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Abstract. Actuation devices made of dielectric elastomers are prone to compression induced
wrinkling instabilities, which can adversely affect their performance and may lead to device fail-
ure. On the other hand, wrinkles can be used constructively in certain applications demanding
a controlled alternation of the surface morphology. The idea of taut states and the natural
width under simple tension plays an important role in the analysis of compression generated
instability (wrinkling). In case of electrically driven DE membranes, the domain of taut states in
the plane of principal stretches is influenced substantially by the applied voltage and the film’s
constitutive properties. In the recent past, there has been an increasing interest in exploit-
ing anisotropy in the material behavior of dielectric elastomers for improving their actuation
performance. Spurred with these ongoing efforts, this paper presents a continuum mechanics
based electromechanical model for predicting the thresholds on the domain of taut states of
transversely isotropic planar dielectric elastomers. The developed analytical framework uses
an amended energy function that accounts for the electromechanical coupling for a class of
incompressible transversely isotropic dielectric membranes. The required expressions for the to-
tal Cauchy stress tensor and the associated principal stress components are evaluated utilizing
the amended energy function. Finally, the concept of natural width under simple tension is
implemented to obtained the nonlinear coupled electromechanical equation that evaluates the
associated taut states domain of the transversely isotropic planar dielectric elastomers.

Our results indicate that the extent of taut domain can be controlled by modifying the level
and the principal direction of the transverse isotropy. The taut states domain for a particular
level of applied electric field increases with increase in the anisotropy parameter, while the taut
domains depleted with the increase in fiber orientations from 00 to 900 for an applied level of
electrical loading. The fiber-reinforced wrinkle-tunable surfaces can be effectively designed and
developed using the underlying analytical framework and the trends obtained in this study.

1 INTRODUCTION

Electroactive polymers (EAPs), also known as smart polymers, have attracted considerable
interest recently because they can provide smart and innovative solutions for new generation
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robot designs and other actuating devices. Electroactive polymers open an exciting field of
engineering called soft robotics that emerges the uses of soft smart active materials to create
soft machines having multiple input controls like electrical and mechanical [1]. The key motive
of having such multiple controlling modes in a single device lies in attaining a quicker and
more precise actuator control with high load-carrying capability from the same device. Also,
multiple input controls will be the essential need for upcoming intelligent systems used in modern
applications like prosthetic limbs [2], minimum energy structures [3, 4], actuators [5], etc .

Most of the engineering materials exhibit nonlinearities due to their inherent properties
[6, 7, 8, 9]. Generally, the electroactive polymer actuators also possess material-based non-
linearities [10, 11, 12, 13, 14]. The actuators made of EAPs are typically constituted by a
thin polymer sheet sandwiched between two compliant electrodes with an applied electric field
source. A suitable electromechanical field source arrangement imposes an electromechanical
force on such a smart actuator causes the deformation used as a means of actuation. In such
EAPs-based actuator devices, the failure mechanisms are generally determined by a sudden loss
of equilibrium due to in-plane compression. The onset of electro-mechanical instability-based
deformation localizations has been analyzed in a series of articles [15, 16] and references therein.
In this perspective, pre-stretching provides an experimental-based solution to suppress such
instability-based failure mechanisms [31]. In EAPs material-based smart polymers, the taut
states are simply the in-plane principal stretch conditions for different thin membrane configu-
rations obtained in the activated mode. However, the bending stiffness of the smart membranes
is neglected, which results in a compression-induced film buckling of thin membrane [17]. The
taut states are typically defined as the region where both in-plane principal stretches are pos-
itive (tensile configurations) or a domain where a single principal stretch is positive (wrinkled
configurations). At the same time, the remaining region where none principal stretch is positive
typically defined as the bounded or balanced region at which a sudden loss of equilibrium con-
dition is not observed like in taut domains, and in such regions, no taut states are possible. In
general, the determination of such taut domains plays a significant role in obtaining the critical
states of EAPs material-based actuator designs.

To mention some earlier works on the taut domains, various researchers [17, 18, 19] studied
the different failure mechanisms related to applied electric field-induced wrinkling phenomenon
commonly focusing on the dielectric elastomeric-based actuator designs. Additionally, elastomer-
based actuators are subjected to a number of operating instabilities, including pull-in instability
[20], dynamic snap-through instability [21], pinnacle vibration [22], and many others, all of which
limit their actuation capabilities. To outmaneuver these issues, researchers have used a variety
of strategies in the past [4, 23, 30]. Incorporating anisotropy into the material behavior of the
elastomeric membrane is one such promising technique [4, 23]. Inspired from such previously
reported studies, we herein aim to explore the concept of taut domains in transversely isotropic
electroactive thin membranes used explicitly in a new kind of fiber-based smart actuator designs
for modern applications. To the best of our knowledge, the current study is motivated to present
the taut domains in the fiber-based smart thin membranes for the first time.

The current research is further structured as follows: In Section 2, an electromechanical
model based on continuum mechanics is built to predict the thresholds on the taut domains of a
transversely isotropic membrane in the plane of principal stretches using the concept of natural
width under simple tension. Section 3 presents a comprehensive parametric investigation that
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reveals the impact of fibre strength and orientation on the taut domains of a transversely isotropic
smart thin membrane under electrical loading. Finally, Section 4 summarises the study’s main
conclusions and future prospects.

2 Electromechanical model for taut domains in transversely isotropic smart thin
membrane

In this section, governing equations pertaining to a transversely isotropic thin membrane
under electromechanical loading are presented following the nonlinear electroelasticity theory
developed in [24]. Additionally, the central idea of natural width in the context of a tension field
theory of thin membranes [25] is introduced for a transversely isotropic electroelastic material
class. Furthermore, the nonlinear expressions of taut domains in the transversely isotropic thin
membrane are derived.

Figure 1: Schematic representations of (a) unit fiber vector orientation in 3D space, (b) undeformed
configuration of a smart membrane, and (c) deformed configuration of a smart membrane with electric
field loading.

2.1 Governing equation for transversely isotropic smart thin membrane

Consider a transversely isotropic electroelastic membrane in the reference configuration Bi

as shown in Fig.1. The membrane deforms with an applied electrical field in the current con-
figuration Bf carrying a deformation f : Bi → Bf with the deformation gradient F = ∇f. The
left Cauchy–Green deformation tensor B for the given deformation f is denoted by B = FFT =∑3

i=1 λ
2
i ei ⊗ ei, where λi is the ith principal stretch. In the current configuration, the electrical

field variables is denoted by E. The fiber-reinforcement in the body is incorporated through
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a fiber-vector a0 in a particular direction (say α) in the reference configuration that has been
transformed to a = Fa0 with an applied deformation f.

Further, a complete set of invariants for an incompressible transversely isotropic electroelastic
material class are introduced by [24]

I1 = trB = λ2
1 + λ2

2 + λ−2
1 λ−2

2 , I2 =
1

2
[(trB)2 − tr(B2)] = λ−2

1 + λ−2
2 + λ2

1λ
2
2,

I3 = detB = λ1λ2λ3 = 1, I4 = [El ⊗El] : I = λ2
3E

2
0 , I5 = [El ⊗El] : B−1 = E2

0 ,

I6 = [El ⊗El] : B−2 = λ−2
3 E2

0 , I10 = a0.Ba0 = λ2
1Cos

2α+ λ2
2Sin

2α,

(1)

where El = FTE is the electric field vectors defined in Lagrangian form. Now, we write the free
energy density for a transversely isotropic electroelastic membrane as Ω = Ω(F,El,Hl,a0) =
Ω(I1, I2, I3, I4, I5, I6, I7. Following the coupled nonlinear theory of electroelasticity [26], an ex-
pression of the total stress tensor T for an incompressible transversely isotropic electro-magneto-
elastic material class Ω = Ω(I1, I2, I4, I5, I6, I7) is given by

T = −pI+ 2Ω1B+ 2Ω2[I1B−B2]− 2Ω5[E⊗E]− 2Ω6[B
−1E⊗E+E⊗B−1E]

+2Ω7[a⊗ a]],
(2)

where p is a Lagrange multiplier associated with the incompressibility constraint and Ωi is

denoted by Ωi =
∂Ω

∂Ii
, i = 1, 2, 3....7. For a given membrane configuration as shown in Fig.1, the

deformation gradient tensor F, the left Cauchy–Green deformation tensor B, the electric field
vector E, and fiber vector a0 are defined as

F = λ1e1 ⊗E1 + λ2e2 ⊗E2 + λ−1
1 λ−1

2 e3 ⊗E3, B = FFT , E = E0e3,

a0 = Cosα e1 + Sinα e2,
(3)

where E1, E2, E3 represent the basis in the undeformed configuration, and e1, e2, e3 are the
basis in the deformed configuration. In the current problem, the defined free energy density
Ω is specialized to the following neo-Hookean type of material model, which exhibits the snap-
through response of the membrane. The corresponding free energy density expression is given
by

Ω =
µ

2
[I1 − 3]− ε0

2
[C1I4 + C2I5] +

µ

2

[
ζ1 (I7 − 1)2

]
, (4)

where µ, C1, C2 are the material constants, ε0 represent the electrical permittivity, and ζ1 denote
the fiber-reinforcement parameters. Upon invoking the above defined expressions (3) and (4)
alongwith the invariant definitions (1) in (2), the principal stress components for the deformed
configuration of membrane are obtained as

T11 = −p+ µλ2
1 + 2µζ1

(
λ2
1Cos

2α+ λ2
2Sin

2α− 1
)
λ2
1Cos

2α,

T22 = −p+ µλ2
2 + 2µζ1

(
λ2
1Cos

2α+ λ2
2Sin

2α− 1
)
λ2
2Sin

2α,

T33 = −p+ µλ−2
1 λ−2

2 + C2ε0E
2
0 .

(5)
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In the above relations (5), the boundary condition of stress-free state, i.e., T33 = 0 gives the
required expression for a Lagrange multiplier that is an indeterminate hydrostatic pressure p as

T33 = 0 ⇒ p = µλ−2
1 λ−2

2 + C2ε0E
2
0 . (6)

Substituting the above expression of Lagrange multiplier p, the required expressions for the
principal stress components (T11 and T22) are obtained as

T11 = µ(λ2
1 − λ−2

1 λ−2
2 )− C2ε0E

2
0 + 2µζ1

(
λ2
1Cos

2α+ λ2
2Sin

2α− 1
)
λ2
1Cos

2α,

T22 = µ(λ2
2 − λ−2

1 λ−2
2 )− C2ε0E

2
0 + 2µζ1

(
λ2
1Cos

2α+ λ2
2Sin

2α− 1
)
λ2
2Sin

2α.
(7)

For the sake of convenience, the following non-dimensional electric field variable may be
introduced in the above governing equations (7), which are defined as

e∗ = Ê

√
C2ε0
µ

, (8)

where Ê = E0/λ1λ2 represent the nominal electric field. Upon invoking the above defined non-
dimensional electric field variable (8) in the governing equations (7), the normalized principal
stress components (T ∗

11 and T ∗
22) are obtained as

T ∗
11 = (λ2

1 − λ−2
1 λ−2

2 )− e∗2λ2
1λ

2
2 + 2ζ1

(
λ2
1Cos

2α+ λ2
2Sin

2α− 1
)
λ2
1Cos

2α,

T ∗
22 = (λ2

2 − λ−2
1 λ−2

2 )− e∗2λ2
1λ

2
2 + h∗2λ−2

1 λ−2
2 + 2ζ1

(
λ2
1Cos

2α+ λ2
2Sin

2α− 1
)
λ2
2Sin

2α.
(9)

Finally, the first Piola–Kirchhoff (PK-1) stress components S∗
ii from the above developed

principal stress components (9) may be obtained based on the following conversion given by

S∗
ii(λ1, λ2, e

∗, ξ1, α)= T∗
ii(λ1, λ2, e

∗, ξ1, α)λ
−1
i i = 1, 2. (10)

2.2 Taut domains in transversely isotropic smart thin membrane

This subsection introduces a concept of the tensile stretches region that is also known as taut
domain [25] shown in Fig.2 for a transversely isotropic electroelastic material class. Reconsider
a smart thin membrane sheet bonded with two compliant electrodes and an applied electric field
source shown in the previous Fig.1. In the reference configuration Bi, the thin membrane is
assumed as having a constant thickness with a right cylindrical region in flat mid-surface. At
the same time, orthogonal displacements of flat mid-surface are neglected because the membrane
remains flat during loading activation.

In order to deduce the constitutive relations for the taut domains a state of local uniaxial
stress in direction e2 is considered. Consequently for uniaxial stress (T ∗

11 = T ∗
33 = 0), the

transverse stretch in direction e1 assumes a specific value referred as natural width in tension.
Thus, the governing equation (9) for the taut domains of transversely isotropic electroactive thin
membrane is rewritten as
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Figure 2: A schematic representation of the natural strain curves of the tensile stretch region.

(λ2
1 − λ−2

1 λ−2
2 )− e∗2λ2

1λ
2
2 + 2ζ1

(
λ2
1Cos

2α+ λ2
2Sin

2α− 1
)
λ2
1Cos

2α. (11)

In case of simple boundary value problem, the smart thin membrane is considered with the
null tractions on the entire boundary triggered on the upper and lower faces by an applied
electric field. Invoking the notion of equibiaxial equilibrium configurations, i.e., P1 = P2 = P
and λ1 = λ2 = λ, the Piola–Kirchhoff stress components utilizing (10), are obtained as

S∗
11(λ, e

∗, ξ1, α)= S∗22(λ, e
∗, ξ1, α)= S∗(λ, e∗, ξ1, α),

⇒ (λ− λ−5)− e∗2λ3 + 2ζ1
(
λ2Cos2α+ λ2Sin2α− 1

)
λCos2α.

(12)

Further, the equibiaxial stretch λ satisfies the conditions of null tractions on the edges of the
membrane and corresponds to the following obtained solution

S∗(λ, e∗, ξ1, α) = e∗2λ8−2ξ1
(
λ2Cos2α+λ2Sin2α−1

)
λ−4Cos2α− λ−6 + 1 = 0. (13)

In the simple setting of homogeneous equibiaxial deformation, the stability criterion in order to
obtain the taut domains is expressed as

dS∗(λ, λ)

dλ
> 0. (14)

In the forthcoming section, the governing equation (11) is solved numerically to obtain the
taut domains for a proposed transversely isotropic electroactive material-based smart thin mem-
brane.
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3 Results and discussions

In this section, the electromechanical model presented in Section 2 is utilized for predicting
the thresholds on the taut domains in the plane of principal stretches by varying several input
parameters. First, the analytical findings are obtained for the special case of an isotropic smart
thin membrane for different levels of applied electrical loading conditions. Next, the impact
of the fiber strength and its orientations in principal directions on the taut domains under
electric field loading conditions are examined. To examine the effect of fiber reinforcement,
five different values of anisotropy parameter ξ1 = 0, 0.05, 0.10, 0.15, 0.20 [27] are adopted. The
anisotropy parameter accounting for the shear coupling effect is neglected, i.e., ξ2 = 0 in this
study. Further, the value of α = 0◦, 30◦, 45◦, 60◦, 90◦ [27] are considered to analyze the effect of
fiber-orientation.

3.1 Taut domains of isotropic smart thin membrane

In this subsection, first we investigate our constructed model (11) in the absence of anisotropy
effect. For a given ξ1 = 0, our model represents the dielectric elastomer membrane characteristics
actuated by varying electric field (e∗). In order to investigate the taut domain obtained from
the developed model with ξ1 = 0, the obtained principal stretches (λ1 and λ2) are plotted in
Fig. 3. The obtained critical electrical field e∗crit. = 0.687 at which taut domain reduces to a
point represents the onset of pull-in instability and matches well with the prior investigations
[28, 29]. The developed theoretical model captures the trend of variation of the taut domains
in the plane of principal stretches (λ1 and λ2) with the applied electric field. Further, an exact
one-to-one corroboration in taut domains for an applied level of an electric field is observed

Figure 3: Taut domains of isotropic (ξ1 = 0) smart thin membrane for varying level of applied electric
field.
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between the DeTommasi et al. [17] model and the developed model. This observation ascertains
the legitimacy of the developed model in accurately predicting the taut domains in the plane of
principal stretches.

Figure 4: Taut domains of transversely isotropic smart membrane for varying electric field e∗.

3.2 Taut domains in transversely isotropic smart thin membrane in presence of
electric field

This subsection investigates the taut domains of transversely isotropic thin membrane sub-
jected to electric loading conditions. The electroactive thin membrane with anisotropy parameter
ξ1 = 0.05 and fiber orientation α = 0◦ is considered. First, the taut domain of the membrane
for varying electric field levels is obtained as revealed in Fig. 4. The taut region shrinks as e∗ is
increased, i.e., as the voltage rises, until a critical activation e∗crit. is reached. The taut domain
of transversely isotropic membrane reduces to a point for e∗crit. = 0.710. There are no taut states
at higher voltages. It is worth noting that a higher e∗ correlates to a lower elastic modulus µ.
As a result, it can be deduced that stiffer materials have a greater tensile stretch region [17].

3.3 Effect of fiber reinforcement and orientation on the taut domain

In the following subsection, the effect of fiber reinforcement and its orientation on the taut
states of transversely isotropic thin membrane activated by electric loading is studied. In the first
case, we analyze the effect of fiber reinforcement for the five aforementioned sets of anisotropy
parameter ξ1 with α = 0◦, e∗ = 0.70(see Fig. 5a). From Fig. 5a, it is clearly observed that
the taut domains for a particular level of applied electric field increase with an increase in the
anisotropy parameter. This implies that the fiber reinforcement resists or even suppresses the
wrinkling [27] (obtained outside the taut domain, see Fig. 2). This positive impact of fiber re-
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(a) (b)

Figure 5: Taut domains of a transversely isotropic smart membrane for (a) varying anisotropy
parameter ξ1 at α = 0◦, and (b) varying fiber orientation angle α at ξ1 = 0.05, excited by electric
loading conditions of e∗ = 0.70.

inforcement provides a promising design technique for wrinkle-resistant or wrinkle-free surfaces.
In the second case, we investigate the effect of fiber orientation for different aforementioned
values of α with ξ1 = 0.05, e∗ = 0.70 (see Fig. 5b). It is observed from Fig. 5b that for an
applied electric field, the domain of the taut state depleted with an enhancement in the fiber ori-
entation. This implies that the thin membrane with oriented fiber (α > 0◦) is more susceptible
to wrinkling phenomenon in comparison to the membrane without orientation (α = 0◦).

4 CONCLUSIONS

The current research proposes a continuum mechanics-based model for predicting the taut
domain thresholds of a transversely isotropic electroactive thin membrane class. The notion
of natural width under simple tension is used to create the coupled nonlinear equation that
evaluates the taut domains. The taut domains of transversely isotropic thin membranes depleted
with an increase in the applied level of electrical loading. On parallel lines, for an applied
electrical loading, the taut domains of transversely isotropic thin membranes amplifies with
an enrichment in the anisotropy parameter; whereas it depleted with an increase in the fiber
orientations from 00 to 900. Hence, it is observed that the extent of taut domains of transversely
isotropic thin membranes can be controlled by modifying the level and the principal direction
of the transverse isotropy.

Finally, the inferences of this work may aid in the development of wrinkle-tunable fiber-
reinforced surfaces for smart devices.
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