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SUMMARY

A stabilized finite point method (FPM) for the meshless analysis of
incompressible fluid flow problems is presented. The stabilization approach is
based in the finite increment calculus (FIC) procedure developed by Onate [14].
An enhanced fractional step procedure allowing the semi-implicit numerical
solution of incompressible fluids using the FPM is described. Examples of
application of the stabilized FPM to the solution of two incompressible flow
problems are presented.

1 INTRODUCTION

Mesh free techniques have become quite popular in computational
mechanics. A family of mesh free methods is based on smooth particle
hydrodynamic procedures [1,2]. These techniques, also called free lagrangian
methods, are typically used for problems involving large motions of solids and
moving free surfaces in fluids. A second class of mesh free methods derive from
generalized finite difference (GFD) techniques [3,4]. Here the approximation
around each point is typically defined in terms of Taylor series expansions and
the discrete equations are found by using point collocation. Among a third
class of mesh free techniques we find the so called diffuse element (DE) method
[5], the element free Galerking (EFG) method [6,7] and the reproducing kernel
particle (RKP) method [8,9]. These three methods use local interpolations for
defining the approximate field around a point in terms of values in adjacent
points, whereas the discretized system of equations is typically obtained by
integrating the Galerkin variational form over a suitable background grid.

The finite point method (FPM) proposed in [10-13] is a truly meshless
procedure. The approximation around each point is obtained by using standard
moving least square techniques similarly as in DE and EFG methods. The



discrete system of equations is obtained by sampling the governing differential
equations at each point as in GFD methods.

The basis of the success of the FPM for solid and fluid mechanics
applications is the stabilization of the discrete differential equations. The stable
form found by the finite element calculus procedure presented in [14-17] corrects
the errors introduced by the point collocation procedure, mainly next to the
boundary segments. In addition, it introduces the necessary stabilization for
treating high convection effects and it also allows equal order velocity-pressure
interpolations in fluid flow problems [17].

The content of the paper is structured as follows. In the next section
the basis of the FPM approximation is described. The stabilized governing
equations for incompressible flows derived using the finite increment calculus
(FIC) approach are presented next. A three step semi-implicit fractional
solution scheme using the FPM approximation is described in some detail. Two
examples of the efficiency and accuracy of the stabilized FPM for numerical
solution of incompressible flow problems are presented, namely the analysis of
a driven cavity flow and the solution of a backwards facing step.

2 INTERPOLATION IN THE FPM

Let €; be the interpolation domain (cloud) of a function u(z) and let 8;
with j =1,2,---,n be a collection of n points with coordinates zj € Q. The
unknown functlon v may be approximated within ; by

m
u(@) 2 a(z) = Y pi(z)ey = p(z) (1)
=1
where @ = [a1, a9, - am]l and vector p(z) contains typically monomials,

hereafter termed “base interpolating functions”, in the space coordinates
ensuring that the basis is complete. For a 2D problem we can specify

p=[1,z,y7 for m=3 (2)
and
p=[lz y,:v2,a:y,y2]T for m=6 etc. (3)
Function u(x) can now be sampled at the n points belonging to €; giving
u U
u’ = _2 ~ 2L p.z a=Ca (4)
ul Un p
where u? = u(z;) are the unknown but sought for values of function u at point
J, 4j = i(z;) are the approximate values, and p; = p(zj).



In the FE approximation the number of points is chosen so that m = n.
In this case C is a square matrix. The procedure leads to the standard shape
functions in the FEM [19].

Ifn> m C is no longer a square matrix and the approximation can not
fit all the u] values. This problem can be simply overcome by determining the
@ values by minimizing the sum of the square distances of the error at each
point weighted with a function ¢(z) as

= f: go(a;])(u? — = Zi: o(z5)( P] a)? (5)

j=1

with respect to the o parameters. Note that for ¢(z) = 1 the standard least
square (LSQ) method is reproduced.

Function ¢(z) is usually built in such a way that it takes a unit value in
the vecinity of the point ¢ typically called “star node” where the function (or its
derivatives) are to be computed and vanishes outside a region €; surrounding
the point. The region £; can be used to define the number of sampling points n
in the interpolation region. A typical choice for ¢(z) is the normalized Gaussian
function and this has been chosen in the examples shown in the paper. Of course
n > m is always required in the sampling region and if equality occurs no effect
of weighting is present and the interpolation is the same as in the LSQ scheme.

Standard minimization of eq.(5) with respect to o gives

a=Cl | Cl=A"1B (6)

_ i T(.’E])

j=1 (7)
[p(z1)P(21), p(z2)P(22), - (zn)P(zn)]

The final approximation is obtained by substituting e from eq.(6) into (1)
giving

n .
a(z) = pT C lul = NTuh = > N;ugl (8)
j=1
where the “shape functions” for the i-th star node are
sz z)Cj;' = p’ (z)C7! (9)

It must be noted that accordingly to the least square character of the
approximation

u(w;) ~ 4(x;) # ugL (10)



Le. the local values of the approximating function do not fit the nodal
unknown values. Indeed 4 is the true approximation for which we shall seek the
satisfaction of the differential equation and the boundary conditions and ugl are
simply the unknown parameters sought.

The weighted least square approximation described above depends on a
great extend on the shape and the way to apply the weighting function. The
simplest way is to define a fixed function ¢(z) for each of the ; interpolation
domains [11,12].

Let ¢;(z) be a weighting functions satisfying (Figure 1)

pi(z;) =1
pi(z) #0 z € (11)
‘Pz( ) =0 T & Q

Then the minimization square distance becomes
- h 2
gy = Z @i(z;)(uj — 4(x;))* minimum (12)

The expression of matrices A and B coincide with eq.(7) with p(r;) =
pi(z;)

Note that according to (1), the approximate function 4(z) is defined in
each interpolation domain €2;. In fact, different interpolation domains can yield
different shape functions Ni. As a consequence a point belonging to two or more
overlapping interpolation domains has different values of the shape functions
which means that N]Z # N, Jk' The interpolation is now multivalued within Q;
and, therefore for any useful approximation a decision must be taken limiting the
choice to a single value. Indeed, the approximate function @(x) will be typically
used to provide the value of the unknown function u(z) and its derivatives in
only specific regions within each interpolation domain. For instance by using
point collocation we may limit the validity of the interpolation to a single point
x;. It is precisely in this context where we have found this meshless method to
be more useful for practical purposes [10-13].

3 STABILIZED GOVERNING EQUATIONS FOR INCOMPRESSI-
BLE FLOWS

The stabilized governing equations for incompressible viscous flows are
obtained by applying the standard conservation laws expressing balance of
momentum and mass over a control domain. Assuming that the control domain
has finite dimensions and representing the variation of mass and momentum over
the domain using Taylor series expansions of one order higher than those used
in the standard infinitesimal theory, the following expressions are found [14,17]:

Momentum

1 OTm.;
Tm; — =h m;



Mass balance

1. 0ry .
Td— §hdj%j =0 in Q2 (14)

where for the steady state case

O(ujuj)  Op B 0T;j

L D 0 Oz;  Ox; ~bi (15)
. 8’U,l

with 7,7 = 1,2 for a two dimensional flow.

In eq.(15) p is the fluid density (here assumed to be constant), u; is the
velocity component in the ¢-th direction, p the pressure, b; the body forces and
T;j the viscous stress components related to the velocity gradients through the
fluid viscosity u by

10u
Tij = 21 (51']' — 58—517]]:6“) (17a)
with 5 3
o 1 i Uj
Eij = 5 (31‘]‘ + (9.’1:2') (170)

Einstein summation convention for repeated indexes in products and
‘. : : : ory Or
derivatives is used, i.e. hdj%;’f e= %jhd];ﬂ;%.

Eqgs.(13) and (14) are the stabilized forms of the governing differential
equations for an incompressible flow. The terms underlined in (13) and (14)
introduce naturally the necessary stabilization at the discretization level. The so
called characteristic length vectors hy, and h; are defined as (for 2D problems)

e {lm)ne () o

hm2 hdg

where hp,, and h;,, are the dimensions of the finite control domain where
balance of momentum is enforced. Similarly hg and hg, represent the
dimensions of the domain where mass conservation is expressed.  The
components of vectors hy, and h; introduce the necessary stabilization along
the streamline and transverse directions to the flow in the discrete problem.

The method to derive the modified differential equations (13) and (14)
incorporating the stabilization terms was termed in [14] finite increment calculus
as a reference to the standard infinitesimal calculus techniques where the size
of the domain where balance of mass and momentum is enforced is assumed to
be negligible. Note that for h;, = h; — 0 the standard infinitesimal form of
the momentum and mass balance equations is recovered [14-18].

Egs.(13) and (14) are complemented by the following boundary conditions
[14,17].



Balance of momentum at the boundary T';
1
n;oi; — 1 + §hmjnjrmi =0 on I (19)

where n; is the 5th component of the unit normal vector to the boundary and
t; are the prescribed tractions at the Neumann boundary I'; of the analysis
domain (2.

Prescribed velocity at the boundaries

= Ty on Iy, (20)
1 P
Up — Ehdinird = ek, on I'y, (21)

In eq.(20) u and uf denote the tangential velocity to the boundary and
its prescribed value, respectively.

Eq.(21) expresses the balance of mass on an arbitrary domain next to
the boundary. wu, and u, denote the velocity normal to the boundary and
its prescribed value, respectively. The value of u} is zero on solid walls and
stationary free surfaces.

Also in eqs.(20) and (21) I'y, and I'y,, are the parts of the boundary I' of
) where the tangential and normal velocities are prescribed, respectively. The
Dirichlet boundary is defined as I'y, = I'y, UT,,.

The underlined terms in egs.(19) and (21) introduce the necessary
stabilization at the boundaries in a form consistent with that of egs.(13) and
(14). These terms are obtained by invoking balance of momentum and mass
at a domain of finite size next to the boundary. Details of the derivation of
egs.(13-21) can be found in [14,17].

Alternative form of stabilized governing equations
Let us express the components of the characteristic vector h, for the mass
balance equation as

hg, = —2p7q,u; (22)

where the 74 parameters are termed “intrinsic times” per unit mass. The
negative sign in eq.(22) is necessary to introduce a positive stabilization in the
mass balance equation at the discrete level as it will be shown later.

From simple differentiation rules we can write

o (0u;\ 0 [ Ou duy\
o (o) = 3 (52) (5 g
Oz; \ Oz; ox; 0 oxy,
Substituting eq.(22) into (14) and making use of egs.(23), (14) and (16)
we can rewrite the mass balance equation (neglecting higher order terms) as

87
rg — Ty g: ) (24a)
1




where

i J(?:z:j Oz; Oz

b; (24b)
Following a similar process, equation (21) expressing balance of mass at

the boundary can be rewritten using eqs.(13) and (22) as
Up — Tg;MiTm; = Uub on T’ (25)

We summarize next for the sake of clarity the set of governing equations
to be solved.

Momentum
1 Orm; ;
Tm; — §hmj 5z; =1 in Q (26)
Mass balance
OTr -
Tqd — Tdi (;I;Ll =) in (27)
1
Boundary conditions
1
n;jo;; —t; + ihmjnjrmi =0 on IY (28)
up —uf =0 on I'y, (29)
Up — Tg,NiTm; — ub, =0 on I'y, (30)

where 7, and 7p,; are defined in egs.(15) and (24b), respectively.

A similar form of the modified differential equations for momentum and
mass balance (egs.(26) and (27)) has been recently proposed by Ilinca et al. [20].
They express the exact solution as sum of the numerical approximation and a
perturbation. The modified equations are derived by expanding the original
differential equations for momentum and mass balance in Taylor series and
elliminating the perturbation terms. However, the boundary conditions remain
unchanged and thus the stabilizing terms in egs.(28) and (30) are omitted in [20].
This leads to the appearance of additional boundary integrals in the Galerkin
formulation. These terms vanish naturally if the full stabilized expressions (26)-
(30) emanating from the FIC method are used as shown in [17].



4 FRACTIONAL STEP SOLUTION

The stabilization formulation above presented is naturally extended to
the transient case. The stabilized form of the momentum and mass balance
equations are writen now as [14,18]

Momentum
(Tmi B TWJ-) T (m "2 ow; ) 0 8L
Mass balance
hq. or 00 hq. or
_%%d)_29 _ 4G Zd) _
(rd 2 amj> 20t (T 2 axj) ! (52)

In above ¢ is a time stabilization parameter. Transient effects are also
included in the term 7y, given by

_ (0u; | O(uzuy) op 0Ty
Tmi_”(at * o )T Bs By

(33)

Egs. (31) and (32) are obtained by expressing the balance of momentum
and mass in space-time domains of finite dimensions [hy, X §] and [hy x 4],
respectively. Details of the derivation can be found in [14,18].

Egs.(31) and (32) can be used to derive a number of stabilized numerical
schemes for the transient solution of the Navier-Stokes equations.

Three steps splitting scheme

It is interesting to derive a splitting algorithm starting with the new
stabilized equations. For the sake of clarity the time stabilization terms
involving § will be neglected in egs.(31) and (32). Also the stabilized mass
balance equation will be written in the more convenient form given by eq.(27).

A time marching solution scheme for eq.(31) can be written as (for 6 = 0)

T p p 0z O0x; oz; ' 2 Ox;

The analogy of eq.(34) with that found using the so called characteristic
integration schemes [21,22] is clear if vector h,, is chosen aligned with the
velocity field, i.e. hy;;, = 7u where 7 is an intrinsic time parameter. Indeed the
arbitrary form of vector hy, in eq.(34) provides a more general procedure where
the components of vector hy, can be freely chosen.

A semi-implicit time splitting or “fractional step” [21,22] algorithm can
now be obtained as follows. Eq.(34) is split as



At [ O(uuj) Otij \ Fm; O, ]"

¢ p d 9 ox; 2 Oz

(35)

1 (]

i (36)

Note that the sum of eqs. (35) and (36) gives the original form of eq.(34).
Substituting eq.(35) into (27) gives

A 32pn+1 57, n+1
* = _ il % —
"d p Oxz;0z; Td; [ dox; 0 (37)
where

ou;

ry= . (38)
i

= n+1 n n
o™ o [ (0w, ow) _ony 1ot

The solution steps are the following:

Step 1

Solve explicitely for the so called “fractional” velocities u} [21,22] using
eq.(35).

Step 2

Compute the pressure field p"*1 by solving the equation for the Laplacian
of pressure derived from eq.(37). Note that this equation has the following form

éaZPTH—l BQP':’H-l auL auz> B 8%’

n
Pl SN T A i — b; 40
o 0zi0m; | 4 Bg0m; 4 Thipg, lp ( ot “i9w;) " Bu; ] (40)

Clearly for 74, = 7 above equation simplifies to

A
(F +7)Ap" L =7 (41)

where A is the Laplacian operator and

0 ou; ou; oT;. "
—k %k _ 7 __L . 7 . 17 7.
Ta="d T@mi lp ( ot T 8:13]-> oz bz] (42)

Step 3

n+1

Compute the velocities u;'" = by using eq.(36).



Eq.(41) differs slighty from the form typically used in fractional step
schemes where the term involving 7 does not appear [21,22]. This term, however,
is essential to preserve the stability of the mixed FPM formulation.

Obviously, other forms of above three steps transient solution scheme
involving the implicit computation of uzn+1 are also possible.

Extension of this transient solution method to the simpler Stokes pro-
blem are straightforward. The same scheme can be applied to derive enhanced
algorithms for transient non linear structural dynamic problems allowing equal
order interpolation for velocities and pressure as described in [23].

5 NUMERICAL SOLUTION USING THE FPM

The implementation of the three step scheme described in previous section
in the context of the FPM is straight forward. Eq. (8) is used to define the
approximation of velocities and pressures within each cloud €; as

I

(0

?u’,;gj; m=1,2,3 for 3D (43)

(44)

3>

n

>N

j=1

n )
= Z Njp;

j=1

where (%) denote approximate values and the shape functions N ]2 were defined
in eq.(9).
Direct substitution of eqs. (43) and (44) into the stabilized governing

equations described in previous section gives the following numerical scheme

for computation of the parameters uﬁnj and pg-’.

Step 1

Compute explicitely the fractional velocities at each point &k in the domain
as

@)= k=1,...,N; i=1,23 (45)

in which NV is the total number of points in the domain and

. o At[ o(wdy) 0% ., hm; Ofm, "
Oz oz ! 2 Oz k

(46)

where (%) denotes approximate values.
Once the values of @} have been obtained, the parameters u,’}lj can be
computed by solving the following system of equations

n
(tg)k = Y Nfup., k=1,...,N (47)
j=1

10



Eq.(47) is a system of N equations with N unknowns from where the
parameters Uy, j =1,...,N can be found. These parameters are needed
to compute the derivatives of the velocity field in steps 2 and 3. Indeed the
solution of eq.(47) must be repeated for every component of the velocity vector
(i.e. m = 1,2,3 for 3D problems).

Step 2

Compute the pressure field at time n 4 1 by solving eq.(40). Substituting
eqs. (43) and (44) into (40) and sampling this equation at each point in the
domain gives (for 7, = T)

K(ph)n-l—l _ f,z (48)
where (for 2D problems)
A 92Nk 92NE
Ki.=(—+ J d 49
sk ok 0 (9UL . (9111' Bﬂ-j "
Ty =Fay, — T(T_)— [ ( 5 +uj3mj = 5 — b; ) (50)

As usual (-)} denotes values within brackets evaluated at point & and the
n-th time step.

Eq.(48) provides a system of equations from which the pressure parameters
(pi’,’)””’l can be found at each point k.

Step 3

The final step is the explicit computation of the velocities in each point at
time n + 1. Substituting eqs.(43) and (44) into (36) and sampling this equation
at each point gives '

At §p" 1
An--1 N
(@+) = [ -=

p Ox;

] . k=1,...,N (51)

Note that the derivatives of the approximate functions 4; and p in egs.(50)
and (51) are computed by direct differentiation of the expressions (43) and (44),
i.e.

8,&‘777, _ aN; uh
Ox; _j ox; ™
(52)
Z 8N; /L
8:1:1 j= 81’1

The steps 1-3 described above are repeated for every new time increment.
A local time step size for each point in the domain can be used to speed
up the search of the steady state solution. The local time step is defined as

11



Aty = m%’%l, where d; is the minimum distance from a star point to any of
1
its neighbourghs in the cloud. Note however that the full transient solution

requires invariably the use of a global time step Aty equal for all nodes and
defined as Aty = min(At;), i=1,...,N.

6 BOUNDARY CONDITIONS

Prescribed tractions on the Neumann boundary I'¢, (eq.(19)) or prescribed
velocities at the Dirichlet boundaries T'y, or T'y,, (eqs.(20) and (21)) may be
imposed.

During the fractional step solution, the first explicit step is solved without
imposing any boundary conditions. During the second step, two kinds of
boundary conditions may be imposed: on boundaries where the normal velocity
is imposed, eqgs. (21) reads using (36)

At opn Tl 1
uh = uin; — 5 Oy 3 hd;niTd (53)

Taking into account eqs. (27), (37) and (41) leads to

At opntl 1
uh = ujn; — — D —n; — =hgni[(At +7)Ap" — 7] (54)
p Oz 2

Eq.(54) represents a stabilized Neumann boundary condition for the
pressure equation (48). This equation is imposed in the FPM during the
pressure computation step as a new equation for all points k belonging to the
Iy, boundary.

On outflow boundaries with n;o;; = 0 the pressure is imposed to a
constant value, i.e. p = 0. In the FPM, essential boundary conditions such
as p = 0 are imposed using the definition of the function itself via eq.(44) as

n

=Y, N]Z:P? =0 (55)
Jj=1

Equation (55) is sampled at the points located at a boundary where p = 0.
During the third step the velocities u’,}fl are computed using eq.(36) for
all points within the analysis domain. In points where a velocity is imposed
as an essential boundary condition the imposed value is asigned directly. After

that, the nodal parameters u,}%j can be computed by solving the same system

of equations described by eq.(47). On points over Neumann boundaries, in
particular on boundaries where the tractions are prescribed to zero, equation
(19)

1
n;o;j + ihmjanmi =0 (56)

12



is used for computing the velocities at the boundary points using the direct
differentiation of the velocity and pressure approximations as described by

eq.(52).

7 COMPUTATION OF THE STABILIZATION PARAMETERS

Accurate evaluation of the stabilization parameters is one of the crucial
issues in stabilized methods. Most of existing methods use expressions which
are direct extensions of the values obtained for the simplest 1D case. It is also
usual to accept the so called SUPG assumption, i.e. to admit that vector hy,
has the direction of the velocity field. This restriction leads to instabilities when
sharp layers transversal to the velocity direction are present. This additional
defficiency is then corrected by adding a “shock capturing” (SC) stabilization
term [24-27].

In our work we will assume for simplicity that the stabilization parameters
for the mass balance equations are the same than those for the momentum
equations. This implies

h’mi = hdi (57)

The problem remains now finding the value of the characteristic length
vectors hpy,;. Indeed, the components of h,, can introduce the necessary
stabilization along the streamline and transversal directions to the flow [ 14-18].

In this work the SUPG assumption has been chosen for defining hy, as

u

Bm = B

(58)

The streamline parameter hs has been chosen for each cloud as the
minimum distance d; from a star point to any of its neighbourghs. Recall
that this distance is also used to define the local time step for each point.

8 NUMERICAL EXAMPLES

8.1 Driven cavity flow at Re = 1000

This is a classical test problem to evaluate the behaviour of any fluid
dynamic algorithm. A viscous flow is confined in a square cavity while one of
its edges slides tangentially. The boundary conditions are u =v =01in 3 edges
and u = 1, v = 0 on the upper edge. The problem is solved with the FPM using
the distribution of 3,329 points shown in Figure 2. Around each point, equal
order quadratic based polynomial are used for the velocities and the pressure
(m = 6). A minimum of six points is selected in each cloud using a combination
of minimum distance and quadrant search procedures [11-13]. Typically n =9
is chosen, i.e. two points per each quadrant plus the star node. Initially, except
at the edge, the velocity is set to zero everywhere including at the nodes located
at the left and right top corners (ramp condition).

13



Numerical results are shown in Figures 3,4 and 5 for Re = 1000. Figures
3 and 4 show the velocity and pressure contours, respectively. The FPM results
are compared with experimental results obtained by Ghia et al. [29] showing
the velocity = computed along a vertical central cut (Figure 5). The comparison
is satisfactory.

8.2 Backwards facing step at Re = 389

In this example, the flow is contrained to move in a 2D domain which
presents a backwards step. The domain dimensions are presented in Figure 6.
The step is one half the width of the inflow.

At the inflow a constant velocity profile is prescribed while at the outflow
the pressure is prescribed, being the velocity free. The non-slip condition is
used at the walls, except for the two inflow points, where the constant inflow
velocity is imposed. No volume forces are present.

The distribution of 8,462 points used near the step is represented on
Figure 7. In the rest of the domain a regular distribution of point is used. As
on the previous example, equal order quadratic based polynomials are chosen
to approximate both velocities and pressure.

Once the stationary state is reached, the solution shows horizontal
velocities represented on Figures 8 and 9 for two planes located at z = 2.55 S
and z = 6.11 S from the step. The FPM results are compared with experimental
results presented on ref. [30] showing an excellent agreement.

9 CONCLUSIONS

The paper shows that excellent solutions can be reached on incompressible
flow problems using the stabilized meshless finite point method.

The following statements must be taken into account in order to achieve
correct answers.

1. The adequate stabilization must be used both for the convective terms
in the momentum equation and for the incompressibility terms. The
necessary stabilization for both terms is naturally introduced by the FIC
procedure.

2. Essential boundary conditions may be imposed in the FPM directly by
using the equation that approximates the velocity and pressure unknowns.

3. Natural boundary conditions must be introduced explicitely and must be
stabilized. The FIC procedure has shown to be also adequate for this
purpose.

4. The use of a fractional step algorithm allows the use of equal order
approximation for velocities and pressure provided a correct stabilization
of the incompressibility terms is introduced. The stabilization provided
by the FIC approach has found to be essential to enhance the properties
of the standard three step splitting scheme.

14
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Figure 1. Fixed weighting least square procedure

Figure 2. Driven cavity flow. Distribution of 3,329 points. Boundary

conditions u = 0 at edges AC, CD and BD and points A and B. © = 1 and
v = 0 over the interior of line AB
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Figure 3. Driven cavity flow. Velocity contours for Re = 1000

Figure 4. Driven cavity flow. Pressure contours for Re
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Figure 6. Backwards facing step. Geometry and boundary conditions

Figure 7. Backwards facing step. Distribution of 8,462 points
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