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Debates—Stochastic subsurface hydrology from theory

to practice: Why stochastic modeling has not yet permeated
into practitioners?

X. Sanchez-Vila® and D. Fernandez-Garcia’

"Hydrogeology Group, Department of Civil and Environmental Engineering, Universitat Politécnica de Catalunya,
Barcelona, Spain

Abstract we address modern topics of stochastic hydrogeology from their potential relevance to real
modeling efforts at the field scale. While the topics of stochastic hydrogeology and numerical modeling have
become routine in hydrogeological studies, nondeterministic models have not yet permeated into practitioners.
We point out a number of limitations of stochastic modeling when applied to real applications and comment
on the reasons why stochastic models fail to become an attractive alternative for practitioners. We specifically
separate issues corresponding to flow, conservative transport, and reactive transport. The different topics
addressed are emphasis on process modeling, need for upscaling parameters and governing equations, rele-
vance of properly accounting for detailed geological architecture in hydrogeological modeling, and specific
challenges of reactive transport. We end up by concluding that the main responsible for nondeterministic
models having not yet permeated in industry can be fully attributed to researchers in stochastic hydrogeology.

1. Introduction

Stochastic hydrogeology has been a topic in WRR and other journals for over 40 years. Arguably, the topic
reached its maturity more than a decade ago. In parallel, numerical modeling has become routine in hydro-
geological studies. In spite of this, nondeterministic models have not reached practitioners. In this debate
paper we want to stress the limitations of stochastic modeling when applied to real applications, comment
on the reasons why stochastic models fail to become an attractive alternative for practitioners, and suggest
tips that may improve our ability to produce transferable nondeterministic models.

1.1. Spatial Variability and Uncertainty

Heterogeneity is a fundamental property that must be accounted for when studying natural processes. One
approach is to consider groundwater parameters as regionalized variables, or spatial random functions
(SRFs) based on the principles stated by Matheron [1967]. An SRF, Z(x, ), is a function of space whose out-
come is nondeterministic. For any number of points (X,...,Xn), Z(X1, ®),...Z(Xn, ) are nonindependent
random variables and all the body of statistics based on Kolmogorov's axioms apply. On the other hand, fix-
ing w=wy, we get one realization of the random field, a single space function, and all the body of calculus
applies. The collection of all the space functions for the different w values is called the ensemble.

A fundamental question arises: Why use random functions to represent a deterministic reality? The answer is
uncertainty, arising from incomplete information regarding the true hydrological and biogeochemical processes
occurring over a wide range of temporal and spatial scales. In this context, the best we hope for is to have a few
(potentially noisy) measurements, characteristic of some (unknown) support volume, and maybe some indica-
tions about general trends. As reality is uncertain, we model any given parameter by a SRF, and reality becomes
just one of the infinite possible realizations. The first problem is how to get the statistics of the ensemble (statisti-
cal space) from one single realization (physical space). This is possible only if some type of stationarity prevails
and the ergodic hypothesis is invoked. Ergodicity implies that all states of the ensemble are available in each
realization, a premise that can never be validated rigorously, as just a single realization is available.

1.2. The Stochastic Equations
By using a stochastic approach, the variables that appear in the classical equations used in hydrogeology
become random, and the groundwater flow and solute transport equations become stochastic partial
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differential equations (s-PDE). Boundary and initial conditions may or may not be treated as SRFs. Several
stochastic methods are available, such as:

Perturbation methods. Consist of expanding the dependent variable in an asymptotic sequence and to
derive individual PDE’s for each term in the expansion. By solving them, low-order approximations of the
solution are obtained. Closure analysis becomes critical. An alternative is to directly write the PDEs satisfied
by moments (i.e., moment equations).

Monte Carlo methods. Involve generating equally-likely realizations of all parameters. Each run becomes a
deterministic model and stochasticity stems from the ensemble. The output allows reconstructing the multi-
variate distribution of the dependent variable. These intensively CPU demanding methods are routinely
used in complex problems.

PDF-based methods. To directly find the full conditional pdf or cdf of the dependent variable. So far, this
method has only been applied to very simple configurations.

Importantly, structural uncertainty is not considered in these approaches which typically assume that the
structure of the governing PDE for the state variable is fully known.

2, Deterministic Versus Stochastic Approaches and Scaling

2.1. It Is Nothing but a Modeler’s Choice

When modeling a site, choosing a deterministic or a stochastic approach is just a modeler's choice. Deter-
ministic approaches are based on viewing parameters as constant in prespecified zones, implying that the
main features controlling flow and transport can be explicitly identified. Nonetheless, this does not imply
neglecting the importance of heterogeneity, as deterministic parameter calibration incorporates uncertainty
quantification. The main problem arises at the conceptualization stage, since data rarely suffice for unequiv-
ocal definition of zonation, since zone boundaries are fuzzy even if at all existing.

Instead, stochastic approaches are motivated by recognizing both the importance of spatial variability and
the impossibility of fully and precisely describing the statistical characterization of hydraulic parameters in
full. Thus, the need for simplifying assumptions, such as log conductivity being fully characterized by two-
point statistics (e.g., being multinormal, bimodal, or defined as a suite of indicator functions), or else using
reconstruction methods based on a combination of data and a priori defined spatial shapes (e.g., multiple
point geostatistics).

2.2, The Problem of Scales

We consider spatial variability at four different scales: pore, local, formation, and regional. Early and most
successful results in stochastic hydrogeology correspond to the regional scale, such as the derivation of
effective hydraulic conductivity [Matheron, 1967; Gutjahr et al., 1978] or that of macrodispersion [Gelhar and
Axness, 1983] as a function of some statistical parameters of hydraulic conductivity, K. While effective K val-
ues are still used routinely in numerical models, the concept of macrodispersion was rapidly challenged,
once it was clear that solute transport was always nonergodic [Kitanidis, 1988]. This is actually a key point. If
macrodispersion is invoked, deterministic transport models would suffice (no need for stochastic models).
This could be of interest in large-basin water resources management problems, or in long-range pollution,
where local-scale variations should be smoothed out on purpose to avoid the possibility of somebody ask-
ing: What happens in my back yard?

At the formation scale, flow and transport are of a three-dimensional nature. Most problems of interest in
hydrogeology occur at this scale, and it is where stochastic models might find their niche. Examples would
be flow in the vicinity of a well, or solute transport near the source, that can only be properly resolved if het-
erogeneity is fully accounted for and, more, if models are properly conditioned to geological data. Loosely
quoting Prof. Andre Journel from Stanford University in a talk given in 1992: “. . .if | ever find myself crossing
paths with somebody using unconditional realizations, | will cross the street.”

The local scale is the one used to define the governing equations used in most hydrogeological models.
The real applications are mostly limited to laboratory experiments. Thus, this scale is more appropriate for
research efforts rather than actual field problems. Finally, the pore scale has traditionally been ignored in
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hydrogeology. Lately, there have been significant advances in the field of micro-CT imaging, allowing the
study of flow and transport in pore networks with resolutions down to microns.

The question is then how and up (or better down) to what size we need to take our models and whether
there is a clear gain in using stochastic descriptions of reality. The answers are still unclear. The unresolved
issues are process-dependent and therefore in the sequel we clearly separate those of flow, conservative
transport, and reactive transport.

3. Groundwater Flow: Process Description, Unresolved Issues, and Model Choices
Several unresolved issues can be considered here:

1. Hydrogeology includes the word “geology.” Practitioners are perfectly aware, and hydrogeology reports
routinely start with a thorough geological description. Yet some stochastic hydrogeologists disregard
this point as in “l will not allow data to contradict my beautiful mathematical theory.” Considerable
efforts have been devoted to generate process-based or pattern-based geological descriptions. Condi-
tioning on hard geological data is a must, but certainly not enough. Direct reconstruction methods over-
smooth the shape of facies interphases, with significant implications in transport. Soft data, either
geophysical data or prior descriptions of geological patterns, should be incorporated with care, as there
is the danger of conditioning “too much.” We contend that the need for conditioning the model on the
best available geological description is known by practitioners and thus widely used in deterministic
modeling; yet we routinely build our stochastic models based on simplistic geometrical depictions and
hope that the SRF framework will be smart enough to take over. As a consequence, practitioners have
the impression that deterministic models, if uncertainty is properly evaluated, can outperform stochastic
models in terms of robustness [see the unambiguous discussion by Pool et al., 2015].

2. Flow at the local scale is satisfactorily modeled using Darcy’s law. At the formation scale Darcy’s law is
just hypothesized, without proof.

3. Hydraulic conductivity is a macroscopic quantity derived rigorously from the dissipation of viscous
forces. Yet in practice K is mostly derived from hydraulic tests (thus representative of some undefined
support volume) or indirectly obtained from empirical formulae (too local to become representative),
without considering the pore network geometry (except for recent advances in pore scale simulations
[Pereira Nunes et al., 2016]).

4. Storage coefficient (S) is a rigorous quantity, derived theoretically in terms of specific weight of water, aqui-
fer thickness, porosity, and compressibility of water and the mineral skeleton. Nevertheless, it is seldom
computed this way. When S is derived from the interpretation of pumping tests, the results have very little
to do with the actual value. Variations in S are never properly characterized (we will emphasize this point
later) and at most they are hypothesized or estimated from weak correlations with other parameters.

5. In unsaturated flow, water retention curves or relative permeability functions are mostly empirical and
therefore they are site-specific and dependent on window resolution.

6. Not all are bad news. Upscaling of hydraulic conductivity is a well-resolved problem, with a number of
analytical and numerical methods available. While local K values are highly uncertain and may span a
wide range of orders of magnitude even in seemingly homogeneous aquifers, upscaled K values are less
variable and less uncertain due to the averaging process.

The issue then is whether we feel comfortable advocating for stochastic modeling in flow problems. Practi-
tioners might think that such models should only be used if large data sets of piezometric head and hydrau-
lic parameters are available. Actually, it is quite the opposite; they are best suited for when information is
minimal and we must rely on our technical knowledge, which we can introduce in the model as priors
(which become model hypotheses).

Following this idea, we stress the paradox of model reconstruction. Let us assume a simple 2-D model
where transmissivity T(x) is spatially variable (with a given mean and variance, ¢2;) and storage coefficient
S is constant in space. We then perform a series of hydraulic tests and interpret them using hydraulic
tomography. It is immediately observed that the T, (x) values (est indicating estimated values) are spatially
variable with the same mean but a much smaller variance than that of T(x) (a7,;. < af ;). On the other
hand, St becomes spatially variable and provides information about connectivity, a term that lacks a formal
definition but that intuitively informs about the continuity and directionality in the natural arrangement of
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geological facies or bodies. Detecting the location of conducting features implies the need to condition the
model on all available geological information (hard or soft), without having to impose a very high variance
variogram in unconditional realizations, or else deterministically delineate the highly conductive intercon-
nected features. Moreover, the small value of o, may lead to the wrong conclusion that the medium is
quite homogeneous and there is no need to account for heterogeneity.

Another point of discrepancy is the usefulness of models. In the words of Gupta and Nearing [2014] we are
“...more interested in the specific value of models to developing understanding about the dynamics/
behavior of a system, and less so in their use for prediction at a specific time and place.” While the authors
of this paper fully support this statement, we believe most practitioners, local authorities, and policy makers
would definitely be against it. They want answers, given in quantitative terms and with full certainty. Is this
a reason why practitioners rely on deterministic models? Most probably they think that whatever comes
out from models is the closest to the truth they can get. Yet they probably do not realize that whenever
they ask for risk assessments they are actually adopting a stochastic vision of the problem. We should blame
ourselves for not being able to convey such a message.

Finally, when analyzing subsurface flow at different scales we find that the same formal equation is applica-
ble provided we accurately upscale heads, parameters, and boundary conditions. This has resulted in a large
number of numerical codes capable of solving the flow equation using a bunch of well-established numeri-
cal methods. Actually, the same codes can be used for deterministic or stochastic models for the direct
problem, and some commercial codes can actually handle the inverse problem also in both cases. CPU time
may or may not be an issue, but technically there are no major differences.

4, Conservative Transport: Upscaled Equations and Model Choices

In conservative transport the situation is radically different than for flow. As discussed later, there is a strong
division in the community regarding the governing equations that should be used, and on the most appro-
priate numerical methods to solve them.

As the variable of interest in transport is solute concentration, it seems adequate to use an Eulerian
approach, with traditional numerical methods (e.g., finite differences or finite elements). This does not work.
An alternative is the use of Lagrangian methods that track the movement of mass. The circle is closed if par-
ticles are used to estimate concentrations, leading to Eulerian-Lagrangian methods. All of this is well known,
but it relies on assuming we know with certainty the proper governing equation. And here it seems we can-
not bring the community to agreement, causing an infinite sense of confusion that would definitely prevent
practitioners from using any of the developed theories. That is, no matter what they do, half of the scientists
will claim they are not using the proper equation or numerical method, so why not use the simplest equa-
tion even if everybody agrees it does not work?

A starting point would be to agree on the equation valid at the pore scale, and then perform upscaling.
And this is already controversial. With a pore network description at the micrometer scale, one might recon-
struct particle trajectories by solving the Stokes equation, to compute the velocity field, and allow for advec-
tion and diffusion. But a particle is not a molecule, so we cannot blindly apply the solutions of molecular
diffusion to particles without formal upscaling.

Coupling advection and diffusion in a medium composed of voids and solids gives rise to hydrodynamic
dispersion. If this follows Fick’s law, the governing equation of transport is the advection-dispersion (ADE).
But dispersion is governed by variations in groundwater velocity at all scales (in time and space). Upscaling
flow leads to a reduction in the variance of upscaled velocities, and therefore the need for block-dispersion
parameters [Rubin et al., 1999] to properly reproduce solute dispersion (the limit is macrodispersion in a
constant velocity model), still assuming that the ADE is valid at some local scale. However, this last state-
ment is controversial. Many authors argue that the ADE does not hold at any scale. Others invoke that the
ADE properly fits experimental data [Ginn et al., 2013].

An example of the discussion of the proper transport equation to use was provided in the 2015 AGU Chap-
man conference, which devoted one session to discuss whether a local ADE with sufficient data is enough to
model the MADE site and another one to present the performance of alternative equations. An example of
the former is that of Salamon et al. [2007], who considered that the ADE is valid at the meter scale; even in
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Figure 1. Longitudinal integrated mass distribution profiles measured at the MADE site of P

the tritium plume and different Monte Carlo realizations considering that the local ADE is the MADE site most authors have
valid at the metric scale (modified from Salamon et al. [2007]). All simulations display only tried to reproduce the inte-
(insufficient) tailing, and there is a strong variability between individual realizations. grated mass along the flow direc-
tion, rather than the full 3-D
spatial distribution of point concentrations. The bad quality of the fits obtained from simulations based on the
ADE and upscaled parameters have been associated to either the sampling strategy or to the presence of rate-
limited transfer processes. The latter is supported by two direct evidences: (1) vacuum extractions at 0.5 and 5
bars showed that bromide was not distributed uniformly in the local pore space, the latter extracts containing
about 3 times the concentration of the former, and (2) observation of aquifer outcrops reveal the presence of
high permeable interconnected structures at the submeter scale sandwiched between low-permeability units.

Interestingly, it turns out that by simply adding a single-rate mass transfer term into the local ADE, the simulat-
ed front edge of the plume significantly improves (Figure 2). There is a rationale for this; even if the ADE were
valid at some undefined small scale, there is no reason why Fick’s law would hold at some intermediate scale.
Actually, it has been shown that transport is always non-Fickian, so that the expression “anomalous transport”
is misleading. In the last two decades, efforts have been devoted to writing alternative and phenomenological
transport equations. There are three main alternatives, whether the form of the equation is borrowed from
the field of physics (resulting in a Continuous Time Random Walk (CTRW) model), mathematics (leading to a
fractional ADE-fADE model) or that of chemistry (single-rate or multirate mass transfer (SRMT/MRMT) models).

Despite being heavily contested, all non-Fickian models share a good characteristic: they do work! Such models
work well in reproducing integrated observables, such as breakthrough curves displaying realistic tailing, negative
asymmetrical spatial concentration
1 profiles, or concentration build-
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Zheng, 2016].
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Figure 2. Best fit of the integrated mass profiles at the MADE site at time t = 328 day by | bl Fernand
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mass transfer coefficients estimated for a number of experiments worldwide, adding the

estimations of Guan et al. [2008] for the MADE site. The latter values do not follow the general

trend described by the inverse of residence time.

showed that when the memory
function follows a power law
distribution, the effective coeffi-
cient of a time-dependent
single-rate mass transfer model
(t-SRMT) scales with the inverse
of time. This nicely fits (without
calibration) the compilation of
SRMT coefficients from Haggerty
et al. [2004], presented in Figure
3 together with the estimated
time-representative mass trans-
fer coefficients reported by
Guan et al. [2008] for the MADE
site, showing that they do not
follow the trend. This may have
two different interpretations (1)
that the estimated parameters
were affected by subgrid het-
erogeneity not included in the
upscaled model or (2) that the
behavior of the ensemble does
not preclude that of any given
specific site. In fact, Figure 4
shows that the coefficients
reported by Guan et al. [2008]
follow the t-SRMT associated

with a double-rate mass transfer model, questioning the common use of power law memory functions.

In summary, the model to be used is a modeler’s personal choice. All non-Fickian models are equally adequate
to reproduce observations and are equivalent under restrictive conditions. Yet there are limitations. Most appli-
cations use a reduction in the number of dimensions, as they aim at fitting global observables. Therefore, it is
not possible to match local concentration maps with non-Fickian models, and we should be very careful when
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calibrating parameters from
point measurements. Alto-
gether there seem to be
strong reasons why practi-
tioners feel uneasy about
using non-Fickian models and
keep relying on the ADE, even
though it is known to provide
inadequate answers.

5. Reactive Transport:
Process Description,
Observables, and
Model Choices

For most reactions, the equa-
tions and the corresponding
rates are well known and can
be found in the literature,
even in textbooks, based on
data from batch experiments.
When advection gets into the
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picture, mapping reactions is challenging, as the transport of reactants and products are controlled by aquifer
heterogeneity. The question is whether incorporating additional source terms to account for reactions will
result in proper equations for transport of reactive species. In general, the answer is no. Reactions take place at
the molecular scale, driven by local chemical imbalances that might be a consequence of transport processes.

Upscaling becomes a real challenge for reactive transport. The question is, Can we use the rates derived
from batch experiments in a real field model? Obviously not. Let us consider the simple reactive problem of
annihilation, where at any given point in space two substances X and Y cannot coexist, as whenever they
get in contact an instantaneous irreversible reaction takes place (X+Y — ). The amount of reaction g tak-
ing place at any point and time is

q(x, &) =min (X (x, ), Y (x, t)). (M

Notice that we are adopting here a simple explicit scheme just for the purpose of illustration (most probably
it would be the worst numerical scheme to use in any real application). The transport equation for X (we
could also write the one for Y) is
ax

—=L(X)—r 2
g L0, @
where L(-) stands for any transport operator. If we were solving the reactive problem in some coarse mesh,
the total reaction Q at time t in one element V of the mesh would be

o(tk+1)=J min (X (x, £4), ¥ (x, &) V. 3)

v

In (3), X, Y are the point concentrations that can never be estimated with certainty, and so the need to map
some smoothed version of the concentrations X, Y using any of the transport equations already discussed.
Now, it turns out that in volume V, X, Y can coexist, and that

(¢ 7&] min (X (x, &), ¥ (x, £))dV. @
v
If transport was conservative, we could write an upscaled equation for X as already presented, but since
reaction will take place, the governing equation would look like

1 (X)—q" 5
g L X-d, (5)
where L* could represent any operator including a non-Fickian dispersive term, selected by the modeler.
But then, what is g*? It turns out that the actual expression for g* depends on grid size and on the transport
model used. The most significant point to make here is that now X, Y are observable quantities, that is,
amenable of being measured.

As a consequence, the approach relying on setting up a domain discretization and adopting a strategy
based on defining flow, assuming a model for the conservative transport equation and producing forward
simulations of reactive transport at that scale is bound to fail. The reason is that variability in concentrations
at the local (subgrid) scale is the reaction driver, while models provide some averaged concentrations at the
grid scale. At this point we still do not know how to properly upscale the parameters controlling reactions.
Efforts based on volume averaging theory provide a correct setup [Porta et al., 2013; Wood and Valdes-
Parada, 2013], but this has not been adapted to real field problems and require averaging over large vol-
umes as compared to the characteristic length scale of heterogeneity.

Direct upscaling is typically challenged in real field applications by the presence of hydraulically connected
features [Trinchero et al., 2008; Pedretti et al.,, 2014], often exceeding the size of the model representative
volume. The spatial distribution of highly permeable persistent geological bodies that concentrate solutes
in connected channels controls not only the arrival of toxic concentrations and its subsequent risk to human
life or ecosystems [Henri et al., 2015; Fiori et al., 2015] but also the occurrence of biochemical reactions
[Rubol et al., 2014; Sanchez-Vila et al., 2013], as they provide most of the nutrients that are vital to ecological
systems. The representation of connected features in stochastic theories is still a major challenge.
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6. Discussion: Do Stochastic Models Represent Somehow Reality? Can We Do
Better?

We start by stating that deterministic models do not represent reality at all. The reason is the combination
of unsampled natural heterogeneity and scenario uncertainty. This is a point to convey to practitioners (see
the lucid discussion of Renard [2007]). So, despite all problems and limitations, only stochastic models have
a chance of providing the answers needed for proper groundwater management efforts. We must make a
clear effort to explain why all answers must be provided in probabilistic terms, incorporating the concept of
acceptable risk defined as the probability of any system to unsatisfactorily meet the demands in space or
time.

In this section we address the issue of numerical methods applied to solve the different equations proposed
in this text in order to provide the best tools to be used in stochastic reactive transport models, further dis-
cussing pros and cons. Codes that can handle multiple species and chemical reactions are typically based
on Eulerian numerical methods. A major challenge is the description of natural hydro-bio-chemical hetero-
geneities at the proper scale [e.g., Rubol et al., 2014; Cirpka and Valocchi, 2007].

To illustrate the problem, let us consider a precipitation problem involving the mixing of two different
waters carrying in solution two aqueous species, A and B, in instantaneous local equilibrium with a solid
mineral M, and driven by the chemical reversible reaction A+B < M. De Simoni et al. [2005] demonstrated
that the reaction rate given by the local ADE-based model can be decomposed into the product of two
terms

r(x, t)=fen(U) frix(u), (6)

where fg,(u)=2K, (u?+4Kp) ~3/2 s driven by chemistry and fy(u)=V'u DVu expresses how the two
waters mix. Here u is the conservative component defined by subtraction of the concentrations of reactants,
u=[A]—[B], K, is the constant of equilibrium, and D the dispersion coefficient. Considering that the aquifer
is homogeneous, initially in chemical equilibrium, and that a water with a characteristic chemical signature
Aug is continuously injected through an infinite source line perpendicular to the flow direction, the solution
of the transport problem is

X—vt
u(x,t)=ug+1/2Auq erfc| —|. (7)
o)t/ 200 (\/ZD?)

Assuming that up+Au < K, and integrating (7) in space and time, we obtain that the total amount of min-

eral precipitated is proportional to the square root of D and given by

t ptoo
R(t)=j J r(x, t)dxdt' = Aud fo(uo)(2m) "2 D'/ 1172, (8)
—00

This implies that small errors in the estimation of the dispersion coefficient may drastically affect the esti-
mation of the total amount of reaction, depending on the problem at hand. A large body of literature
includes variations in the expression of f,,, to analyze scalar dissipation rates in conservative [Le Borgne
et al., 2010] and nonconservative tracers [Engdahl et al., 2013], a concept directly related to measurements
of entropy.

The most important disadvantage of Eulerian methods is that the inherent truncation errors involved in the
space and time discretization typically induce artificial oscillations and numerical dispersion. The latter
results in an overestimation of the total amount of reaction, and it is known to depend on two characteristic
numbers, Grid-Courant (Cu= *3), and Grid-Peclet (Pe= *4Y), where Ax and At denote the spatial and tempo-
ral discretization and v is the flow velocity. The dependence of the numerical dispersion on these dimen-
sionless numbers relies on the chosen discretization scheme. In general, one can state that the relative error
caused by numerical dispersion is

ec=DnD“m—1=f(Cu,Pe)—17 9)

where Dy, is the dispersion coefficient exhibited by the computer simulation and D is the true value. For a
wide range of schemes this can be explicitly written as [Peaceman, 1977]
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f(Cu, Pe)=Pe(G—a> +CU(W— %)) (10)

where « is the spatial weighting factor for the advective flux and w is the temporal weighting factor (explic-
it, implicit, or Crank-Nicholson). Combining (8) and (9) leads to an expression for the relative error in the
total amount of reaction induced by the chemical system

Rnum Dnum
= —1="Y —1=+/f(Cu,Pe)—1. 11
/=7 75 (Cu, Pe) (11)

Figure 5 shows the behavior of ez as a function of Pe and Cu for an implicit approximation scheme with
upstream weighting (¢ =0 and w = 1), a popular scheme among reactive transport codes. Results suggest
that Pe < 1 leads to very small relative errors (eg < 1%).

The question is then, What Pe is typically used in stochastic modeling? A rough estimation can be done:
When heterogeneity is explicitly described by high-resolution conductivity maps, cell longitudinal and
transverse dispersivities are taken as proportional to the element size, e.g., o, =~ 0.1 Ax and o7 =~ 0.01 Ax.
This is supported by stochastic theories and the review of tracer data performed by Gelhar et al. [1992]. This
means that for a standard discretization method the corresponding Grid-Peclet numbers range between 10
and 100, which leads to a more than 100% relative error. For instance, at the Cape Code site the evolution
of the spatial moments of Bromide led to «; /ar~ 60, yielding a P, value of transverse dispersivity over 600.
Thus, the overestimation of the total reaction becomes even worse when chemical reactions are controlled
by transverse dispersivity, a common situation in contaminant transport [e.g., Cirpka et al., 2015]. No wonder
that a lot of research has been devoted in recent years to overcome this problem by developing new
numerical methods.

Particle tracking methods constitute attractive numerical techniques but they have only recently been
applied to reactive transport modeling [Tartakovsky et al., 2007]. They are based on tracking a large number
of particles injected into the system to simulate the evolution of a plume and moved by explicit expressions
that try to represent the underlying processes. Since the method is meshless, truncation errors and artificial
dispersion are negligible. The method can efficiently and effortlessly incorporate non-Fickian transport
[Zhang and Benson, 2008] or multiple porosity systems [Benson and Meerschaert, 2009; Henri and Fernandez-
Garcia, 2015].

However, the method is not free of disadvantages. The main one is the need for reconstructing concentra-
tions (actually activities) from particles. This step is theoretically free of numerical errors only for an infinite
number of particles. In real applications, with a limited number of particles injected, kernel-based approaches
largely minimize reconstruction errors [Fernandez-Garcia and Sanchez-Vila, 2011; Siirila-Woodburn et al., 2015].
Since the propagation of the latter with time is unknown, Eulerian-Lagrangian formulations that estimate con-
centrations as the simulation

1000 progresses cannot be assessed.
Thus, pure Lagrangian formula-
tions based only on particle
interactions seem best suited to

100 //; simulate  reactive  transport

[Rahbaralam et al.,, 2015; Paster

—Cu=0.1 et al, 2014]. However, they are
—Cu=0.5 limited in the type of reactions
10 ' 1 they can handle efficiently: linear
—Cu=0.9 sorption, first-order decay, and

reaction chains.

Relative error of total reaction (%)

For nonlinear reactions, where
transport of all particles cannot
be decoupled, efficient search
algorithms based on computa-

Figure 5. Relative error of the total amount of reaction as a function of grid-P. and grid-C, tional geometry are then a must
for an Eulerian implicit approximation scheme with upstream weighting (x =0 and w = 1). [Paster et al., 2014]. Examples

1 10 100
Grid-Peclet Number
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are the bimolecular reaction [Ding et al., 2013] and Michaelis-Menten enzyme kinetics [Ding and Benson,
2015]. Some unresolved issues are (1) there is no formal particle upscaling process and (2) the methods
assume that transport and reactions are uncoupled. Henri and Fernandez-Garcia [2014] have shown that net-
work reactions can substantially affect particle advection and dispersion.

In sum, stochastic reactive transport modeling can best represent reality but suffer from numerical prob-
lems stemming from the need to deal with large grid-Pe numbers. Some of these issues can be solved using
Lagrangian approaches, but at the expense of other nontrivial numerical problems. In contrast, determinis-
tic models with zonal parameterization can substantially reduce Pe by using large effective dispersivity val-
ues, but are forced to face structural and conceptual problems due to the emergence of macroscopic
processes such as incomplete mixing. The lack of understanding of these processes in real applications
tends to overpredict the actual reaction rates, seriously questioning the use of these models.

7. Outlook and Final Discussion

Hydrogeological modeling is the best way to integrate all available information in a site. Moreover, it is
required in any professional report. Models should embed natural heterogeneity, but information is never
sufficient. We contend that the only way to deal with modern hydrogeology problems is by relying on sto-
chastic modeling, being the mathematically correct way to address the degree of uncertainty in the out-
come of any study. As a corollary of this statement, all results should be given in statistical terms (pdfs or
expected values plus some quantification of the prediction error). The driving processes, and thus the PDEs
to adopt in any modeling effort are scale-dependent. Also, hydraulic parameters embedded in the equa-
tions depend on scale, but also in the interpretation method used to obtain them.

Geological architecture is critical; any model that hopes to resemble reality must incorporate as detailed
geology as possible. Geology controls the location of high/low-conductivity areas and the presence of con-
ducting connected features. This is known by practitioners and so profusely used in deterministic modeling,
but most times it is neglected in stochastic models; so the general impression is that deterministic models
provide the most robust results.

When analyzing flow problems, deterministic and stochastic methods are mature, and numerical codes for
forward and inverse problems exist. It is time that we start (or keep) teaching stochastic modeling and
advocate for its use, allowing a (most probably slow) permeation of the ideas among practitioners.

The situation is quite different for problems involving solute transport. There is a strong disagreement in
the community regarding the governing effective equations that should be used, being controversial and
sometimes misunderstood. The ADE may be valid at some local scale, but cannot reproduce most of the
observations at larger scales. Alternatives consider the use of the proper upscaled equations and the set of
parameters that are valid at some degree of discretization. But what is the meaning of the word “valid”
here? Upscaled models only work in an ensemble sense; that is, they cannot be used to model point con-
centrations, but only integrated observables. That is, they cannot estimate intra-block variability, or how
this is transferred to predictions. It is important that we acknowledge this fact and use models cleverly,
without trying to ask them to give answers they cannot provide.

This effect is even more relevant for reactive transport. Most reactions are driven by variations in the chemi-
cal signature at the local scale, so they cannot be directly addressed in upscaled models. Thus, there is a
need to provide proper physically upscaled equations and parameters that can answer questions regarding
reaction rates and quantities observed in real field applications. Several efforts have been pursued in this
direction, but mostly in unconditional synthetic fields, without any proof that they would also hold at the
field scale.

Deterministic models do not represent reality at all. They just provide the modeler’s best guess. This is
sometimes enough to provide overall mass balance and to analyze simple scenarios. Anything else needs
an approach that properly incorporates heterogeneity and uncertainty. So, despite of all the problems, limi-
tations, and negative comments given in this text, we contend that only stochastic models have any chance
of providing the answers needed for proper groundwater management. We must convey to managers and
stakeholders the message that all hydrogeological answers must be provided in statistical terms,
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incorporating the concept of acceptable risk defined as the probability of any system to unsatisfactorily
meet a potential demand.

8. Postscript: Comments on the Other Papers in the Debate

We appreciate the opportunity of providing comments on the other three papers in the debate. We
enjoyed reading the paper of Cirpka and Valocchi [2016] that actually addresses very similar topics that this
one, in particular in blaming stochastic theoreticians for restraining the use of nondeterministic models by
practitioners. They further consider that stochastic hydrogeologists have been mostly dealing with ques-
tions that have very little relevance in practice. It seems that the gap between scientists and practitioners is
continuously widening. We think it is even worse, as some of the former actually despise the idea of provid-
ing answers to practical problems. Two points to highlight are that model choice is critical and that condi-
tioning is key. These are also main points in our text, and so there is little we can comment upon. Last, we
agree with the authors that the evaluation of uncertainty should be a primary target of stochastic analysis.

We read with interest the contribution of Fiori et al. [2016], focusing on the relevance and interest of further
pursuing theoretical developments in stochastic subsurface hydrology. The authors base their approach on
the sequence of heterogeneity statistical characterization (achieved by field investigation), followed by the
solution of the flow and transport equations. We fully agree with them that we need data and that the com-
munity has developed new and promising methods to get them. But the question still remains regarding
the spatial resolution, data support window, and how these data can be used as input into models. This is
another message to convey to practitioners: data is not error free, it is scale-dependent, and interpretation
methods are not innocuous, but rather transfer our own view of processes. Our main point of disagreement
is that we claim that full aquifer characterization goes beyond statistical descriptions only and should be
conditioned on actual data.

We also appreciate the interesting contribution of Fogg and Zhang [2016]. We share a similar message
which points out that spatial distribution of hydraulic parameters must account for transport and deposition
processes, rather than rely on simple statistical descriptions (e.g., based on variance or integral scales). We
also agree that most efforts in stochastic contaminant hydrology are restricted to small plumes in clastic
sedimentary systems at the 10°—10% m scale. This means that present stochastic methods may not be
directly applicable and must therefore be adapted for modeling complex geologic environments such as
crystalline rocks (covering one third of the Earth’s surface), carbonates (strongly present in Europe), or evap-
orates (characteristic of dry regions). The authors further argue that regional-scale groundwater quality
management is likely the biggest challenge in stochastic hydrogeology. Several points are worth emphasiz-
ing in this respect. The complexity at the regional scale renders the geologic description most important,
and hypothesis such as stationarity and ergodicity unfeasible. Fortunately, observables tend to be integrat-
ed measures, thus with moderate uncertainty as compared to point values.

As a final statement, we want to stress the need to educate students on stochastic modeling, as well as the
need to convey the message to practitioners, stakeholders, and politicians that using deterministic model-
ing is something they cannot afford, as it would mean providing incomplete and misleading answers.
Instead, all results should be given in probabilistic terms, rather than providing a single value with a zero
probability of being correct. The increasing interest in asking results to be provided in terms of risk evalua-
tions is on our side.
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