequency range of [ωmin, ωmax] =
2π[100, 300] rad/s for every 1 Hz frequency step.

A local ROM can be generated using a projection basis computed with Krylov-subspace
methods yielding a ROM of size 120 converging with a maximum relative error norm
below 10−6 for all generated ROMs. PMOR training is then performed using Algorithm 1
where at first the dimensionality reduction using ASM delivers two active parameters. A
full grid is generated in the two-dimensional active subspace 30 × 30 leading to a total
of 900 samples that are used for training. Adaptive strategies can be used to replace
the expensive training grid and are interesting for future research. With the help of
Silhouette analysis, the choice of 6 clusters is identified as optimal and the resulting
cluster formation is plotted in Fig. 2. The cluster pattern is simple and can be easily
learned by a shallow NN for usage in PMOR online phase. As a final step, the various
clusters are trained individually using interpolation of subspaces presented in Section 2.2
where the interpolated ROMs are identified in a Greedy manner. The resulting number
of interpolated ROMs in each cluster are 17, 15, 15, 14, 13 and 13 respectively converged
for a relative error tolerance of 10−3 yielding good approximation in the active subspace.

Accuracy in the online phase is evaluated by evaluating FRFs of 100 random samples
and the sample with maximum relative error is plotted in Fig. 3. We observe good fitting
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Figure 1: Discretized plate-cavity model with
plate domain in green and fluid medium in grey.
Points • are the excitation and observation nodes.
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Figure 2: Clustered training ROMs based on
Grassmannian distance containing 900 ROMs plot-
ted using active subspace coordinates.

of FRFs qualitatively, however, the considered coupled plate-cavity model suffers from
high modal density that makes it difficult to preserve exact system behavior for samples
outside the active subspace. In Fig. 3, slight deviations in the interpolated FRF at certain
frequencies can be attributed to high response variations at these frequencies and also the
frequency dimension being not considered for active subspace modeling. Increasing the
number of active parameters can also be considered for improved approximations.
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Figure 3: Comparison of approximated FRFs or the pressure response p obtained from the PMOR
surrogate and the original FRF computed for a sample (out of 100 random samples) with highest error
within the trained active subspace region (left) and the entire original parameter region (right).

5 CONCLUSIONS

This contribution presented a combined framework of clustering-based PMOR using
ASM for handling the curse of dimensionality of high-dimensional parametric problems
and NNs to perform the cluster assignment task during the online phase. For the consid-
ered vibroacoustic example, the approach has shown good results and is observed to have
great potential to reduce the computational demand for large-scale models so as to have
a better span and accuracy over the desired parametric space. Areas for future research
include better handling of coupled vibroacoustic models that possess challenging system
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responses to be preserved in a parametric surrogate. Also, reduction of high-dimensional
parametric problems can also benefit from the usage of error-controlled adaptive sparse-
grids [11] in addition to ASM for better convergence.
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