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SUMMARY

This work presents a methodology based on the use of adaptive mesh refinement
(AMR) techniques in the context of shape optimization problems analyzed by the Finite
Element Method (FEM). A suitable and very general technique for the parametrization
of the optimization problem using B-splines to define the boundary is first presented.
Then, mesh generation using the advancing front method, the error estimation and the
mesh refinement criteria are dealt with in the context of shape optimization problems.
In particular, the sensitivities of the different ingredients ruling the problem (B-splines,
finite element mesh, design behaviour, and error estimator) are studied in detail. The
sensitivities of the finite element mesh coordinates and the error estimator allow their
projection from one design to the next, giving an “a priori knowledge” of the error
distribution on the new design. This allows to build up a finite element mesh for
the new design with an specified and controlled level of error. The robustness and
reliability of the proposed methodology is checked out with some 2D examples.

1. INTRODUCTION

From a mathematical point of view the treatment of an optimization or an inverse
problem can be viewed as the minimization of a function f(z) depending on a set of
variables z and subjected to some constraints (1.6], The general form of such a problem
1s:
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where f is the objective function, z; are the design variables and g; are inequality
constraints which, for structural problems, are normally expressed in terms of stresses
or displacements (1.6]. The values a; and b; define lateral constraints. Each set of
values z defines one structural design and the problem consists of finding the values of
z defining the best design.

The algorithms for the solution of the minimization problem are typically
iterative, and they involve the computation of the derivatives (sensitivities) of the
objective function and constraints with respect to the design variables [1,6]. Besides,
in each step of the process the values of f and ¢ and their sensitivities are needed. In



many cases, as those considered in this work, the computations are performed via a
finite element analysis which provides the behaviour of each design, and a methodology
to compute the corresponding sensitivities. The definition of each design in terms of
the z variables is called “parametrization” of the optimum design problem.

There are many existing codes and different methodologies to solve the
optimization problem defined in (1) (6], However, some problems still remain unsolved
in this context, e.g. the inclusion of robust parametrization procedures for definition
of each design and the control of the error associated with finite element computations
and its influence on the solution of the optimization problem. Usually, once the -
optimization process is finished there is no guarantee of the accuracy of the final design.
Sometimes a more accurate analysis would reveal that the final design is unfeasible, as
one or more of the constraints imposed are violated.

With a view towards solving this problem a general methodology for structural
shape optimization problems should include the following features:

- general parametrization procedures in order to deal with different structure types
with the same structural optimization code. The definition of any design would
only need then a small number of design variables.

- easy treatment of boundary conditions.

- easy and general definition of the objective function and constraints.

- automatic, robust and flexible mesh generation.

- accurate and inexpensive estimation of the discretization errors.

- effective, reliable and not too expensive sensitivity analysis.

- efficient optimization procedures.

- automatic adaptive remeshing procedures without a large increase of the total
cost.

- control over the quality of the meshes used for each design, i.e., distorted elements
should be avoided when significant changes of the structural shape are expected.

In this paper we present a general methodology for optimization problems
including all the above mentioned features. In the following sections we describe the
parametrization of the optimum design problem, the procedure for automatic mesh
generation and error estimation, the sensitivity analysis, and the adaptive remeshing
strategy used. In the final part of the paper some examples showing the efficiency of
the methodology proposed are presented.

2. THE PROPOSED METHODOLOGY -

A flow chart summarizing the proposed methodology is shown in Figure 1. This
consists of a series of modules each one corresponding to a specific task. Some of these
modules are discussed in detail in the next sections.

Each design step requires to compute the sensitivities of the objective function
and constraints. The sensitivity analysis is performed step by step following the same
path as the finite element analysis. This path indicates the dependence of each quantity
used in the analysis with respect to the rest of the quantities previously employed. For
example, the expression of the stiffness matrix depends on the nodal coordinates, so
that, following the chain rule for derivatives, the stiffness matrix sensitivities can be
expressed in terms of the nodal coordinates sensitivities. Thus, it is necessary to
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FIGURE 1. General scheme of the proposed methodology.

compute these sensitivities (mesh sensitivities) prior to that of the stiffness matrix
sensitivities.

First-order and second-order sensitivity analyses have been used in the
implementation of the proposed methodology. The sensitivity analysis provides
directional derivatives of any quantity. In the next paragraphs s will denote a unit
vector in the design variables space (z = {z1,%9,...,2;,...,zn}), and derivatives will be
computed in the s direction. For instance, to obtain the sensitivities with respect to a
specific design variable z;, 8 has to be the unit vector corresponding to the z; direction
(6 8 = {0;050.51;:50}).

The sensitivities of any quantity will be used to project its value from one design
into the next one when the design variables are modified. For example, let us assume
that f(a:k) is the objective function value at the k-th iteration of the optimization
process. If the design variables are modified in the form z*+1 = z* 4 0% s* . the value
of the objective function can be projected into the next design by means of a standard
Taylor expansion:
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The same applies to any other magnitude to be projected.

3. PARAMETRIZATION OF THE PROBLEM

Each design geometry is represented by using “definition points” which specify
some interpolation curves. The curves used here are parametric B-splines. The general
1,5] :

expression of a closed B-spline for ¢ points is [

q

r(t) = ) riNgia() (3)
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where r(%) is the position vector depending on a parametric variable ¢{. The coordinates
of the definition points are recovered using ¢t = 0,1,2,... (see Figure 2). The curve is
expressed as a linear combination of ¢ + 1 normalized fourth order (cubic) B-splines
(1,5]
(1,5]

. The r; coeflicients are the coordinates of the so called polygon definition points
and they are found by using the coordinates of the definition points. The degree
of continuity of a cubic B-spline is C2. By using eq. (3), the coordinates of the
definition points and some additional conditions about slopes and curvatures, the
following equation system can be derived:

V=NR (4)

where V is a vector containing the imposed conditions at the definition points, N is
a matrix containing some terms corresponding to the values of the polynomials that
define each B-spline, and the R vector contains the coeflicients r; to be computed.
Details of this process can be found in [1,5],

The first and second order sensitivities of R along a direction s in the design
variable space are given by:

OR 1[0V ON 9’R 4 (32V 0*N ON 6R
it - = "N T R _ 9 T
0s N (63 Os R) ’ 0s? ds? 052 R=2 O0s Os ) (5)

The derivatives of V' with respect the coordinates of the definition points chosen
as design variables can be easily computed. Vectors OR/0s and 8’ R/8s? will contain
the terms Or;/9s and §%r;/ 082, respectively (1],

Finally, the sensitivities of the coordinates of any point on the interpolation curve
corresponding to a constant value of ¢ are obtained by:

q . 2y 2r;
s Z @N4,i+l(i) ) o Z - Ny ip1(2) (6)



4. MESH GENERATION AND SENSITIVITY ANALYSIS

The mesh generation algorithm chosen is the well known advancing front method.

This technique is ideal to generate non structured triangular meshes [11,12]

The characteristics of the desired mesh are specified via a background mesh over
which nodal values of the size parameter § are defined and interpolated using the shape
functions. The background mesh for the first design has to be defined by hand. For
subsequent designs the background mesh will coincide with the mesh projected into
this design from the previous one. This projection will be described later.

Once the sensitivities of the coordinates of each boundary node are known, it
is also possible to compute the sensitivities of the coordinates of each internal nodal
point (mesh sensitivities). These sensitivities are used to asses how the mesh evolves
when the design variables change.

There are many different ways to define the evolution of the mesh in terms of the
design variables. It is possible to consider a simple analogous elastic medium defining
the mesh on movement. This is the case of the “spring analogy” where each element
side is regarded as a spring connecting two nodes. The force produced by each spring
is proportional to its length. The solution of the equilibrium problem in the spring
analogy is simple but expensive and it involves to solve a linear system of equations
with two of degrees of freedom per node.

In this work the spring analogy problem has ben solved iteratively using a
Laplacian smoothing. This technique is frequently used to improve the quality of non-
structured meshes. It consists on the iterative modification of the nodal coordinates
of each interior node by placing it at the center of gravity of adjacent nodes. The
expression of the new position vector of each node r; for each iteration is given by:

m;
=177
= 20T )

my

. where r; are the position vectors of the m; nodes connected with the i-th node.

The solution of the spring analogy problem with a prescribed error tolerance
requires to check the solution after each smoothing cycle. Taking into account that
the described iterative process is only a way to obtain mesh sensitivities, rather than
the solution of the equilibrium problem itself, rigorous convergence conditions are not
needed. For this reason the number of smoothing cycles to be applied can be-fixed a
priori. In the examples presented below we have checked that 50 iterations are enough
to ensure a good quality of results.

The first-order and higher-order mesh sensitivity analyses along any direction of
the design variables space, s, are obtained by differentiating eq. (7) with respect to s
for each cycle, i.e.

. o7 . 921
s m; j
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5. FINITE ELEMENT ANALYSIS

In this paper we will consider only the solution of structural problems governed

by the standard elliptic equations 14]

Lu=STDSu=vin Q 9)

with appropriate boundary conditions [14], Applications of the proposed
methodology to other elliptic problems like incompressible potential flow models can
be found in [413],

Discretization of eq. (9) leads to the standard linear system of equations (14],

K= Ze Ke

q = Ee qe

Ka=gq with { % =90 195 T4P. (10)
aq = Jo, NTbdQ

gp, = . NTp

where K, a and q denote, as usual, the stiffness matrix, the nodal displacement and
the equivalent nodal force vectors. Vectors b, T and p correspond to the body, surface
and point loads respectively. Matrix B = SN is used to obtain the strains at each
point as € = Ba and the constitutive matrix D relates strains with stresses as o = De.

In our work, nodal stresses @* are recovered using a global least squares

smoothing technique (15,16]

o = S Nzt = N7

FF=M'®
8=3, [o N od0 (11)
M=Y,M.

.Me = er ﬁI—VTdQ

Other procedures for nodal stress recovery, such as the one recently proposed by

Zienkiewicz and Zhu [17], can be used. St

6. ERROR ESTIMATION

The error associated with each finite element solution is evaluated for each

element using the Zienkiewicz and Zhul15:16] error estimator as:

lel%, ~ 72 = / (" — )T D~ L(o* — )df (12)

€

The global error estimator 7% is found by addition of all the elemental



contributions 72 = Doe nZ. The energy norm can be defined and estimated from the
expression:

)l = /ﬂ "D lodQ) ~ /Q o TD 6% d0 + 9* = aTKa + n* (13)

This error estimator has been found to be quite robust, reliable and inexpensive,
especially for linear elements. The element sizes for a new mesh are obtained using an
adequate remeshing strategy [1-3,8-10]  This issue will be dealt with in a next section.

7. SENSITIVITY ANALYSES OF THE OBJECTIVE FUNCTION,
THE CONSTRAINTS AND THE ERROR ESTIMATOR

The objective function will be usually expressed in terms of a cost function
which is normally related to the volume of the structure. Constraints are typically
related with strains, stresses or displacements. Therefore it is necessary to evaluate the
sensitivities of the structural volume, strains, stresses and displacements to compute
the sensitivities of the objective function and the restrictions. This requires the
computation of the sensitivities of all the magnitudes involved in the analysis.

The exact sensitivity analysis of all the element expressions can be obtained by
direct derivation of eqs. (10). This provides the sensitivities of all magnitudes in terms
of the mesh sensitivities previously obtained (details of this process are described in
references [1'6'7]). The sensitivities of an integral expression are computed after its
(1.6,7] which shape does not depend on
the design variables. The jacobian of this transformation |J| can be expressed in terms
of the nodal coordinates, so that, it can also be differentiated in order to know the

integral sensitivities. Using the techniques developed in [6.7] the sensitivities of the

transformation into the isoparametric domain

element stiffness matrix can be obtained as:

oK BT D
9fe _ / ’ m;'ulus-'l’6 B|J|+BTD |J|+BTDB‘9'JI d€1dgz  (14)
Os Q£ 83 6

where the sensitivity of the jacobian is:

aJ| ;199 ~

In eq. (14) matrix B depends on the nodal coordinates, so that OB /3s can be
obtained from the mesh sensitivities.

Normally, the sensitivities of D will be zero unless a design variable affects the
mechanical properties of the material.

This technique allows to obtain first-order and higher-order sensitivities of the
stiffness matrix K, the nodal forces vector ¢ and of any other integral expression
involved in the computations. The detailed expressions for the first-order and higher-

order sensitivity analysis can be found in (1,6,7],

Eq. (14) allows to obtain the sensitivities of the displacement vector a as:
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Egs. (16) show that the inverse of the stiffness matrix is needed for the sensitivity
computations. If a direct solver is used this matrix has already been factorized and
each new sensitivity analysis involves only a new backsubstitution process. Moreover it
is not necessary to assemble the sensitivities of the stiffness matrix because they always
appear multiplying a vector and these products can be computed in an element-by-
element manner.

The strain and stress sensitivities can be computed as:

de OB da 9% 3’B OB 8a 8%a A
— — P — —
83 Os & Os ’ 332 83 ol Os Os + BasZ 7
do 6D Oe 8%¢ 0°D 0D de %
+D5. ? 63 Y * 58 ds Os +D55 (18)

8s 83 Os

The sensitivities of the smoothed stresses are computed in terms of the
sensitivities of the mass matrix M and the @ vector of eq. (11). The techniques
discussed above for the integral expressions are also used to compute these sensitivities.
Finally, the sensitivities of the smoothed stresses are obtained as:

da* 0% OM d%a* 1[0%@ M oM 95+
_ —* — -1 * O i
Os M- {85 s ] ’ Ds? M d0s2  0s? d O0s 0Os (+9)
do* _ o193 da* _ 183 (20)
0s Os ’ 082 0s2

The same comments about the factorization of the stiffness matrix apply now to
the mass matrix.

Following a similar procedure the first-order sensitivity of the error estimator is
obtained from eq. (12) as:

(a*_a)TBD 1(, — )|+ (21)
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In order to use an adaptive mesh refinement strategy it is also necessary to
compute the element and total strain energy. The values of this strain energy and



its first and second-order sensitivities can be approximated from the finite element
solution as:

|ull%, ~ a’Kea+n? (22)
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8. DESIGN ENHANCEMENT

The objective function sensitivities are used to get improved values of the
design variables by means of a minimization method. Depending on the optimization
algorithm it may be necessary to use second order sensitivities. The design variables
corresponding to the improved design are found as:

it = gk ghgk (25)

where 6F is an advance parameter.

The direction of change s* has been obtained here using a BFGS Quasi-Newton
method which only requires first order sensitivities of the objective function. The value
of 6% is obtained by a directional second order sensitivity analysis in the s* direction.
The objective function f can be approximated along this direction using a second
order Taylor expansion similar to eq. (2) which minimization provides the value of 6.
Details of this algorithm can be found in (6],

9. PROJECTION TO THE NEXT DESIGN AND —
DEFINITION OF THE NEW MESH

Once the new design has been defined, the new values of the error estimator, the
“energy” and the coordinates of the mesh can be projected from the previous solution
into the next design as:

Jz O 1 ,2/8% 82
k41 ko, k(0% Oy\ 1 42/0%z 0%
(z,y) _(:D,y) +9 (68,88) + 20 (882’682> (26)
etk k2, o Ollel® | 1 520 e|?
K =" +0 Os + 20 Os? 27)
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The projected values provide the necessary information to perform a remeshing
over the next design, even before any new computation is performed. In that sense,
the error estimator computed “a posteriori” is transformed into an “a priori” error
estimator.

This projection is very important because it allows the quality control of the
mesh for each design prior to any new computation. The projected values are used
to create the background mesh information needed to generate the mesh for the new
design. This closes the iterative process which will lead to the “enhanced” optimum
design after convergence.

The generation of every new mesh in the remeshing procedure requires the
definition of a “mesh optimality criterion”. In this work a mesh is considered as
optimal when the error density is equally distributed across the volume, i.e. when
llell?/Qe = ||e]|?/€ is satisfied. The justification of this mesh optimality criterion can

be found in [1—3:8-10]

The combination of the mesh optimality criterion and the error estimation allows
to define the new element sizes. Previously, it is necessary to define the allowable global
error percentage 7y as:

[lell iU
=100 ~ 100
[l Vn?+ (aTKa)?

The target error level for each element is:

e = Ll /2 (30)

The new element sizes he can be computed in terms of the old ones he using the

(29)

expression:

he . Jlelle

h: th e —
v U T

(31)

where p is the order of the shape function polynomials. For further details see
[1-3,8-10] —

The value of & is limited to 1.5 in order to avoid a too fast diminution of the
size of the elements in two consecutive iterations. Numerical experiments show that
intermediate designs requiring a large number of elements are, often, far away from the

optimal one, and it is not useful to dedicate a lot of computational effort to compute
them.

10. EXAMPLES

Two application examples are presented below. The first one 1s a structural shape
optimum design problem where the design of a hook is optimized. The second example



shows the application of the presented methodology to an optimum aerodynamic shape
problem where incompressible potential flow equations instead of structural equations
are used.

10.1 Optimization of a hook

This example consists in the optimization of the shape of a hook in order to
minimize its weight. The initial shape, the applied load and the geometry definition
points are shown in Figure 3. Twelve points are allowed to move for improvement of
the shape, i.e. nine of them can move horizontally, one can move vertically and the
rest have been enforced to move along a straight line inclined 452 (see Figure 3).

A parabolic vertical load has been applied over the inner part of the hook
with a resulting load of 630 Kg. The material properties are: Young modulus

E=2100000 K g/cm2 and Poisson ratio ¥v=0.3. A plane stress model with 6 node
triangular elements has been used. The global error level has been limited to 1%.

The objective function is the weight of the hook. The maximum value of the
Von Mises stresses have been constrained to 2000 K g/cm?. This constraint has been
applied -to all the nodes placed along the boundary. The minimum thickness of the
spike of the hook has been limited to 0.50 cm.

The algorithm converges after 130 iterations. Figure 4 shows the successive
meshes and the designs corresponding to iterations 0, 10, 20, 30, 40, 50, 60, 75, 90,
105, 120 and 130. It can be observed how the optimization process displaces the vertical
part of the hook until it coincides with the resultant of the load forces. This is due to
the absence of bending moments over this part and thus its width can be considerably
reduced. The curved part of the hook is thicker because of bending action producing
high stresses on the boundaries.

The evolution of the objective function is presented in Figure 5. After an initial
increase of weight to obtain a feasible design there is a fast drop with a good behaviour

of the optimization algorithm. The initial weight of 167 Kg is reduced to 82 Kg.

The evolution of the global percentage of error and the number of elements for
" each mesh are presented in Figures 6 and 7 respectively. Figure 6 shows how the
global percentage of error is maintained below the prescribed 1% limit after the two
first iterations. The whole problem has taken around 3.0 CPU hours on a Silicon
Graphics Indigo R4000 workstation.

The sensitivity analysis corresponding to each design variable requires around
an additional 10% of the CPU cost of the standard FEM analysis. The second-order
sensitivity analysis needs an additional 10% CPU time. For this particular example
(twelve design variables) this means that the total CPU cost for each iteration of the
optimization process takes around 230% of the cost of a single FEM analysis. This
cost can be compared with that of a standard optimization approach using a complete
adaptive remeshing procedure for each design. This will require at least two FEM
analyses for each design and a complete sensitivity analysis for the last one. This
means that each new design would require at least 330% of the CPU cost of a single
FEM analysis. These simple figures show that the use of the methodology presented
can save more than one third of the cost of a standard optimization process linked to
an adaptive refinement strategy.



10.2 Flow inverse problem

This application example corresponds to one of the test cases defined for the
workshop on “Optimum Design in Aerodynamics” held in Barcelona on June 1992
(18] A detailed description of the application of the presented methodology to
uncompressible flow problems can be found in (4. Note that there is a big analogy
between the incompressible potential flow and the structural models studied here due
to the linear elliptic nature of both. '

This problem consists in recovering the Korn airfoil at an angle of attack 0°.

target
CP

The target pressure coeflicient has been obtained by a direct computation of

the Korn airfoil with a finite element code using adaptive remeshing and a maximum
global error of 0.1%. The infinite boundary is placed a distance of 10 chords from the
profile. The initial design corresponds to a NACA 64A410 profile.

The inverse problem has been solved using a minimization approach. The cost
functional to be minimized has been defined as:

f= [ ©ote) —clrsyas (32)
0

This integral is extended around the profile and the integration variable is the
arc s and not the z coordinate so that all the boundary is equally weighted. If the =
variable i1s used, the cost function tends to put more weight on the medium part of the
profile and less on the edges.

The geometry of each design has been defined using 25 design variables. These
variables are the y coordinates of 25 points distributed around the profile which are
used to interpolate a B-spline. Figure 8 shows the initial shape and the finite element
mesh of 158 quadratic triangles (6 nodes) used for the initial design. The 25 points
used to define the shape of each design are all the nodes lying on the profile in Figure
8 with the exception of the trailing edge which is fixed. The maximum global error
has been limited to 0.1% of the total potential norm.

The iterative process has converged after 50 iterations. The final shape and the
final mesh of 495 quadratic triangles can be observed in Figure 9. The whole problem
has taken around 3.5 hours of CPU on a Silicon Graphics Indigo R4000 workstation.

The evolution of the normalized cost functional during the process can be seen in
Figure 10. Figure 11 shows the evolution of the L2 difference norm between the solution
profile and the design profile. This norm has been computed as the L2 difference norm
between each design and the final one since no information on the exact definition of
the Korn airfoil using the 25 control points was available. In fact it is not possible
to define exactly the Korn airfoil using the 25 interpolating points. Figure 12 shows
the evolution of the global error during the minimization process. Figure 13 shows the
evolution of the number of finite elements used for each design. Figure 14 shows the
Cp distributions for the initial profile, the target profile and the last design obtained.

Figures 10 and 11 show a good convergence of the minimization process. The
cost functional has been reduced almost 2 orders of magnitude in 50 iterations.

The global error involved in the finite element computations has been controlled.
In fact it is very low compared with the 0.1% limitation. This is because the error is
concentrated around the profile, but a little bit far away the flow is almost uniform and
the error is almost null. This explains why the global error is small. The important



issue, in fact, is how the error is distributed around the profile. Figure 9 shows how the
mesh concentrates many more elements around the leading edge where the gradients
of the potential are higher.

The comparison between the target and the computed Cp values shown in F igure
14 1s quite good although some differences are still noticeable. On the other hand
Figure 10 shows that the process seems to be converged, and it is not possible to get
a solution closer to the target one. The reasons are that probably it is not possible
to get a better definition of the Korn airfoil using a B-splines interpolation with 25
points. In fact the computations over the Korn airfoil have shown that it is extremely
sensible to little changes in its shape. In order to get a better final solution it would
be necessary to use more design variables to enhance the B-spline interpolation, but
this would considerable increase the total cost.

11. CONCLUSIONS

A new methodology for the resolution of optimization and inverse problems has
been developed and assessed. This methodology is able to optimize the design and
the analysis mesh together in order to produce a final design computed with a proper
mesh.

Good quality results are obtained using a single mesh for each design without
any remeshing. This considerably reduces the additional cost of the mesh control.

The presented methodology has provided excellent results for all the application
examples analyzed leading to an accurate final solution with a good final mesh.
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Figure 3. Hook optimization problem. Initial shape and parametrization.



X7/

A
N

S

Y
Vi

X/ '
S
K]

WAV

AVQVAVAVAVAVAVAVAVAVAVAVAVA‘

/
\/
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iterations 0, 10, 20, 30, 40, 50, 60, 75, 90, 105, 120 and 130.
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Figure 5. Hook optimization problem. Evolution of the objective function.
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initial profile, the target design and the computed design.
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