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Introduction I

Introduction

Fallure Mechanics

Definition:
Set of methods and u:dmiquus to determine:
e [["/en
I s  Hop
o [l

structural failure takes place.

Failure modes

In structural analysis the following failure modes are considered:

o Material failure: Material provides responses that lead to a reduction of the
carrying eapacity of the struetwee  (material instability). 1o quasi-britde
materials (steel, concrete, rocks, soils) this entails Joss of wnigueness, sirong
ellipticity and stability phenomena that produce cracks, fractures, shear bands
eic,

e Geomehical Jailmre: The strueture undertakes peomettical configurations that
drastically reduce its loading capacity.

Deterinination of mode and type of failure is then associated to determination
of the ultimate load of the structure,




Introduction

Goal of the work

Analyze constitutive models (constitutive equations) in front of material failure and
provide tools to caprure failure modes,

Contents

1. Uniqueness, ellipticity and material stability

2. The strong discontinuity approach to Fracture Mechanic
(1D case)

3. The strong discontinuity approach to Fracture Mechanic
(3D case)

4. Discontinuous bifurcation ana.lysis.




HOoTE

1 Uniqueness,
ellipticity and material
stability

1.1 Boundary value problem
The general non-linear quasistaric Solid Mechanies Problem can be stated as
(see Figure 1-1):

r,ur, =av
[, Al =0

I'7igurt: 1-1- Buund:u‘y value pmblcm (_'BVP)
Find:

u(x,/):Vx [D,T]—:- R = Displacements
e(x,N:Vx[0,T] 5 R* = Swains (1.1)
ox.N: V0.7 R* = Stresses

Fulfilling VxeV and for any fe [ﬂ_.‘:]_(thc t.im:t: huc:va_]. of interest):

We ahull restrict the
analysis to the
quasistatic case
(neglecting the inertial
2
ferm: p B__:l }
o

Lage: —

V.at+ph=0 =» Momentum balance (equilibrium)
o=1(g) — Constitutive equation (1.2)
I
e=Viu= 3 WBRV+V®u) — Kinematic equation

I,: u=u Vxel,

1";, g WAL, } = Boundary conditions (1.3)

The B.V.P can then be interpreted in terms of action-response (see Figure 1-2):
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b MATHEMATICAL ux,r) |
t(x.0 = MODEL = (X, 1)
u (x.1) P.D.Es+h.e. olx,1) (L4
e e— o
it nol
|Action = A(x.1) Hesponse = Rax./)

=iy [
..,.l-lllll'.‘I
L ] i.‘

:
.
L=

Figure 1-2— Action-Response for the B.V P,

1.2 Virtual werk principle

For the pml:vlr:m of Figure 1-3 let us define the space of test functions (vin-u:{l
displacements):

Space of )
test functions S VM)V R [nw)| . =0) (1.5)
#
(Virlual displacaments)
[,ro-n=t .
0K d

X

Figure 1-3

The Virtual Work Prineiple (V.W.P) reads:
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Virual Werk Principle
ja:v_;ﬂdv = [pb: 1 dv o+ [t ndr VneV
¥ o du fu

f I ('l.ﬁ)
Internal Yirmual External Virtual
Wark (SWi, Waork (aW™7)

and can be Inu:.rpremd, in terms of a virtual configuration, as shown in Pigure

1-4.

I,:an=t(xr)

-

1 - actual configuration
{4 &1 - virtual confliguration

Figute 1-4— Physical interpretation of the virtual work principle

Remarlk 141

The virtual work principle (V.W.P) is completely equivalent to the
momentum balance equation;

V-o+pb=0 VYxeV

Remarlk 1-2

®  No assumption is done on the type of constitutive equation
o =f(g) (it can be any linear or nonlinear constitutive equation),

*  No assumpton is done on the size of the viral displacements
1 = Gu and virtual sirains V=8 (they can be large).
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1.2.1 Rate form of the Virtual Work Principle

The rate form of the B.V.P. of equations (1.1) to (1.3)reads:

V-g+ph=0 =+ Momentum balance (equilibrium)
o=Ffge) —  Constitutive equation (1.7)

I
£=Vin= 7 @BV+V®4) — Kinematic equation

M a=i Yxel, |
—

[it=6¢.-nVxel, Boundary conditions (1.8)
E
whete (a)x,1) = d_(*){rx,:) . The corresponding form of the Virtual Work
¢

[-"rinciplt: (1.0) is:

Virtual Work Principle {rate form)
jm%?dv =[pb-qav+ [ qar| wev
v Vv r,

(1.9)

Vi)V >R |qe),, =0]

1.3 Bifurcation of the fundamental solution

The solution R(x, ) of the boundary problem can be either unique or have a

fundamental solution B (x,n and different (bifurcated) solutions ]ltml{x,r)
(see (1.5)).
The vime at which the instanrancous solution beging to be nt)nnuniquc is the
bifurcation ume 7.

Bifurcation point =1,

——| Fundamental solution

Bifurcated solution

Figure 1-5- Bifureation of the solution of the boundary value problem
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Question:

wmr condinon has the constdmtive equation to accomplis 3
Wi 1 has fufi ation t plish t
provide a unigue tesponse ex, 1) to the given actions Ax,r)?

If the solution of the problem is not unique =3 Hm(x.!) and R (x,n

(]R““ #R"Y for £ =1,). The bifurcation time 1, is characterized by:

(1) n:f Rlij ’hﬂ
RE (x) m“{'"dr

() ey = e (3)
_— RB [.x.}'_ﬂea (.x.)
— L (1.10)
i f)
R(E}(!ﬂ aEx RS’ (x) # ERE!E}(;) for, at least some x& V
= ’ﬂ
That 1s:
ug' (x)=uy’ (x) iy () 7 i (%)
el ()=l (x) ; VxeV and £ (x)# & (x) | for,at leastsomexe V  (1,11)
uu)(x} cl.i’l (x) m(x) :d‘“ (x)
Defining:
Auy () =uj’ ~uf Ay (x)=uy —a})
Aey(v)=e e and  Ag,(x)=g} -&)) 1.12)
Ag,(x)=a})’ -a}’ AG, (x) =6} —¢)
NOTH at the bifurcation time 1,:
Stactly apealdng only [ = !
one of incqualitics Auy (x)=0 Ay (x)=0
Atk (%) # 0 Ay (x)=0; and Ag,(x)# 0} for,at least some x& V (1,13)
At (x) 70 Agy(x) =0 i 1ol ek
.Mff {I") #0 and, in general:
i n.'quln.'d. ALK, 1) =
Ag(x,)=0} Uxe V WE[O..!,,]
Aa(x,1)=0|
(1.14)
Aulx,i)# 0
A2 0} Vxe AV eV Vielr,.T]
AG(x,1)# 0

where AV is the set of material points of Vithat have uxpcriunccd the
Lifurcation.
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Remarle 1-3
If theie is no bifurcadon tme in the time interval of interest It),?‘],

then the solution is uniqm:.

1.4 Uniqueness conditions. Positive material

Let's consider twao different solutions of the BV.P, B (x,)and R (x,1).

Applying the rate form of the V.W.P of equation (1,9) to both solutions:

J‘au} ;V”qd‘»" =J'p boydV+ J'i' qdl” VeV
V¢ 1

HNOoTH
Actions Jyand {° are v :
tl tor botl . gs y . -
fora it Jo Vnav [ b v [t vaey 019

; i
Vi=nix):V =R |nix) . =0
and subtracting them:
AG: Vi ndV=0 YyeV :
J (1.16)
MNow notee that if both R“’(x.f) and R”)(J{.!} are solutions of the pl'cﬂ,ﬂr;:m
then from equation (1.8):
ot Wy Ai(x, =0 Vxe T, vie [0.7]
- = An(x,1)=0 Vxel, Vel '
ﬁ('-‘..!:.ﬁ Vxe r-" ! (1 17)
50, In view of equation (1.16):
Au(x, eV (1.18)
Therefore we can consider equation (1.16) with n=Aa(x,n:
RvL {
[A6: V5 AuaV = [A6: ALdV =0 (1.19)
¥ AE v
Thus, a necessary condition for non-uniqueness is:
AT T AG:AEAV =0 Vielt,.T|
Taexnwo o 1 tAedV=0 - VIelty, (1.20)
and a sufficient condition for uniqueness is:
HOTH Unigueness condition (global or in the larga)
Aa(x, 1) and 131
AB(x, 1) tefer 1o possible _[M:AMV 50V ASGLOAD ¥ Abx.0) 0 (1.21)
pertuthations of the H )
e ——

homogeneous solution

of the B.V.P. A more restrictive, and therefore sufficient, condition for uniquencss is:
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Uniquanass condition (local or in the small)

(1.22)

AGIAE=0 YV AS#0 YV Ae#0

since fulfillment of equation (1.22) necessarily implies fultillment of equation
(1.21).

Remark 1-4

A material fulfilling equation (1.22) :
AG:AE=0 VYV AG20 YV AE£0

is called a positive material

Remarle 1-5
Notice that, equation (1.18), can be extended to:

Au(x.ne V: Au(x,neV :Ai(x.Ne V...
and that the Virtual Work Principle (1.6) ean be written for higher
order time derivatives:

ja:V"n:ﬂf:jp by dV + jl* Ndl YyeV
v v I,
Id:V"nr‘!V =Ip b-y dV + Ii' ndl' VeV
¥ v I

jﬂ:V‘urﬂ’=jp b-nwav+ I't" ndl" e ¥V
v I

Vv
Va{nx):V-oR | n(x)\“m =0}

s0 that, by combination of them, addinonal sufficient conditions for
uniqueness could be derived Le.:

Ao:Ae=0 Y Aocz20 Y Aez0
AG:AE =0 YV AS#0 VYV Ae#0

AG:AE>D VYV AG#0 VYV AEwl

1.5 Discontinuous bifurcation

1.5.1 Maxwell's compatibility conditions

The Maxwell's conditions refer to fields that are entinuons in a domain £ and
whase first derivatives are discontinuous across a line (fur 2I)) ora surface §

(for 3D3). The discontinuous interface S divides € in Q' (pointed by the

normal n) and Q7 see Figure 1-6,
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Figure 1-6- Continuous scalar field with discontinuous gradients

« Egalar field §(x, x,): RY — R

i = a¢l d¢+
___ noTE Ve ‘s_' an ynll'ﬁ,T‘t [T o ap
We define - ; " ! | =='[[V¢']]= é” n+ ai t (1.23)
s - - I i Sy 5 4
lleall = @35 = 5 =9 S
Since the field ¢ is continuous across 8 the tangential dervative %T does not
o
jurm:
9’| _ap rldl(x(f'))‘ [ [aw”
el Be—te| W rass =4 — || =0 1.24
TR T A T B P | 129
and from equations (1.24) and (1.23);
; =
‘ﬂV¢]I=H-)-@-” n=fn (1.25)
. Lan ).
NoTE ¢ [Vecrorial field u(x)=u,(x) &
From now on we shall
nse Hinstein's nottion: i 5
> Rty o b [Veul=[Vu|®&=pneé=n®p & =nap 36
F:E.Im & = g Bn
|[V” u]]=[[%(?®u+u®\7)] ='é(“ @R+B&n)=B@n) (1.27)

If u(x) stands for a displacement field then, V'u=g, and from cquation
(1.27):

Maxwells' s compatibility condition

il

ﬂE:"E ' —g =[[V"u. ~p® n)’ (1.28)
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NOTE

We nupume that
Eq liats, at least, minor

spmmetrics:

w’ﬂm =y ifik

1.5.2 Material ellipticity

Let us consider the confinmons fields in K, &(x,1), and o(x,1). Let us look for
the conditions that allow &(x. ) and &(x.1) to be discontinuous but c;‘n‘npatilplu;
with the necessary traction (',?" =4 n) continuity across 8, expressed as:

[#lx=llsll n=6' n-6 n=0 w¥xes (1.29)

According ro equation (1.28) we can write for the strains:

lle]]= (@ “)’I =t (x)=2 (x)+ (}3 ® u)'(x} for xe § (1.30)

Let us consider now the very general ease for the rate form of the constitutive
equation (1.7):

a=Fg,06,e)=E, (g0) &+ge0) (1.31)

where [, is the tangent constitutive tensor. Then, from egquations (1,30) and
(1.31):

loll=&, :lell+ lg]= 5, : @ @n) =&, -n)-p (1.32)
=1

and inserting equation (1.32) into (1.29):

7 J=n - lsll=n- B, -m)-B=0=0, -$=0
i

T
where @, is the lbealization tusor . 1n order equation (1.33) to have 4 non trivial

solution (B#0):

(1.33)

det@, =det(n B, ‘n)=0 (1.34)

Remarl 1-6

Condition det @, (%) =0is a necessary condition for the appearance,
al the material point x, of discontinuous rate of strain fields as in
equation (1.30), Condition

Strong ellipticity condition
det@, =0

is, then, a sufficient condition to preclude the appearance of such
discontinuous (rate of) strain fields. This condition is alse called the
sttang ollipticity condition,

1.5.3 Material positivity and strong ellipticity

Let us consider a pt.‘nﬁitiw material, nccmﬂ.ing to definition of Remark 1-4, and
the following parril:ular cases of bifureation of the solution of the BV, I2:
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it
i"."’(x.rJL , = £}, (%) —» lundamental solution (smooth)
hy

1 =P+ 0B @n) (0 q[ RSN o } (1.35)
(discontinuous at time 1)
P -el) C Ak 0= p 0 pen) o
‘where ji5(x) is a collocation function on the discontinuity domain §
TREE {L: i (1.36)

'[""igutu 1-7—= Disconnnuous interface §

Fot the family of materials following cquation (1.31) (6 =K, (e,0):&+g(g, 0))
from equations (1.22) and (1.31):
Ag, =B, (A8, = AG,:A¢, = A, K, :Af, =

g

[BE“]K (1.37
=(I3®n)':IE':T:(B@n)'=ﬂ-{nvE,.vn)l|3::-0 VB # 0 &l
\_\,—f
q
=BQ,-B>0 Vp#0 = det (1, = 0= strong elipticity {1.38)

Remark 1-7

®  For the family of materials following equation (1.31), the positive
character of the material implies strong ellipticity.

®  Materials Rilfilling the strong ellipticity condition detQ, =0
prechude any type of bifurcaton involving discontinuous strain
ficlds. Therefore they exclude local discontinuous bifurcation
modes (material bifurcadon modes) and reduce the possible
bifureation modes to the global ones (peometrical bifurcation
maodes),
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1.6 Stability

1.6.1 Referenced boundary value problem

Let's now consider the BV, P, of equations (1.1) to (1.3) with the actions given
in terms of 4 reference action A, (x), which is scaled by means a foad Jactor
A1) to give the actual actions A(x,1) (see Figure 1-8):

Alx.n=A0A(x) : Ay(x)= relerence action
by (x) bix,0) | [Aby(x)
A 0=t | = Aln=|t () |[=| A0
ui(x) w x| [Augx

(1.39)

I,

u=Au,

X,
e
1"—-—-. P
é, [Fu: g n=1t,
8 %
)
Figure 1-8— Referenced boundary value problem
The B.V.P, reads:

Find:
w(x,:Vx[0.7| =R = Displacements
e(x,0): Vx[0,T]=R® = Snains (1.40)
ax.): V[0, T]>R" = Sesses

Fulfilling Vxe Vand forany re [0.?']:

Via+pih, =0 = Momentum balance (equilibrium)
o=f(E) —  Constitutive equation (1.41)

g=V'u= —;'-(l.l BYV+VER ll) = [Kinemaric equarion

I,: u=Au, Vxel,

I, om=At, ¥V xel, = Boundary conditions (1.42)
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The cortesponding rale version of the BV, P is now given by:

V.g+pib, =0 = Momentum balance (equilibrium)
a=1f(ee) —  Constitutive equation (1.43)

g=V'i= E(u ®V+V®i) — Kinematic equation

u=Au, Vxerl,

- r, } = Boundary conditions (1.44)

The action-response curves along time can now be given in terms of the load
factor A(r)vs. R. Points characterized by A=0and B#0 are termed limit
points or instability points (sce Figure 1-9).

Limit Point (A =0y(1# 0)

Figure 1-9

The rate form of the Virtual Work Principle (1.9) now reads:
J6:9mav=[pib, nav+ [At5 war] wyev
¥ v r, (’ .47)
Vi=nx):V >R [nf . =0)

which, for the particular case of an instability point (4 =0) yields ror

[6,:V'ndV =0 YqeV with &, #0
¥ (1.48)
ViMooV - R [qm), . =0}
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HOTE

This is alee referenced in
the litemture ag the Hill's
stalitlity condition.

NOTEHE

[E is 4 positive definite
fourth order tenszor |
therefore, for any given
second order tensor
az0—=a:K:a=0

The solution in terms of the displacement at the limit point fulfills:

I, = alx,r)

it i .
- “{-(x)lrmh - }"|M,‘ u,(x) =0 = ﬁg‘(x)E ¥
rs el

tui .('t '49)
=0
and substitution in equation (1.48) reads;
T ) &, #0
;l:d':. w‘_Vé“r, dV = !a.f_ 1€, dV =0 with {6‘. £0 ('I.SU)
I

Fquation (1.50) is a necessary equation for instability at ime 7, . Therefore a
sufficient condition for sanability along the time interval of interest [0,')"] 15

Stabiiity condition (global or in the large)

[o:eav=0 vielor] v {E:" (1.51)
¥

A more restrictive and, therefore sulficient, condition is:

Stability condition {local or in the small)
(1.52)

G0 VEz0 Vaz0

1.7 Constitutive models unigqueness and
stability

Let us now check the properties of different families of marterials (constitutive
maodels) in rerms of uniqueness (material positivity), discontinuous bifureation
(material ellipticity) and stability (material stability).

1.7.1 Linear elastic models

: o=H:e
Canstitutive equation — e (1.53)
o [Positivity|
¢ =[5 :
02 a =A6=6" ~¢" =E:"? -¢")=E:Ae
&Y =¥ (1.54)

Ad=E; A== Ad: A=A B AL =0 VA& 20— pass
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s |Ellipticityl —»pass (see Remark 1-7
s Stabilit

6=Eieg=dig=£:E:£>0 Ve«e0-pass (1.55)

1.7.2 Non linear hyperelastic models

= 2 (e}
oe

Constitutiva equation — ¢=E_}ILV(_E_)V,E=E (2):2 (1.56)
@ T

7

o

where [ is a symmertric bur not necessaiily positive definite fourth order
rensor. As [y (g)is positive definite, the model enjoys the same propersties
than the linear model:

. P
¢ﬂ] - IE'}‘ (E) :BIU

_ Al _ el e sl .
§ g, (gyre@ [ 20T TN =B R T =Bpi0e(LST)

AS=E, Ab=AG:At=Ae:E  :Ae>0 VAL#0-»pass (1.58)

. [E.ﬂiﬁﬁuiaj ~rpass (sce Remark 1-7)
* Buabili

o=, ¢=¢:e=2!E,; >0 Veé#0-»pass (1.59

Remark 1-8

Non-linear elastic models with a wen positive definite tangent constitutive
tensor [y do not assure uniqueness, ellipticity and stability
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HOTE

(,)u]}' pt-n'l.u'lm.timu
keeping e loading
character (loading or
uiloading) of ihe
fusidiimental solunion
are considerad here,

1.7.3 Elasto-plastic, associative, strain hardening models

o WE0)
Gonstitutive aquation—=> 3¢ _ g Eg:} 18— loading (1.60)

&G =M &= unloading

Let us consider the case of hardening, Therefore [, is positive definite.
o [Positivity

o =1, (o). &V
Loading — 2ot |2 AG= g _gh o

&' =By (o)

=By (™ -e")=E, 1A .61

6" =T:e" ;

Unoading - { = Ag=a&" —g' =

¢|‘.?] - E:gﬁ!]
=E:® -eM)=E:A¢

Loading - AS =, :AE=AG:AL=AL: 5, (AL >0 VAL 20— pass

1.62
Unloading —» AG=E: A8 = AG:AE=AE:[H:AE=0 VAE#0— pass (he)

L] ﬁ*lhEtHﬂ =»paga (see Remark 1-7)
* Buabilin]

Loading 5 6=E, :¢=@d:g=2:E, :£>0 Ve»0— pass

1.06:
Unloading > d=E:g=¢§:&=¢:E:£>0 VEe£0-35pass (1.63)

1.7.4 Continuum damage associative hardening models

a=WED 4 B

Conslitutive equation = § . B, (e): & — loading (1.64)
=l =) E:&—runloading

let us consider the case of hardening. Therefore B, is positive definite. Also
(1=el)>0 and, thus (1-d)[E, is positive definite.
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HOTE e i
Only perturbations Loading — g = IF';?' (e):& A= —glh =
keeping t bading 8 = E, () o
character (londing or
unloading) of the = E‘-,u i(E(:’ - g!! )} = ]F’r CAE 1,65
fundamental solurion 60 = (1= )i : ™ ' (1.65)
nre considered heve, U”ﬂudmg — ; : = Ad=a'" - Q“’ =
d!.ﬂ - (.I _ d)ﬂ:.l :E{h
=(l=d)E: (& < &")=(1-d)E: Ae
Loading — Ad =i, : At =
AGiAE=AE: |, :AE>0 VAeE # () — pass
(1.66)
Unloading = AG =(1—d)E: At =
ASiAe=(l-d)AL: B AE =0 VAE » 0 — pass
' [E*'ﬂpt_h:_i_t}{ —+pass (see Remark 1-7)
o Btabilit
Loading —»6=8, 6= &:e=£:E, :£>0 VE£0— pass
(1.67)

Unloading — & = (1-d)E: &=
Gig=(l-d)g:E:£>0 Vi & 0= pass

Remarlk 1-9

For plasticity o damages models (or, in general, rate indepenclent

l'ﬂﬂdﬁlﬂ) with either s .rqﬂ.-:ru.r'qg ar Rol-acostalive j.?'mm‘ “ﬂiq“unuﬁf,,
ellipticity and stability are not assured.

1.7.5 Rate dependent (viscoelastic, viscoplastic etc.) models

_ W (e.0)
Conslitutive squation —» S Je (1.68)
G=E:&+glo,0)

Ag=E:At=AG:AL=AL!E: AL =0 VAL 0 — pass (1.69)
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* [uabiliy

=0
o=E:¢+gloa)=0:8=£ E e+g(o,0)e= {{0 —» do nol pass
'u.u.-_nv\_n_n_ﬂ'

=0 winknenen
sign

(1.70)

Remark 1-10

Rate dependent models, independently of their hardening/sofrening
or associative/nonassociative character, provide abvays o unigue solution
and ke the r!fi/)ﬁri{)f af the material. However, they do not assure
stability.







2 Strong d iscontinuity
approach (1D)

2.1 Motivation

2.1.1 One-dimensional elasto-plastic model

Let us consider the Fnllnwing onc-dimensional clmitn-pins'l:i:: maodel with steain
softening (see Pipure 2-1 and Figure 2-2):

, y(e,e! )= : E(e—e") +o 0+ L Ho’
Free energy: 2 2 2.1)
w(E—£P) wi (o)

Constitutive -1, [ ——

equation: i de m.:ﬁ g @2

Yield function: fo,q)= f0| = 2.3)

Flow rale: =2 g“; = Asign(o) (2.4)
; df

Internal variable =1 % =4 (2.5)

Hardening/ oy .

softening law $%5g =% THE = g=Ha 26)

L"lﬂdh:g/ Az0 20 Af =0 (Kuhn—Tucker) 2

unloading L il . -

ronditads F=0= Af=0 (persistency)

Tangent _E g o .

i L g =E; e Rt (loading) (28)

equation g=Eé ; (unloading)
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oA

' et i Softening
piurﬂmtr:'r

(44

Admissible stress

ﬁr.‘l aCc

4(‘!

di, (/ :u[cr‘—-q:())

44

Figure 2-1— Flasto-plastic model: softening law and elastic domain

ai LA C
EH
B = .
1] ) .!: & H il
R o | T =[5 flo.w)=0
Y T
i b
/| /r- : flo.a)<0
7280 A S ] . |
-~ r..q_é-,—m
7 &
» v M
b ﬂt': .‘”” ...... --W\l\-q--- "““““‘m_lll.:'-':'"”
0 e

Figure 2-2— Elasto-plastic model: loading-unloading eycle

2.1.2 One-dimensional strain-localization problem

Let us consider the one-dimensional problem of the bar of

Figure 2-3. The constitutive maodel is the elasto-plastic one given in section
211, The bar, of length £and cross section A is homogencous and
characterized by a Young modulus £, elastic strength o, and softening

parameter H <0, Under inereasing imposed displacements at the right end,
the bar experiences the following load-displacement response:
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{
' b=B, |
¥
w7 Q, R R
0—’5—*

Figure 2-3— One dimensional localization problem
Ty
1) Elastic regime: (& 5-}'-;4):

£01) ={% Wx

o(x)=FEe=E % Vx

F\:Aan%ﬂﬁ (2.12)

=&

s

N B =1 (homogeneous solution)

_ﬁ=_ﬁ

B =0 (non localized solution)

3
1

Figure 2-4— Solution of the 1D loealization problem
: a,
2) Elasto-plastic regime: (6 = -{-:‘— Y

At the peak stress, (@ =a ) let us consider that loading (0 = £, £ ) takes place
in the domain €, of length b= !S'i? (fe[0.1]), whereas unloading (d = Eé)
occurs at the rest of the bar (domain Q). Ler &, and £, (£, #£,) the rate of
the strains at both domains.

Liquilibrium requires that:,

HOTE
e : A i . E E+H
This is a typical case of &, =Eé, =0, =E ¢, =8¢, =—4&,= é ;
clinmntlimfguu d " ! T ; E, K H g 42
bifureation: = .
b Wb and compatibility requires:
loll=0, - <0 (=), (=8 @.14)

and substituting equation (2.13) into (2.14):
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E+H

8, (t-b)+é, ~——~b=8 =
Bl vy B e o Bl o (2.15)
En(f+ﬁh)a,,—(ﬂ+~gQJE—(HFB)J?E
pe
‘*=—§_5 = ’.:'=—L?_£ (2.16)
| o v 334 | e AT :
() ( ,Hﬁ}
Remuark 2-1

Inclusion of steain softening in the constitutive equation results in an
nfinite number of solutions of the problem after bifureation at the
peak-load. The inderermination of the size of the strain localization
zone (3 is undetermined) is responsible for that. This fact could be
expected since the material is not positive (see Chapter 1), Some
addinonal ingredients are then required to make strain-softening
consgtitutive maodels available (or actual pmhlm‘ns.

2.2 Strong discontinuity kinematics

Let us consider de body Q of Figure 2-5 experiencing a displacement
discontinuity (strong discontinuity) at section S, which splits it into £2*and
(9 3

s =" i 0

F
5 ——

Figute 2-5- One-dimensional strong discontinuity problem

The mathematical expression of the displacement and strain fields read:
e, n=ien+ Hyollalkn

ilef
[lit]] = dicxg. ) et — HGs ) i

re '
H(x)= {{; :Zi 0 —» Heaviside's (step) function

@17)
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By, i) = B + Ehi“ [lei]|= Etx.ry + &4 ol ke
dv  dy ay e ST Sl s Tl
% reqular  Singular
£ (2.18)

aH .

Oy = Eba —» Dirac' s delta function

Figure 2-6- Strong discontinuity kinematics

2.3 Regularized strong discontinuity
kinematics

Instead of the strong discontinuity kinematics of equations (2.17) and (2.18) we
shall consider a regularized version of them, by assuming that the displacement

jump takes place across a very thin discontinnity band QF | of bandwidth £ | (see
Figure 2-7).
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. di
f=—0

dx 1%
=t n
[ 160

Figure 2-7— Regularized strong discontnuity kinematics

The mathematical description of such kinematics then reac:
aCe.y=a(x, 0+ HEollalkn

(2.48)
H} = Ramp tunction on o
é(x.r) =2 _ g+ '[I(!)_ﬂ
gr e . k
regular b ounded
whan k-0
£(x, 1) = B(x, 1) + p g () ;i [[ee ke
ragular m&'ﬁ" (2:49)
whan k=0

| Yxe O
Helx)= =3 Gaollocation functien on §
! {0 Ve 0

. l
flﬂ; My (x) i 8 = Regularized Dirac'sdelta function on §

Remark 2-2
When the regularization parameter & <0, the strong discontinuity

kinematics (2.18) is recovered.
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NOTERE

We ASELUTIE |lmt Ihl,'.
confinium constifive
madel return bounded
stiesses from hounded
atrains, there fore:

2.4 Strong discontinuity analysis

2.4.1 Stress boundedness

Although the strains are unbounded at the discontinuous interface 8, as stated
by equation (2.49):

t{.s:,t}'

Aw

Sty =t 2 flillo

unboundad
whan k-0

(2.50)

in virtue of the equilibrium across a cross section (momentum  balance
principle)

fiaif #
65,1, =65 =005,1),, = ey (2.51)

Oy (B g ) =bounded 35 since we assume that the strains are unbounded at /8

63 =6n”g —hhﬂundﬂﬁ (2--53}

Remark 2-3

® [rom the taction continuity, the stresses g, (and the rate of
stresses Oy ) are bounded at the discontinuous interface, even
when the strains £, are unbounded.

| * Soare the stress-like hardening variable (g, € |,0.-:r,]=> bounded
see Figure 2-1) and its rate ¢y, since in virtue of the consistency
equation (2.7):

loading — f = sign(c J&t, — g, =0 g «sign(ag)dy = bounded

unloading -» ‘}-S = AH =0 (A =0)=> boundead

2.4.2 Strong discontinuity analysis (SDA)

The strong discontinuity analysis is devoted to extract those features of the
continuum constitutive model that make it compatible with the unbounded
strains, keeping the bounded character of the stress and the stress-like
vatiables,

Considering the clasto-plastic model of section 2.1.1 and the rate version of
equarions (2.2) and (2.4) ar the disconunuity interface §:

g=LE-E")

il = x%:lsmn(o)

=& = E(Ey =~y sign(y)) (259)
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And subsututing the strong discontinuity kinematics (2.50):
&g = E(E; + % i1l = A signta)) (2.54)

ko = EUKE‘- i [[l'l]]-kls sign(org))=s
im(k &5 y=tim(ek € O+ Elld]l- tim(Ek, sign(o ) =0= 55

bounded bounded bounded
-0 =0
[l ]l= (im(kAs ) sign(c) (2.56)

In order to have displacement jump ( [li [l 0), from equation (2.56):
lim(kis ) 0 (2.57)

which can be m:{?nmpﬁﬂl’wd by dcﬁning a new bounded variable:

def
lI = kA, — discrote plastic multiplier (bounded)

(2.58)

By substituting cquation (2.58) into ((2.57)) the following relationship is
obtained:

lE: [|= A sign(o) — discrete constitutve equation| 2.59)

Remark 2-4

Liquation (2.59) relates the displacement, 1], at the discontinuous
interface § with the interfacial stress ¢, Tt ean be then recognized

as a discrete (o fracture mechanics-like) constitutive equation that, as
will be shown below in section 2.4.3, is part of a complete discrete
constitutive model.

Also, substituting equation (2.58) into (2.5) (@=A1):

d_ﬂ; =A-s =
(2.60)

[q’i = A =kat; — discrete intornal variable (bounded)

Finally, waking into account equation (2.60) into the rate version of equarion
(2.0) (g = Hex ) and considering the bounded character of g, (see Remark 2-3):

3 I ) &
L = Hd# = H - ir = ﬂ”"H = H (b(mndwd) 2"(:"-1
hounded K hounded -0k (2.61)
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HDTE

Here fj iz considered
constant (linear
softening).

CGenermlization to pon-

linear softening 15
atraight forward,

Conditon (2.61), and subsidiary conditions (2.58) an  (2.60), can be achieved
by in'lpnging the following structure to the continuum softening parameter M

Soltening ragularization condition
H o= kil (2.62)
H — discrata (orintrinsic) softening paramater

And, now, by substituting in equation (2.61):

Je=Hi&= gy =o, + Hi — discrete soltening law (2.63)

e — —

Remarle 2-5

The intrinsic softening parameter M is material variable that will be
telated 1o the fracture properties of the material (see section 2.4.3), By
imposing the softening regulaization condition (2.62) (and, thus,
considering the continuum softening parameter H given in terms of
the discrete one ) the hounded character of the discrete variables
& and 4 and, eventually, the bounded character of o and g, is
assured.

2.4.3 Discrete free energy.

FFrom equation (2.59) and the flow rule (2.4} (&7 = A signie) ):

L) signiog) = Agsign(a ) =4 =

ko

Ay (2.64)

o= [[:ell|

and from the strong discontnuity kinematics (2.49):

ill= 2 signto) = lill=

, £ =¥, )
&g =8y +-£ flal|=2§ +&¢ = gi= £ = f::rékr:: =0| (2.65)
¥ L bounded

A
t.‘;‘

Remark 2-6

Fquation (2.64) sates that the plastic strain translates entirely into
displacement jump.

Let us  consider the continuum density (per unit of volume) of free energy
(2.1):



28 2 Strong discontinuity approach (1D)

i

£

e,
yle,el o) = ; Eg-g?)? +a,0+ :

ye(en Vi)
and, from it, let us consider the free energy at the discontinuous interface, ¥,
per unit of stisface. Both are related by (see Figure 2-8):

F‘ ——
faa energy _ Frea enargy valume = [7a= fi”a’ (k)
Y

unitsurface,  unitvoluma  surface (2.67)
W W k
/,,,. T, dV=kdS
A kA
(___,,..f."? riu?*'k = !Ekl
g, 7. 3

EEEEE

Figute 2-8- Differential of volume at the discontinuity interface

Now, by considering equation (2.67) and the result in equation (2.65):
I . = l el | EE
W-fﬂyg(kws}_f%kzﬁe. "'f{{{{k(“y”‘ I»ﬁch )=
=£’:‘m-l-E ke"e” + limk(o, o +— Ha' )=
=20 D vt k=it b D —i (2.68)

-
l-ff k.(H&-i)

=0

= Cim k( I--a,,(n A Hi')=0,4 + Ha?
=0 kY k 2

where equations (2.58) to (2.62) have heen considered. Therefore, the discrete
(per unit of surface) free energy  can be written as:

Fillelldr= 0 + o & +% H&@® - discrote frea aneigy

SR, V— 69
'.67'_{}]:]]5 7 () 28

Remark 2-7
Naotice, from equations (2.69) and (2.63) that:

ow il o

7 =g, +Ha =g,

that states that ¢, and & are thermodynamically conjugated variables
with respect to the disctete free encrpy 7

Finally notice that loading unloading conditons (2.7) at the discontinuous
interface, can be rephrased from equations (2.58) as:

5 He® (2.66)
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fe.q) . . [0 .qg)=|os|— g3 =0 — discrete yleld function
=0 A=0 A7=0
f=0 Af=0

in such a way rhar the evolurion equation (2.59) (I_Iu”:.ﬂ. sign(ag)) can be

(2.70)
=3 discreto loading / unloading conditions

integrated as;
1) {I ,tm;.i-iang'
A#0= flog .q5)=0=|og|=gq
F(o . 45)=0= signo )b =g, =H T =& = 27
@=1= !l} sign(or )

and substituting equation (2.71) into (2.59):

: [lill=<Lta,
[li]l= T signte, ) = sign’ (o) 6, = =i (2.72)
i = & =17 [lill
2) [Easiic unlonding
A=0=> ﬂﬁ]]: i sign(@rg) = 0= m;r]];] (2.73)
The above results and their implications in a loadjng-unlnading cycle are
sketched in Figuge®s9, AT
1] flog.@)=0
g, H_ 12|
iy
’ o
I | foe @) =<0
n l 1 s
— - f=rr -J h

-0,

Figure 2-9- Elasto-plastic diserete model: loading-unloading cycle

2.4.4 Discrete elasto-plastic model.

The results in the preceding sections define a complete discrete constitutive
model (relating the interface stress o with the displacement jump [lie]ly that
can be summarized as follows:
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” | =
@ @ = Ha"
Free energy: vl = -—?—-—- bl 2 R (2.74)
7 ([l [ i)
Yield function: f (Og.qq) =|og| =gy (2.75)
Flow rule: [l ]l= X sign(er ) (2.76)
Internal variable @=2 (2.77)
Hardening/ ay s
softening law Gy moe=dy FHE © A=l (2.78)
Loading/ A20 [0 Af =0 (Kuhn—Tucker)
unloading : kT, (2.79
contlitiens f=0= Af =0 (persistency)
Tangent = | o ¥
Ty ds =E; |l ; Er=H loadi
constitutive : - -;;j[}ll Fﬂ] o _-{ wasine (2.80)
equation g, =F [ju i E=e (=:~[[u_[l= 0) Ganloading )

Remarlk 2-8
The discrete elasto-plastic constitutive model of equations (2.74) 1o
(2.80) is characterized by an infinite elastic stiffness £ (see equation
(2.80)). It could be then appropriately termed as a rigidplastic model
The clagsical decomposition of clastic and plastic (displacement
jumps) counterparts reads:
fle )= (e -+ [l )

and the corresponding clastic free energy:

¥ ([l Jlex) = ; Ele]l= ]Iy +o 0+ ;

G (el w(@)

The constitutive equation is then given by:

§, = m‘“é'[[ﬂ%@ < E(flull- Tl

where E == [lu]]= [l = [lu]f =0

He'®

Remarle 2.9

It ean also be observed the one to one correspondences between the
varables of the continuum model and the ones of the induced
discrete madel according to the following table:
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Continuum | £ et el 4 o i o |A| H

Discrete | [lu]] el =0 [l | & | & | g5 | &,

|
x|

Remark 210

The discrete elasto plastic model is automarically induced from the
continuum one, by introducing only two ingredients (see Figure 2-10):

e The stong discontinuity kinematics of equation (2.49)

* ‘The softening regularization of equation (2.62).

Although it can be explicitly derived (as has been done here) it comes
oul automatically from the continuum maodel if both conditions are
imposed.

E

¢=é+%mm
H =kH

Figure 2-10-~ Oxiginal continuum and induced discrete clasto-plastic models

2.4.5 Strong discontinuity solution of the bar problem

Let us consider again the one-dimensional pmblum of the bar of Figure 2-11

but now in the light of the strong discontinuity approach. Therefore an strong
ulim‘mrinuiry is assumed to take place at cross section § . The solution ean be
iy sketched as follows: ¢

s :

Figure 2-11- One-dimensional strong discontinuity problem

l) Elastic regime: (& s%e};

é
E(x)=— Vx —
k = F=Aa= -L“‘—i-ﬁ (2.81)

a(x)=€&:=£‘6? Yx
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2) Elasto-plastic regime: (5 > %ﬁ)

Ar the peak swress, (o =0 ) let us consider that loading (& = E, & ) takes place

in the discontinuous interface § whereas unloading (& = E£ ) occurs at the rest
of the domain Q/5). From the strong discontinuity kinematics of equation

(2.49) (&(x,) = +,u.,,.(.x-}i- [lilly it results that &, = & since g, (xg,5)=0.

Eauilibrium requires that:,
Guys = £# =0y = lllill= [il= 54 (282)

and compatibility requires:

f:(ﬂﬂ-%}é:(.ﬂ-{*i)iq

5=E'f.’+[[t?]]=fn‘i“+
H E (2.83)
EH v
Hi+ E

where equation (2.82) has been taken into aceount. Finally we obtain:

Ty =

=

: EAH o FA
F=Ad m.“.s_ 70 2.84)

[

r i y )
. s

i

amcdha

E .
Figure 2-12- Solution of the 11D strong discontinuity problem

Remarl 2-11

Unlike the strain-localization solution of Figure 2-4 the strong
discontinuity approach provides a unique solution for the problem.
Observe that the strain localization solution and the strong
discontinuity ones coincide with each other, if it is set in the former:

Hﬁﬁé@:mj’
'y
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NOTE

Here we use the
following property of
the Dirae's deli
lunction:

b
th‘SE () gl =pixyg)
{

MOTE

In nonlinesr  Fraciure
AMechanics, the Fracruie
gnerpy 48 defined as e

Jor the Jeewmation of a anit
of fravtire surface. and it is
considered @ material
property,

2.4.6 Physical interpretation of

parameter. The fracture energy.

the discrete softening

Let us compute the energy consumed in the formation of the strong
diseontinuity in the problem of Figure 2-11. In virtue of the theorem of the
expended power (and neglecting the kinetic energy) the external power
entering into the system is spent in stress power production:

Wﬂ!’

Considering the strong  discontinuity kinematics

vesulis:

aw,, = J;, o (& 48 [la]) a2

oy

=F§= j'ncr-e:r;n

(2.85)

(249 (e=F+8[la])

= Aflo- @+ 8 il =

=Af o Edv+Aa[lill = Al -}uu:r & dv+ A [i]] (2.86)
e} ]
E
oW, =4 td 10 5
MW 2 E (2.87)

If we now consider the whole loading process |'ti':-|_—_2" in Figure 2-12 and

compute the total energy cunﬁumptinn:

= fovan-af [ 4l

f.f_

)m Jm + A j o | [k =

f[f 2l -)dr]rm Al o, il =

’c!!Z

—M[ o T Al o lilkie=A[" o laljie

=0-0

(2.88)

30 that the total consumption of encrgy per unit of cross section is given by:

f“s i Jbtr = G ; —» Fracture enorgy

(2.89)

The integral in equation (2.89) is the area under the stress-strain curve in
mvuharnical energy regnired Figure 2-13 and can be readily computed from that figure as:

lﬂ‘.

- P
Cl_, = -

2 H

=

H=-

]{3‘
2!"

(2.90)
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Equation (2.90) allows to interpret the discrete sofrening parameter H as a
material property that can be obtained from the mechanical values &, and G, .

Figure 2-13- Solution of the 113 strong discontnuity problem



3 Strong discontinuity
approach (3D)

3.1 Kinematics

3.1.1 Strong discontinuity kinematics

Let us consider the body € experiencing a jump in the displacement field
|Iu Ik:,l)'uct'nm a fixed (material) surface §, whose normal (pointing towards a

fixed side of §, ﬂ') is denoted hy n, i
f [ul

i

£

B
&,( [l #ny

5 i

§

Figure 3-1- Strong discontinuity kinematics

The displacement and displacement fields read:

wx. =000+ H, ol lxn

b
[l fkx, o) = wix 0| e = 00x500) -

i
H (x)= ) YRS = Hoaviside' s step function
0 ¥Vxe Q)

(.1)

In the continuum format the (infinitesimal) strains are given by:
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L&}

e(x.1) = ;(vm LBV = Vo=

=Vhi+ 1,V ull+ lalle v, )Y =
{ 5, @n (3.2)
= & + &, (la]len)

L=l

requiar  singular (unboundad)

dtf
dy(x)= “:j'i — Difag' s dalta functlon
it

3.1.2 Regularized strong discontinuity kinematics, Weak-strong
discontinuities,

Instead of the strong discontinuity kinematics of equations (3.1) and (3.2) and
we shall consider a regularized version, by assuming that the displacement
jump rakes place across a very thin disontinuity bard ", of bandwidth #, (sce
Figure 3-2 i

s

il }

l(ﬂl’lﬂ@ll)"
h

g
Figure 3-2— Regularized strong discontinuity kinematies

The mathematical clcst:t'ipt.iqm of such kinemartics then read:
(x, 1) = (x,7) + Hif (x)[[ﬁ]](x,r)

H§ — Ramp function on §

(3.3)

E= B 4y Lm]l® n)
regular h

—_—
ounded, unbounded
(b b when h—0

R o (3.4)
My (x)= :) \::‘i ?2 4 — Collocation function on Qf
X

. I
fmgp. S(x};=ﬁ_’.} ~» Regularized Dirac's delia funetion on £2"
g

Remarlk 3-1

When the bandwidth h— 0, in equation (3.4), the concept of strong
discontinuity is recovered,
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The kinematics of equation (3.4) allows extending the previously defined
concept of strong discontinuity to the more general ease of weak discontinuiry
characterized by a non-zero bandwidth:

Discontinous kKinamatica

e=t+p; - (llon)

h# 0 — woak discontinuity
h =0 - strong discontinuity
— —]

Remark 3-2

According to the previous definitions we ean characterize two
families of discontinuities:

o Weak  disontingities:  continuous  displacement  fields  and
diseontinuous (but bounded) strain fields (see Figure 3.2),

o Nmng  diconfinaitiess  discontinuous  displacement  fields  and
unbounded strain fields (see Figure 3-3

:’(t - I? {u = ":"’FI'! '. P
(b)
hi |
L . Weak discontinuity
! Strong discontinuity
12 1, . | é B y
j / | | -~
: kh':_u.u!-uu-_a...________ A
s i b /
(©)

Figure 3-3— (a) to (¢): mechanism of formation of a strong discontinuiry. (d)
vatiable bandwidth model
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Rematrle 3-3

The kinematics of equanon (3.5) allows imagining the following

process of formation of a swong discontnuity at a material point

Z of the body:

1) A discontinuous  biftreaton procedure (see section 1,53 in
Chapter 1) induces the formation of a weak discontinuity at ime
t (the bifircation fwe), according to the kinematics of equation
(3.5), characterized by 4 bandwidth hyg # 0. (see Figure 3-3(2)).

2) At subsequent times (f =1y ) the bandwidth decreases (see Figure
33 (b)-(c), ruled by a certain (material property) bandwidih
evolution law (sce Figure 3-3(d), up 1o reach a oull value (for
computational purposes, a very small patameter £ ) at time gy
(the strong discontinnity time) which characterizes the onset of the
strong discontinuity,

) Therefore, during the time interval QE.IED] a weak discontinuity
develops at 2 (weak discontimaly regie) that collapses into a strong
discontinuity at time fgy. Finally for f>fgpa full stong
discontinuity develops (stong discontinaity reime

Equation (3.5) can then be integrated along fime as follows:

i w1 _— .
E(x‘”lrw". =LE i +.u.-.'f|; aﬂlﬂ]]t&} n)’ .1'{ +Hg _h_(":-- [l [k @ m)® = (3.6)

£ (bounded when h — 0) =k Al

il = & i lelony

=]

(houndad)

(unbounded) (3.7)

dhef .
All ko = [lufloe ) = [lu k. 1) ez,

v
s i

3.2 Three-dimensional elasto-plastic model

Let us consider the general three-dimensional clasto-plastic model with strain
softening (see Figure 3-4):



3 Strong discontinuity approach (30)

iu

&

£

Pooaye e ob B I »
Free energy: wiee" a)= 5 (&—e"):B:e—e")+yi(a) (3.8)
v ()
(".nnsl':itut.i\rt o ay “Bi(e-e") (3.9)
edquation: g
Yield function: Ho.q)=¢@)~q ;: ¢la)20 (3.10)
J ¢
Pl ——=i-L=in
Flow rule: il do (o) (3.11)
m
| ; df :
Evolution law d=—A=-=4 (3.12)
o
dp'lay  q(0)=a,
I‘Im‘dr_‘ning/ q(a) = E}m ’ gf=)=0 e [{}'d.v] (.13
softening law gl 1) ' g
H=--—"50 = §=Ha
des
l-‘“l‘“ﬁrl“ﬂf Az0 =0 Af =0 (Kuhn=Tucker) _—
::::IE:::;?S [f=0= ﬂf =0 (persistency | consisiency) (3.14)
Tangent &=E" ¢ B =E- f‘"} “"3”1;' 5 (loading)
constitutive . Pl e s I (3.15)
equation g=E:¢ ; (unloading)
gk 4 @
ay -
|} = Softening
parameter
~— &

Admissible srrcsif_
EPHEL‘ = q |

Figure 3-4— Blasto-plastic 3D model: softening law and elastic domain

where B=A1®@1+ 261 is the elastic constitutive tensor and EY the (fourth
order) mngent constitutive tensor, ¢(a):R® =R is the uniaxial equivalent

stress, and m =

(o) _df(0.49),

““i5 the flow wensor,

Bl da
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HOTEH

For uniaxial stress Ru;-m i 3o
BtlcE (@) =a - The umaxial equivalent stress ¢(@) is a continuous function that

remaing bounded (and also m = ai;-f;ﬂ) for bounded values of its

arguments o, It defines the yield surface, 9%, , and the elastic

domain, %, | in the stress space (sce Figure 3-5). whose size is
determined by the value of the hardening/softening variable g .

0B, ={o; f(o,q)=¢(c)~q=0}

=
-
-~ |
...................... o F--.-‘ T, Eﬂ = {“ ; Ir(“’q.) " ¢(G) = q i 0}
b ol st = 01
=i T

Jo

Figure 3-5- Elasto-plastic 31 model: yield surface and elastic domain in the
stress space

3.3 Strong discontinuity analysis

3.3.1 Traction continuity. Stress boundedness.

NOTE

PR L We impqsc the traction 7~ =& n 1o be continuous across the discontinuity line
across any surface ean © (8¢¢ Figure 3-6) all along the analysis, i.e.:
be argued from the

momentum lince 'ﬁ_'f
principle. Zais o s T =T = (3:16)

7= oy n

. Traction continuity
[[7_'.":'3:”3 N=0, '“zllﬂ:[l‘“=0 Q-0
7 =0o-n
avs 8
-d-— I——h
n

Figure 3-6— Traction continuity across the discontinuous interface
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Eguation (3.17) can be written as:
0‘{_”3 '“=ﬂ-‘|; 'l!=7'

' 3,
8oy 'n=d, n=? (3.18)

From equation (3.18) the following arguments can be stated:

1) The strains (and the rate of the strains) ar the regular (continuous) part of
the body, /.5, are bounded from equation (3.4).

gm.ﬁ =€+ Hy l([[ﬁ]]'z"“'l)fr =E - hounded
e— it h
=0¥xe /5

(3.19)

2) The eontinuum (elasto-plastic) model of section 3.2 returns bounded
stresses (and also bounded rate of stresses) for bounded strains and rate of
SOrains:

Gn;‘g (EJ —* houndad

Oy, (€, €) = bounded (3.20)

3) 'Therefore the traction (and the traction’s rate) are bounded at /8, and
from equation (3.18) so are in §:

7 =8, -1 — bounded 7 =0, - n -3 bounded ey
7 =8, -n—bounded 7 =&, n - bounded (3.21)
4) In principal stress directions, equation (3.21) read:
G5 =0ip; ®p, +0,p; @p, +0,py ‘3’13;}:&
n=apy iy py g p,y (3.22)

17'|= [‘31 MGy M, G;‘ﬂ;] "5 boundod

where {p;.py. py}is a unit ([p:|=1) cartesian basis in the principal stress

directions. Therefore and since {m .my, ny} are bounded, from equation
(3.22)

lo,.0,, 0y |"— bounded = |u_‘. -—}houﬂe_nfi__l (3.23)

The same reasoning than in equations (3.21) and (3.22) for the rate of strains
leads to

‘ E g = bnu.rrded I (3.24)
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Remark 3-5

In order to fulfill the traction continuity (momentum  balance
principle), the stresses o (and the rate of stresses &, ) are bounded
at the discontinuous interface, even when the strains By are
unbounded. This applies not only to the traction vector components,
but to all the components of &, an &, in any basis.

Considering now the stress-like internal variable ¢ we ean argue the following:
1) Since the stress field ayis bounded, so s the plastic flow tensor

_99(@,)

my e (see Remark 3-4).

2) From the loading-unloading and persistency conditions (3.14):

Loading— A, =0= o] l. —§y=0=q, = (G ) : ;

§ fs_ Ps —ds ds =¢loy =5 gy [Un(b(\'-"y)]

Unloading— A, =0= g, =A;H =0 (325
; dloy) Fs)
Pplog) =_<:J-czt_f- Ge= mg E:i = boundad

el
houndad bounded

and consequently, from equation (3.25);

[;j-r_hglhnundad (3.26)

3.3.2 Strong discontinuity analysis (SDA)
Let us consider the rate version of the constitutive equation (3.9);

s=E:(e=-e")

£ =Am =8; =B:(¢,; =4, m(g,)) (3.27)

And substituting the strong discontinuity kinematies (3.4):

&y =BG + :;([[n]] @n)' - A, m(oy)) (3.28)

ha, =E:thég +([u]l@n) -hi, mia,)=
timth &; )= tim(E:h g, y+ B ([ofl@n) -

boundad bounded (3.29)
=0 =0
= limbA ) E:m(o,)=0 =
bwil e el
botndad

E:(lall@n) ~E: fim(ha; m(o,)=0 = (3.30)
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([l ]l I'l)1 =lim(hA; ) m(a,)
| = — 3.31
o boundad ( )

In order to have a noa-trivial soluton ([[ull=0), in equation (3.31), the
following condition emerges:

A )e0 (3:32)

which ean be accomplished by defining a new bounded variable:

ilitf

A = Ay - discrote plastic mullplier (bounded whan h - 0) (339)

By substituting equation (3.33) into ((3.31) the following relatdonship is
obtained:

Strong discontinuily equation

(lo]l® n) =Aimo,) (3.34)

Hquation (3.34) termed the strong discontinuity equation plays an imporrant role in
the subsequent analysis. Also, substituting equation (3.33) into equation (3.12)
(ckm A):

L dlef .
P :1,1 = ==

(3.35)
[ﬂ: —3 discreta internal variable (bounded when h -}D)|
Equation (3.35) ean be integrated for 1> 1gpas:
o :Irlii{d.'=£'"lﬁf{r+l—r Fell =, +v‘AEt"
sty do g h E L™
T AR 630
D

AG(x D =T(x. 0~ (X, 1g,) VIZly,

Finally, taking into account equation (3.35) into the rate version of equation
(3.13) ( ¢ =Hdc) and considering the bounded character of §; (see equation
(3.26)):

I & 1
gy =Ha,=H_ « = (imH = H (bounded) 337
bounded Mpounged 0 h (3.37)

Therefore, condition (3.37), and subsidiary conditions (3.33) and (3.35), can be
achieved by imposing the following structure to the continuum softening
parameter H

Sollaning regularization condition

H «hH (3.38)
H — discrata (or Intrinsic) soflening paramoter
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Remark 3-6

According 1o the preceding analysis the softening regularization
condition (3.38) is only strictly necessary at the strong discontinuity
regime (when the bandwidth hsk — 0. However, for suhmluqem
purposes, we shall extend it to the complete process of formation of
| the discontinuity inehuiding the weatks discomtinnety mgime (see Remark 3-3
and Figure 3-3),

MNow, IJ)' substitution of cquation (3.38) into cquﬂtinn (3.37)

gs = Hé (3.39)
R and integrating along time:
o f / i
Here Jf is considered t?_;‘”_h" - J: gyt =J;: gyt + L Hé dt = Gy + HJ: elt
constunt (linear discrete ! —_— " . "'_ - |
softening). s A (3.40)
Generlizauon o non- :
h“"',’“' softening 15 ds =qyp + HAG = discrete softening law (linear)
straightforwsrd, e T L]
e

Remarde 3-7

As in the 1D ease, the intrinsic softening parmeter H is material

variable that will be related to the fracture properties of the material .

By imposing the softening regularization condition (3.38) (and, thus,

considering the continuum softening parameter # given in terms of

the diserete one H ) the b;:und&d character of the discrete varialsles

@and A and, eventually, the bounded character of 6y and g, is
aranteed.

Let ug now go back to the components of the strong discontinuity equation
(3.34) into the specific orthogonal basis constituted by the normal nand two
unit vectors €,,6, parallel to the discontinuity interface (see Figure 3-7)

Figure 3-7— Local basis ar the discontinuous interface
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([[ﬂll@ n)’ =1 mio,;) -

[ I Lo |
ladh Ml 3 M Il
My My My
;"filh 0 0 |=A|my my my (3.41)
| My My Pl '
| 0 0 2l z
_zll Il | ol

(sleny|
Hauation (3.41) provides six independent equations (due to its symmetry) three
of them (components (), (9);, (®)y) provide the value of the d.i:cp]ﬁ.t:n‘.lﬂcﬂﬁ
jumps:

. Discrete conatitutive equation
I]"}.[]I = 1 m, m,
Il"B* = E‘z”"? =|ll=im’ |o]=|2m, Vi =t (3:42)
[l ]l = K 2m, 2y |

The remaining components (components (2)s . (#)ay, (#)y) provide a ser of
restricions on the stress field ggto be fulfilled ar the strong discontinuity
regime:

Strong discontinuity conditlons
(oy) |
My, (@)= au':.:
) 3.43
Rioy)= mmuu:ﬂ'tﬁ) =0 Yiztg (3.43)
a3,
dp(o)
My (G ¢ ) = sl
L Wil 0
Remark 3-8

The strong discontinuity conditions, R(a;)=0, are not, in general,

fulfilled ar the bifurcation tme ry . Therefore they preclude the strong,
discontinuity to originate directly by discontinuous bifurcation of the
stress-strain field. This justifies the introduction of a tansition
mechanism like the variable bandwidth model sketched in section
3.1.2 (see Figure 3-8),
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[Reo)20] LCATU R,

3= ;‘R. P = 4=ty I- P

/W e s Weak chscontinuity

(/ Strong cl;@:gf:rstimlil‘y

=

gt ’sp 1
Figure 3-8~ The strong discontinuity conditions and the variable bandwidth
model
Remark 3-9

The strong diseontinuity conditions (3.43) also state that, at the strong
discontinuity regime (for 12 1g) the uniaxial equivalent srress,
¢(ay), does not depend on components ©,,, 044,64, Therefore it
only depends on the remaining components of the stress field o
(611:615,03) which, in fact, are the components of the traction

vector in the chosen basis: [‘7' l= [cr,, ,n‘,,,cxmy :

o )=d(7T) Vi Zlgp = f(S5.9)=0(7") gy Vi2lgy = (344

f(O4.q )2 F(T . q)=0(T )=q; VIZ1s, — discrote yield function (3.45)

and, in view of equation (3.45), equation (3.42)can be written as:

] [ar
my aﬂ'” a‘p a]f;l-_l l)-F
Zmu day, A6y edl [EJT iy
)i | o ) 0 aF (3.40)
der doy | aﬂ'l.\_,\'
. 3F
- m —&2,..:' -

flafl= Am" =4 g";: Vi =2ty — discroto flow rule‘ (3.47)

3.3.3 Discrete free energy.

From equation (3.34) (([u]]®n)' = L m(o, ) we notice that that for £ >4, ;
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([afl®n) =Am(o,)=s~ (ﬂﬂ"@n)‘-:—l m(G,) =Am(g,)=¢f
i

(3.48)

1] I' o] x
gy = E{"ﬁ"@'“) Yizty,

£ =E+--!- ([oll@n) =e5 + el =

el

Remarlk 3-10
Feuations (348) and (3.49) state that at the swong discontinuity

regime the plastic flow transiates entively info fﬁ:l}&hﬁwﬂawfl Jup and #hat He
regreler strein 15 preredy elastic.

Integrating cquatinn (3.49) along rime:
i:‘.-fﬂ:df edr+j' Edi= gy + AR = |limhey =0 ¥i>ig,
i, s h-all h

o boundead s

EEr.l:: AL
Let us now consider the free density energy (3.8) at the strong discontinuity
regime (1 >1gy and =4 —0);

(3.50)

#
J—E*—-

¥, I ¥
wee" )= i(e—af VB e—-e") +y ! (a) (3.51)

ye(e)
and, from it let us consider the free energy ar the discontinuous interface, ¥,
per wnil of sinface. Both are related by (see Iigure 3.9);

Incremantal froo anargy Frea anergy volume -

y = timhy)

unit mf Irfnce _unit v?lumu‘ surface (.. v (3.52)
¥ Ve h

i
-,

il . dl'=hds
d ﬂ

.1"

2
e ™
I'\"H-u.. Lt
T IIII'II"“""'_‘

Figure 3-9- Differential of volume at the discontinuity interface

Now, by considering equation (3.52) and inserting the strong discontinuity
kinematics (3.7)
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W= f-'fm{hw_q)= finmh -I-E" HEet) + imhy P (o) =
-””’( (hz ‘B E:"}+ﬁmhw”(mau+;éd) v ' (AE) (3.53)
0

W (A)

where equations (3.38) and  (3.36) have been considered. Therefore, the
discrete (per unit of surface) free energy W7 can be written as:

iallllam= o Limhyr (erg ) = discrete froe onergy
W (A”“H’ WA

So that the clastic counterpart of the discrete free enerpy is zero, On the other

hand, from equations (3.54), (3.36) and (3.13):

s . dnw o) dey 0w ()

: =lim———3" =g, =»
dA hao g, E]Aa h0 ey “a

(3.54)

1
i
h d (3.55)
dy ' (Aa)
iy = %&"" V=g,

and, from equations (3.55) and (3.40) (g5 =g, + HAE ) the explicit formar of
i# " (A& can be found as:

) i
gy = fwaﬁ('é Dagy +HAE = @7 (AW) = QA0+ H@aw? (56

3.3.4 Discrete elasto-plastic model.

The results in the seections 3.3.2 and 3.3.3define a complete  discrete

constitutive model (relating the traction at the interface 77 and the
incremental displacement jump Allu]l) see figure (Figure 3-10) that can be
summarized as follows:

7

DY

7 =3 7

*_

Figure 3-10- Diserete constitutive maodel at the discontinuity interface
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| galullam= o+ timhy " (ery)
ree energy: W - 3.57

o i (Allu]b P (A e20
Yield function: 184V = F (T q) =0 (T ) — g (3.58)
Flow rule: flofl=Zm" =4 g"—; (3.59)
Livalution law Fe=i (3,6())

_dy(aa) | q(0)=qsp
Hardening/ s (Am___a'é b e mil }:"!E [0.9¢5 | T
softening law Ha aqmjx; <0 = 4, =Hg @o1)
et
I'{’M‘"in_g/ Az0 F =0 AF =0 (Kuhn—Tucker)
unloading (3.62)
i T F=0= AE=0 (consistency)
Tangent L S
constitutive ] H (m om ) 7+ onding) (3.63)
equation [[l.'l ]]: ] {unloading )
Remark 3-11

The diserete elasto-plastic constirutive model of equatdons (3.57)to
(3.('13) i5 a :{Wfp&rmk wodel since it could be characterized by and

infinity elastic stiffness E as follows:
Allul]= Allulf + 6[[“]]"
and the corresponding elastic free enerpy:

||'&'=l %(A[]u]]—ah[[u]]”):ﬁ:m[[u]]—A[[u]]") +yr " (Ad)
W (]

The constitutive equation is then given by:

7= a:[l‘[‘«;n =B (AlJu]l- Allull”)

Remark 3-12

It can be also observed a one to one cortespondence between the
vatiables of the continuum model and the ones of the induced
d.i!iC[Gr{! ﬂ](l(lﬂl RCCHL'LE

tor the following table:
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Continuum | & e’ g V| q g |A| H

Discrete | Allul] i[ft'%t Aln])” |7 (A& | ¢ |7 |Z | H

Remark 3-13

The discrete elasto plastic model is automatically induced from the
continuum one, by introducing only o ingredients (see Figure 3-11):

®  The strong discontinuity kinematics of equation (3.5)

® The softening regularization in equation (3.38).

Although it can be explicitly derived (as done here) it eomes out
automatically from the continuum model if both conditions are
mntroduced.

o Ml

g=¢ +r:(ﬁﬂﬂ®“)
H = nH

Figure 3-11-— Original continuum and induced discrere elasto-plastic models
3.4 Application to different plasticity models

3.4.1 Rankine-type models (mode | of fracture)

3411 Continuum model

HNOTH

1 ¢an be shown from
the dircantnuous
bifurcution malysis (see
Chapter 4) that § - P

Uil plo) =0,
naxia
: a, 20, 20, - principal stresses (3.64)
s alent stress : = '
equivalent stress . 2 (T = b i a ;U, P, @p,
dp(o) _do, '
e s . @ =
m o v =_,PI Pi (n=p)
Flow tensor oo (3.65)
Im|=[o 0 0
000
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Figure 3-12— Rankine plasticity model

3.4.1.2 Discrete induced model

: oy, |
Diserete flow [m' | 2m,, |=|o (3.66)
tensor
2myy | |0
discontinuity fiyy =0= 0=0¢— (dentically fulfilled) (3.67)
conditions iy =0= 0=0
10 0]|7i(=8,)
ﬂu]]:i'?-(nf@m'}?" [0 0 of|Z=t)| =
000 7:("_- ti3)
Tangent )
constitutive ‘v | | ‘ (3.68)
tensor (loading) i, 1= i il
. [|=0 —Modalof fracture
mhﬂ=0

Figure 3-13- Mode 1 of fracture
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Remarle 3-14

Nartice, from equation (3.67), that the strong discontinuity conditions
are always identically accomplished independently of the stress state.
This provides 1o the Rankine-type plasticity models the interesting
property of being able to induee a strong discontinuity directly by
bifurcation of the stress-strain field (see Remark 3-8). No trnsition
(variable bandwidih) mechanism is, in this case, needed.

This fact, and also that they induce a mode | (no mngential jump)
I fracture mode, could explin why so many discrete constitutive
madels, based on Rankine-like plasticity, have heen traditonally (and
successfully) used in diserete fracture mechanics for rocks and

concrete.

3.4.2 J24ype models (mode Il of fracture)

3;4.21..! Cﬂ'n l'l.lH.I i l'l'l{)ﬁ'lct

Uniaxial 3

equivalent stress g \/2 BE & R (6%

Ip(a) \F 5

m=——r S

da V24
Flow tensor TUN (S +53) T3 T3 (3.70)

l.m.l‘ \]2 H LIF Sz Tm; (tr(s)=0)
o T Ty S

“'l.cri

Figure 3-14— J,  (von Mises) plasticity model
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3.4.2.2 Discrete induced model

Discréte f ]
iscrete flow
2 :
tensor Im ] ml.l‘ - 2 1'3" 21'.12 (371)
2my, ' 271
3y =0= Lt =0 5 i =0I . 0 ‘ru T3
’!!;J=U==' S =O 2. == 8= rp; 0 0
fﬁ-“ =0=ﬂ' I-'-):‘ =‘ﬂ Tl',l D 0
Strong 0 7 7y
discontinuity 0 0 (3.72)
conditions Z\I_ i2 "‘TnJ 74 0
; 0
b= _-\[3_ — | 5
_J('rzlﬂ.'z) 5
12 T ¥ | 1y
[[l.'u]]=—}3 (" ®m’) 7 =
3 | 00 0 7Ll'(= d‘u).
Y /AN - Th  Tats || 72(=t)| =
H (vt 2 12 123 2 12
T'an%::._mt _ (T2 T Tl TA || Z5(=ty)
constitutive
(3.73)
tensor
(loading) [li, || = (l
[[ri ﬂ— = 1.'” r —» Moade |l of fracture
.l.[.’la II= }_7 Ty

7 —
b j— n=¢,
Alla]l  alla]l n=0)
Figure 3-15- Maode 11 of fracture
Remark 3-15

Unlike for Rankine plasticity models, |, plasticity models have non
trivial strong discontinuity conditions, which require a prure shear
st 1o the deviatoric stress field s, at the strong discontinuity
regime (see equations (3.72)). Obtaining such a parficular stress-state
will require, in general, the fransition mechanism provided by the
variable bandwidth madel.
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Remarle 3-16

Notice that the induced discrete constitutive equations (3.73) are pure
mode 11 fracture modes (no normal jump s induced), with uncoupled

behavior in two orthogonal dircctions on the discontinuous interface,
I, plasticity models are, then, suitable for modeling s4p Jes in soily or
shear bands in merals.




& Discontinuous
bifurcation analysis

4.1 Onset of a discontinuity

In Chapter 3, it was presented a mechanism for the formation of a stwong
discontinuity as a weak discontinuiry collapsing to a null bandwidth strong
discontinuity (see Figure 4-1), According to this mechanism, then initial step is
the discondnuous bifurcation of the soress-strain feld into a  weak
diseontinuity, This will provide both the direetion of propagation of the
discontinuity and the bandwidth b associated to the weak discontinuity at the

1;:ifwcg.tiun time ta- h __,//_‘_h
£ ! / -

8 =

(a) (b)
—7‘-‘11 o0 h I | I

byt Weak discontinuity

© (d)

Figure 4-1—- Mechanism of formation of a strong discontinuity: (i)
Discontinuous bifurcation into a weak discontinuity, (bj-(c) Collapse into a
strong discontinuity of null bandwidth,

4.2 Elasto-plastic softening model

Let us consider again the general three-dimensional elasto-plastic model with
strain softening;
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4 Discontinuous bifurcation annlysis

Free encrgy:

&
-—E“—-u

yiee! a)= ; (e-e" ) :Eig~e")+y! ()

v ()
Constiturive Cdy ;
cqUARORN; g= e =E:(e~¢’)
Yield function: fa.g)=¢i@-qg : Pplo)=z0
df . dg
. gr =A% =% _
Flow rule: ¥ oo Am(c)
m
Fvolution law = A
_dyl(e)  q(0)=a,|
].h}l.d:jn'mll:/ gla)= v l}‘(ﬂﬂi=01 . [ﬂ.rr .-]
softening law ,
- H=a—wf{@50 = = Hek
da
Lc.mdin_g/ Az0 f<0 Af =0 (Kuhn—Tucker)
unloading . I
conditions [=0= Af =0 (persistency/ consistency)
Tangent o=E":% : E"= Eim -(E_'—m (loading)
constitutive ] s i
equation 6=MH:e ; (tnloading)

(@.1)

(+2)

(43

(4.4)

(4.5)

(4.6)

(4.7

(4.8)

and examine in more detail the loading unloading conditions. Considering
equations (4.1) to(4.8):

[1) Loading (1]

— f=0
A=0
L}J q{ﬂ-}o

/=0

f(ﬂ-qiﬂﬁbfﬁ)ﬂ?} dg

=( -"rf =0) — 1 =0 (parsistency)

s B i =m:E:(¢-e")—HA=0

# =i
ag, HA

e
im

m:E(e—¢')-Hirsm:E:g-Am:E:m-AH =0¢e
Am

HOTH

1t 18 nusumed here that
Haim Eim=0

m: B:¢ =m:a¢"™ =0

lef
b &'

o mBie
H4m:;E:m

1,ﬂ.‘,u,,=]E_1Fi:r|'nE)r|1.-IE4

[wm"ﬂ:e
; H+m:IEEl

#.9)

“.10

(4.11)

(4.12)
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IZ) Neutral loading (N].,}:]
A= q] — {f =¥ =(Af =0)— =0 (porsistency) (4.13)

A=0
. r_q_:_E :_t. :

A :
H4m:E:m

=) &=

G=RE":e=I:¢ (#.14)
__JE}_:m@l_l_l:H
B H+m:E:m

T = ey - gl
m:Et=m:a"" =0 [H"’uE

13 Elastic unloading (U

A =0 -;{::3 =(Af=0)—»  fj<0 (4.15)

fla.q) =d(a) -q}
f<0

o 28 g =miEie-£)<0
B preo
z o
m:Eig- g )=miEt<Oe "
Am =0 (#10)

m:Eie=m:e" <0
a=[H:e

(sce Figure 4-2):
AT g g g=Y@ 0 34
o do Bl
m: 6" 5 0(loading)
e —m:a"™ = 0(neutral loading)

trdeid

-

|||||||||||||||||

e l’l m: q

= D(unloading )

M, ={o: fogp=p@-g=0}

Figure 4-2~ Loading-unloading conditions

4.3 Discontinuous hifurcation

4.3.1 Bifurcation scenarios

Ler us consider the domain £ of Figure 4-3 and the bifurcation of the smooth
strain field &(x,1) resulting in the weak discontinuity kinematics:

it
Elmus = s =E(X)

it =?|Ié]]=é -£ i =!(l-[l'l]]®“)s 4,17
d:lm..:r =r¢.$' =E(K)+ Il'l (I[“Il@l‘l)j (x) ¥ s = ( )
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which has to be compitible with the traction continuity condition:

”_fﬂ{x) =|l&]]n= G n=0G,,, n=0 Vxe§ (4.18)

We notice from equations (4.17) and (4.18) that:
ol lell= Tl (lallon)* = - s} all=0 (419

=0

s 5
Fipure 4-3— Bifureation of the strain Aeld

With regard to the loading-unloading conditions of Seetion 4.2 let us now
consider the following possible scenarios for the hifurcation;

I {.-NLat$ and L-NLat ©2/§ (lnac'lingw-lrmdiim

o, =E" &,
o =E” Bys

= [l6 [|= 12 : [le]) (4.20)

From equation (4.19) and (4.20) we have:

o=llellfloll= [e] :5*: [le] = all-@ E” -w- [l (4.21)

J h rp
Hlaleny S aln) Q"
= [ lul-o” fall=q B

where Q% = E” 'n is the elasto-plastic localization tensor,

M) |Loading atS and unloading in /5 (loading-unloading)]

o, =E7 i, = (15 _im®m:|
Oopy =Higg,y (4.23)

lls 1= [[¢]) - @_}-ﬁ?};ﬁ Ih« m &

From equations (4.14) and (4.16):
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Loading at § —»m:E:&; =0 .
Unloading at /8 —»m:Eié,,, <0
O<m: g, «cm:E:¢, —m:E:¢,,,

T mikl

[O-n:m:IE:E_., fcm:lE'-:[[ém

(4.24)

and from equations (4.19) and (4.23) taking into account equation (4.24) we

have:
-t:m:iE:"éu
0= [lell: loll=llell: &: el [le]l: i i
> el Bl el o MBI
-&n(-"ﬂﬁmﬁ)&nummwnmﬂ
E'I'.‘?
[L_]] B |L]] 0= |[|1]] (nE”-n). [[ull<o
Ulalisay — L(allon) T

= [ [ulo” [ull<o

1) [Unloading at § and loading in©2/§ (unloading—loading)
O =lgy 5

Gus =B (bgs =[

o=l 2% O Ears

Em@mE . =%
H+mIEm s

From equations (4.14) and (4 28):
Unloading at § sm K&, <0
Loading at /8§ -m:E:g,,, :1-{1}
Ocm:E:gy,q {!anB:Em,; —m:lE:e,;
-m el
|D-c:m:!E.:¢x -c:-m:E:[Em

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

and from equations (4.19) and (4.23) taking into account equation (4.24) we

have:
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{—m‘,E:ﬂéﬂ
- . | R 1 P A | P | - m:E:E"
0= [el: o= flefl- 2 fle])- I[e]i‘{t)t@-m) T >
=

; x . m:]E;ﬂe.]] ;

E: = L A e ke H‘JO
;:[[gﬂ o ”t” "‘ﬁll im H4m:E:m )
el e BEm@m:E o e
Pllsll.fm: i g D=l B el =

E‘i‘l‘

]_Iﬂl B ﬂg_]] <0= 'i-l[ull-gn.{mﬂ*-an)-llﬁ]]{() e
S T (S Q" 0

= Ellﬁ,u_' Q" [lafj<0 (4.32)
IV)  |U-NLats and U-NL at€2/§ (unk:mling—unjnadinm
o, =E:¢, } :
o = lsll=Eel 4.33
s =By s i)
and from equations (4.21) and (4.33);

o=llellioll= [e]l :5: [e) = Slllm B -0 .
Miabeon)  L(ollomy " Q "

= ]__I[ﬂ]]- Q° [lull= 0| (4.35)

where Q" =n-[E:n is the ¢lastic acoustic tensor,

Remark 4-1
From the structure of the elastic  econstitutive  tensor
E=A1®1+2G1 the acoustc (second order) tensor  results:
Q" =An®n+2G1 and  the corresponding  cigenvalues  are;
Yi=A+26=0 and ¥, =y, =2G>0. Conscquently the acoustic
tensor Q° is always positive definite and, then from equation (4.35) in
scenarios 1V we conclude that [[i[l=0 and therefore no bifureation
would ke place, This allows discarding such a seenario.




4 Discontinuous bifurcation analyals 6l

NOTHR

an;q‘.e that n 1% ln,:pi
fixed onee computed al
t=t,:

Remark 4-2

® Repgarding scenanios [, and 1V, in the former equations (4.22) and
(4.35) implies that, at least, one cigenvalue of Q7 is zero, whereas
in scenarios 11 and L1, equations (4.27) and (4.32) imply that, a

W

least, one eigenvalue of Q™ is negartive.

= Since in the elastic regime all the eigenvalues of Q=0 are
positives (sce Remark 4-1), in the context of a contnuous
evolution of those eigenvalues along the deformation process,
seenarios | (one null eigenvalue) will come first than scenarios 11
or [11 (one negative eigenvalue),

® ‘Therefore we conclude that seenario 1 (loading-neutral loading at
8 and loading-neutral loading av Q/8) i the one determiming the
JSirst, and therefore the actual, discontintons bifurcation.

4.3.2 Bifurcation equation. Determination of the normal and the
bifurcation bandwidth

Once determined that the discontinuous bifureation takes plm‘.c in the 1unding~
loacling scenatio, from equations (4.18) and (4.20) we pet:

ﬂ=n-|fﬂ'l]=r—:n-(E"’ n)-[lufl= &(n-!ﬁi”” ) [lif]= 0 [lall=0
Qrw

In order that equation (4.36) has solutions different from the wivial one

(4.36)

([[I]]]: 0) it is necessary that the localization ensor Q 7 is singular:

Bifurcation equation

der( Q™) = de [n B (H ) n]: 0 (4.37)

Therefore equation (4.37) is a necessary condition for the bifureation ro take
place. Let us, then, consider the set & of values of the hardening/softening
parameter

A , and their associated values @, satisfying cquation (4.37):
G={Ac®|3 d-detli-B”(A)-h]=0) (4.38)

In the context of a decreasing evolution of the softening parameter H{r) we
then define:
H ol _ max H “t‘”f -3 det l“r.'n‘r . E"’(H i'n'r) “‘-r.l'l ]lr 0 (‘1--59}
Hel?
and state that bifurcation takes place, for a given material point X, at time
[y (X)as s00n as:

el ofi

st if
By H(:,,)*—“H5=H"'”'(x.f];_r - ), =n""x0n (4.40)

miy
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Onee the time if bifureation is determined, and estending the sofiening
regulatization condition (H =hH) 1o the weak discontinuity regime, we can

determine the bifurcation bandwidch in the variable bandwidth law of Figure
dedf as:

H“ =|"|I',fiI = hﬂ = 'f"“ ('4‘4‘)

Figure 4-4— Variable bandwidth law

4.4 Resolution of the bifurcation equation

Let us consider the bifurcation equation (4.37):

Bifurcation equation

(4.42)
det(Q ) =det fn- B (H) . n|=0
where B is the elasto-plastic tangent operator (4.14):
B g m@m:E (4.43)
H+m:E:m
Substitution of (4.43) into (4.42) leads ro:
e
= e
i
Q" =n E” nap-B.q- Nt EmOm:Bbn_
“—a,—" H4+m:E:m (4:44)
i
=Q" - - e@e ; e=n-FE:m
@ H4+m:lE:m
where Q° is the so called acowstic feisor:
Q" =n E” n=An®n+2G1— acoustic tensor (4.45)

Since Qs a positive definite second order tensor (see Remark 4-1) then
det(Q*) =0, and equation (4.42) is equivalent to:

- ‘“_I a i — "-_I & "P — _..._-___I._........_I "-I .
O=det(Q” Q") det:}u ydet(Q”)y=1 H+m:IE:mQ e@e (4.46)
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NOTE

A vesuli in tensorial
algebes stutes that the
aipenvalues of:

Toadh
m-q:A(” =A{1} =
A ai<nib

NDTE

Here 1t 18 conzidered
i

m:nll‘mi p'. Wpi

HNOTE

The Mohc's cweles and
their pmpm'jiun can he
stated for eny gt
secand arder feiiar,

where equation (4.44) have been considered, The elgenvalues of rensor B in
equation (4.46) are:

I = . ? — ! } =} =——8:" t-l -
LA SIS T ot A (4:47)
20

s0 the smaller cigenvalue is A.'L. Therefore equations (4.42) and (4.46) are
equivalent to:

(4.48)

Hny=em) Q" e(m)-m:L:m (4:49)

4.4.1 Geometric bifurcation condition

Lets consider the symmetric second order tensor m(e) (the flow tensor) and
the Mohr's coordinates associated to that tensor

|
v Ty = ((“ ‘m)(nem) = (7, )2)2 (4.50)

in such a way that the locus of all the values of (o

g, =n-m-n
T, ) obtained for all the
possible orientations n, keeping the constraint Hl‘lﬂ= 1, is determined by the
three Mohr's circles in the (o —T)space

cigenvalues of m e, my Zmy 2my:

(see Figure 4-5) in terms of the

At Feasible zone (Jn]=1)

iy s n |

Figure 4-5- Moht’s cireles

On the other hand, after some algebraic manipulation, the bifurcation
conditon (4.49) can be also written, in terms of the Mohi’s coordinates
(&,,,7,) in equation (4.50), for the flow tensor m as:

ﬂ'u =._.I.._V2l,r, "(m)
T :
lo, ,‘39--] sy ey 1 (o |
A B 4G 6(1-2v) (.51)

R =" .
A?=2 Y Bl = gt v)B?
o’ =8
]
22
where 11" and 7§ are the corresponding first and second invariants of the

flow tensor m:
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def e
1" = 1, (m)=rr(m) : JiM = f(m)= -;-ﬂ'ﬂ*(m) tdevim) {@4.52)

Equation (4.50) determines an ellipse in the Mohr's space of center (g,,0) and
semi-axes Aand 8 (sce figure (4.6)).

(o,,0)

\ Ih
A=gWB | pipy /
L

Figure 4.6- Bifureation condition locus

m

Remark 4-3

® The center (o,) and the shape (A/B8) of the cllipse arc
unaffected |.‘n'\' the value of the :mf'mn_ing parameter H

*  Fora fixed value of m the size of the ellipse increases with the
softening parameter H (parameter B).

* At the elastic regime or for unloading cases H =eo & B7 51
the size of the ellipse 15 infinite.

For a given value of the stress stare @ and, consequently, for a fixed m(o) we
can consider the possible ellipses of Figure 4-6, containing the solutions of the
bifurcation equation (4.49), and the Mohr's circle of Figure 4-5 defining the
feasible space (see Figure 4-7),

Figure 4-7— Geomettical bifurcation condition
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Bifureation is possible for those values of H whose corresponding ellipse cuts
the feasible (shaded) zone of the Mohr's circles. According to equation (4.39)
the lagest of those is the critical softening parameter H", whase
corresponding ellipse is tangential to the largest Mohr’s cirele in points 7, and
T, of Figure 4-7. By resorting to the Moht's circle properties, the associated
values of n™ have the following propertics:

1) 0™ is arthogonal to the intermediate principal direction of m (= p,)

2) The angle of 0" with the first prineipal direction of m (= p,) is 8" given in
Figure 4-7.
Py
n
o -_P 1

Py

Figure 4-8- Normal n and the principal directions of the flow tensor m

After some algebraic manipulation the wvalues of  H™" and 87" are
determined by:

. 4 4

tag 2g e =_£¥£{- (4.53)
my 4V m,

H = —Fm? (4.54)

Remark 4-4

Notice in Figure 4-7 that, in general, there will be two possible values

CEl 'rd i g "
of @™ and, therefore, of 0™ and wo possible bifurcations ¢an take
place simultaneously, Particular cases are:
Qﬂlrm - 29;11! =) == n;-:'rr L “cirff =p, and

e _ cHE _ el ot
20" =20," =mg =50 =n)" =p, .
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4.5 Application to several elasto-plastic
madels

4.5.1 Rankine models

Uniaial $lo) =0,
niaxia ,
. @ =0, =@ — principal stressos - (4.55)
equivalent stresy et fuat ap®
3 p, i€ [1.2,3) = siganvaluss g 2 PR
dg(o) _da,
Tl = vt = s = @
do o R
Flow tensor 100 (4.56)
[m|- 0D o 0
0 0 0
Bifurcation o iy ’9.’"" =00 =0=5 0" =p,
paramerers: i =3 iy =y e 0 H —q (+:37)

Figure 4-9- Rankine plasticity model
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4.5.2 J2 plasticity models
U n'i.“iﬂl Pla)= \/-3 18 . &=dev(a) (4.58)
ﬂt-ll.-lWﬂ-lf.'-nt afress 2
Ap(e) \/3 5
'“— I — Y P -
o N2
Flow tensor e [ 0 0 (4.59)
l.'“]= J:,! H‘ 0 s, 0 (tr(s)=0)
0O 0 s
lage = s+ (=V)s,
1 i 5 Vs
Bifuircation oy iy ety D i ‘ 2 (4.60)
pﬂtﬂtﬂiﬁt‘.ﬁfﬂi H ol _ '{F'i .?':t'
2 st4st+sd

Figure 4-10- |, (von Mises) plasticity model

Remark 4-5

Notice that for the case of pure shear deviatoric shress state

(5, ==83: 8, =0) we obtain 8" =’j and H" =0and one can

obtaii discontinuous bifurcadon with

fect plasticity,
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