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Abstract  

In the present paper, a new d+/d− damage model apt for quasi-brittle materials is 

described and its validation is carried out considering unreinforced concrete, reinforced 

concrete and masonry elements.  

Two independent scalar damage variables, d+ and d−, in combination with the split of the 

reversible strain tensor into its positive and negative counterparts, are adopted in order 

to simulate the pronounced dissimilar response under tension and compression, typical 

of these materials. An energy-equivalent framework is considered for representing the 

orthotropy induced in the material by the degradation process, with the consequence that 

a thermodynamically consistent constitutive operator, positive definite, symmetric and 

strain-driven, is derived. In addition to the degradation parameters, the permanent strain 

tensor is also contemplated by the model and a modification of the exponential softening 

modulus is proposed in order to treat the evolution of the two causes of dissipation, 

damage and irreversible deformations, in a coupled way.  

The formulation is integrated with a multidirectional damage procedure, addressed to 

extend the microcrack closure-reopening (MCR) capabilities of the model to shear cyclic 

conditions, characterized by orthogonal (or however intersecting) sets of cracks. 

Maintaining unaltered the dependence of the constitutive law from two scalar indeces, d+ 

and d−, this approach activates or deactivates a tensile (compressive) damage value on 

the base of the current maximum (minimum) principal strain direction. In correspondence 

with damage activation (crack opening) or deactivation (crack closure), a smooth 

transition is introduced, in order to avoid abrupt changes in stiffness and enhance the 

numerical performance and robustness of the multidirectional procedure. The adequacy 

of the proposed constitutive model in reproducing experimental results has been proven 

for both monotonic and cyclic loading conditions. The two examples of application 

involving cyclic loads, dominated by shear, constitute a validation of the multidirectional 
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damage approach, showing how the suitable representation of unilateral effects and 

permanent deformations is essential to model the observed structural response in terms 

of maximum resistance, evolution of stiffness degradation and dissipation capacity.  

Keywords: concrete structures; masonry structures; cracking; damage; damage-induced 

orthotropy; microcrack closure-reopening effects; cyclic loading; spectral decomposition; 

energy-equivalence; numerical robustness. 

1. Introduction 

The engineering modeling of quasi-brittle materials, such as concrete, masonry, rock, 

ceramics etc., represents a complex issue since several features differentiate their 

structural response from the one of an isotropic linear elastic material. The pronounced 

non-symmetrical behavior under tension and compression, with a tensile strength which 

is very low if compared to the compressive one, is characteristic of quasi-brittle materials. 

The scarse resistance in tension is responsible for a non-negligible non-linear response 

even for low stress levels, characterized by microcrack nucleation and growth. 

Consequently, the cracking phenomenon requires some specific properties to be 

adequately considered in the constitutive modeling of these materials: besides the 

softening response in the post-peak regime, these properties are, in accordance with 

(Caboche, 1992), the damage-induced anisotropy and the microcrack closure-reopening 

(MCR) effects. 

On the one hand, the anisotropy results from the evolution of planar microvoids in the 

direction perpendicular to the maximum tensile strain, which implies a certain orientation 

of the stiffness degradation (Krajcinovic, 2003). Such a feature allows one taking into 

account possible compressive strut action which is unrealistically neglected in isotropic 

damage models (de Borst, 2002).  

On the other hand, microcracks close upon load reversal from tension to compression and 

a total or partial stiffness recovery has to be simulated in order to realistically capture the 

hysteretic behavior of the material in cyclic loading conditions (Mazars et al., 1990; 

Reinhardt and Cornelissen, 1984). This phenomenon is fundamental when the main 

interest is to perform the analyses of concrete, reinforced concrete or masonry structures 

under wind and seismic actions (Cervera et al., 1995; Chang and Mander, 1994; Faria et 

al., 2004; Oliveira, 2003; Xue and Yang, 2014). 

In a continuum damage mechanics’ framework, a methodology to deal with the 

asymmetrical performance of quasi-brittle materials under tension and compression 
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consists in differentiating the response depending on the trace of the strain tensor and in 

applying different damage variables in tension and compression. Such a procedure is 

effective in modelling the micro-crack closure reopening effects from pure tension to pure 

compression but it is not able to simulate any form of damage-induced anisotropy, when 

scalar damage parameters are adopted (Contraffatto and Cuomo, 2006; Comi and Perego, 

2001; He et al., 2015; Toti et al., 2013).  

Conversely, as pointed out by Wu and Xu (2013), those formulations based on the spectral 

decomposition of a specific second order tensor (the stress or the strain one) allows one 

to reproduce contemporarily unilateral effects and damage-induced anisotropy. This 

approach, used for the first time in the pioneering work of Ortiz (1985), introduces in the 

constitutive law two fourth-order projection operators which extract the positive and 

negative tensor counterparts. A classification of these damage formulations can be 

performed depending on the nature of the damage variables used in conjunction with the 

spectral decomposition: one or more scalar damage variables are adopted in (Cervera et 

al., 1995; Cervera et al., 1996; Faria et al., 1998; Mazars et al., 1990; Wu et al., 2006) 

whereas models based on second- or fourth-order tensors are presented in (Carol and 

Willam, 1996; Cicekli et al., 2007; Ju, 1989; Ortiz, 1985; Simo and Ju, 1987; Voyiadjis 

et al., 2008; Yazdani and Schreyer, 1990).  

The continuum damage formulation described in the present work can be included within 

the first category, since it combines the split of a second order tensor, specifically the 

reversible strain one εe, with the use of two scalar damage quantities, d+ and d−, in order 

to distinguish tension from compression. Such a choice provides a simplified 

representation of damage-induced anisotropy and MCR effects, while maintaining 

adequate predicting capabilities, and makes the model easily implementable in finite 

element codes and applicable in large-scale simulations at an affordable computational 

cost, resorting to a strain-driven and explicit formalism.  

The main objective of the present paper is to reflect upon some limitations deriving from 

the adoption of scalar damage variables combined with the spectral decomposition and 

propose an enhancement of this model. On the one hand, a consistent way to treat damage-

induced orthotropy and unilateral effects is presented. On the other hand, the description 

of permanent deformations is included in the damage model in a coupled dissipative 

framework. The resulting formulation is validated under monotonic and cyclic loading 

conditions, highlighting the importance of each model component in the structural 

response. Under cyclic action, the numerical robustness associated to the modelling of 
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closure and reopening of cracks is enhanced by the introduction of a smooth transition 

upon loading reversal. 

Regarding the topic of damage-induced anisotropy, a restricted form of orthotropy is 

described using scalar degradation quantities, since only the projection operators 

performing the spectral decomposition are responsible for the directionality of the 

stiffness reduction. As a consequence, the model here described, in analogy with (Cervera 

et al., 1995; Cervera et al., 1996; Faria et al., 1998; Wu et al., 2006), is characterized by 

the coincidence between the axes of orthotropy of the damaged materials and the principal 

directions of the stress tensor during the whole loading history. This “weak degree of 

anisotropy” is however sufficient to take into account the presence of compressive strut 

actions (de Borst, 2002).  

However, with respect to (Cervera et al., 1995; Cervera et al., 1996; Faria et al., 1998; 

Wu et al., 2006), a different criterion is exploited in order to relate the constitutive secant 

stiffness to the damage variables and the projection operators. This criterion is based on 

the energy-equivalence assumption between nominal and effective configurations 

(Cordebois et Sidoroff, 1982; Carol et al., 2001) and it is preferred, in thermodynamical 

terms, to the strain-equivalence hypothesis (Lemaitre and Chaboche, 1978; Simo and Ju, 

1987). As observed in (Cervera and Tesei, 2017), it leads to the derivation of an 

anisotropic secant fourth-order operator that is positive definite and endowed with both 

major and minor symmetries.  

Regarding the description of the unilateral effects, the spectral decomposition approach 

combined with the adoption of scalar damage variables is effective only in specific cyclic 

conditions, characterized by alternating tensile and compressive regimes. Hence, if the 

unilateral behavior is adequately taken into account in a 1D tension compression cyclic 

history or in bending-dominated cyclic problems (as shown by Faria et al. (2004)), the 

stiffness recovery in presence of cyclic shear can not be captured. Evidence of this can be 

provided by considering the problem shown in Fig. 1.a, involving shear cyclic conditions. 

During the loading stage (Fig.1.b), the internal variable d+, related to the opening of 

microcracks perpendicularly to the current maximum tensile direction pmax, grows up to 

the value dI
+. After the loading reversal, at the beginning of the reloading stage (Fig. 1.c), 

the value dI
+ is assigned once again to the current pmax (which is actually an intact 

direction) and, consequently, no stiffness recovery is exhibited in the structural response 

(Fig. 1.d). In other words, due to the scalar nature of the damage variables, the formulation 

is not able to associate a damage value to a physical direction and this translates in the 
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incapability of dealing with closure and reopening of orthogonal (or however 

intersecting) cracks, typical of shear cyclic conditions.  

 

Figure 1 – Limitation of the scalar damage models with spectral decomposition in dealing with 

cyclic actions. 

Such lack of information about damage orientation is comparable to the inability of the 

rotating crack models (Cope et al., 1980) to take into account the orientation of previous 

defects, as observed by Bažant (1983). To improve the MCR capabilities of the d+/d− 

damage formulation, the local constitutive behavior of the material needs to incorporate 

some aspects which are instead proper of fixed crack models (Rots et al., 1985). To this 

end, a “multidirectional” damage procedure is proposed in the follow up, which preserves 

memory regarding degradation directionality while maintaining unaltered the dependence 

of the stress tensor from only the scalars d+ and d− (Cervera and Tesei, 2017). In line with 

this reasoning, it is worth noting that not only the d+/d− damage model hereafter presented 

can take advantage from a multidirectional treatment of damage; potentially, all the 

orthotropic rotating damage models can be enriched with the multidirectional damage 

approach. 

When treating microcrack closure-reopening effects, a further aspect to be taken into 

account regards the convergence difficulties arising at structural level. As pointed out in 

(Jefferson and Mihai, 2015), these numerical difficulties are related to the abrupt changes 

in the secant stiffness going from an open crack state to a closed one, or vice versa. The 

multidirectional damage approach is not exempt from these difficulties, since it foresees 

sudden changes of the active damage values affecting the constitutive law. In order to 
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increase the numerical robustness of the procedure, a smoothing technique is proposed in 

the present paper for modelling the activation and deactivation of damage.  

Finally, to obtain adequate structural responses in cyclic conditions, another feature to be 

considered in the modelling of quasi-brittle materials is the development of permanent 

deformations. In view of this, a simplified as well as effective way to introduce 

irreversible strains is adopted, in analogy with (Faria et al., 1998). In addition, the two 

causes of dissipation, permanent deformations and damage, are treated within a unified 

framework, taking inspiration from (Wu and Cervera, 2016). This translates in the 

proposal of a modified expression for the softening modulus governing the descending, 

post-peak, behavior, in presence of permanent strains, which is an adjustment of the linear 

and exponential softening moduli proposed in (Cervera et al., 1996; Cervera, 2003).  

The paper is outlined as follows. In Section 2, the consistent d+/d− damage formulation 

based on the spectral decomposition of the reversible strain tensor εe and on the energy-

equivalence hypothesis is presented. Specifically, the secant operator ruling the 

constitutive law, the definition of the irreversible strain rate and of the damage evolution 

laws are detailed. Appendix A completes this section, showing the passages for the 

derivation of the modified exponential softening modulus. Section 3 is devoted to the 

description of the multidirectional damage procedure, to be applied in presence of cyclic 

loadings, providing some parallels between this new approach and the fixed/rotating 

smeared crack concepts. The section is enriched with the introduction of a smoothing 

function, addressed to increase the numerical robustness of the multidirectional procedure 

in the transition from an open to a close microcrack state (or viceversa). The description 

of the numerical algorithm adopted for the implementation of the non linear constitutive 

model is provided in Section 4. Then, the damage formulation, combined with a crack 

band strategy to prevent mesh dependent results (Bažant and Oh, 1983), is validated in 

Section 5, considering structural problems involving both monotonic and cyclic loading 

conditions. Firstly, unreinforced concrete samples are solved under monotonic loadings 

and the adequacy of the damage formulation based on energy-equivalence in fitting 

experimental results is shown. Secondly, a masonry wall and a reinforced concrete panel, 

both subjected to in-plane cyclic shear, are analyzed in order to highlight the enhanced 

dissipative behavior ensured by the multidirectional damage approach in conjunction with 

permanent deformations. Some quantitative considerations regarding the numerical 

robustness of the model are also included. Finally, Section 6 collects the concluding 

remarks. 
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2. Mechanical model for quasi-brittle materials 

The continuum mechanical model here presented describes the behavior of quasi-brittle 

materials, including both the stiffness and strength degradation proper of damage and the 

presence of irreversible deformations. In order to represent these non-linear features, a 

d+/d− damage model based on the irreversible thermo-dynamics with internal variables 

(Horstemeyer and Bammann, 2010) is proposed, in line with the d+/d− formulation 

developed for concrete by Faria et al. (1998). The internal scalar variables related to 

damage, d+ and d−
, together with the spectral decomposition of a second order strain 

tensor, allow one simulating the asymmetrical behavior typical of quasi-brittle materials 

under tension and compression, while the tensor internal variable εp represents the 

permanent strain accumulated during the loading history. The main aspects of the 

proposed damage formulation are underlined in this section and regard the assumption of 

energy-equivalence (Section 2.1) between nominal and effective configuration for the 

derivation of a consistent fourth-order constitutive operator and the use of a coupled 

dissipative approach to describe the evolution of the internal variables d+, d−
 and εp 

(Section 2.3 and Appendix A).  

2.1 Secant stiffness based on the energy-equivalence assumption 

According to the thermodynamics of irreversible processes (Lubliner, 1972), the 

constitutive law at the base of the present mechanical model is consistently derived 

starting from a free-energy potential ψ expressed in terms of the independent variable, the 

nominal strain tensor ε, and the internal variables d+, d−
 and εp: 

       
1

2

+ +ψ , ,d ,d : ,d ,d :    p p E p pε ε ε ε D ε ε ε ε

            

 (1) 

The dependence of the secant stiffness fourth-order tensor DE on the damage variables 

and on the reversible elastic part εe = ε − εp of the total nominal strain tensor ε is 

established by assuming the hypothesis of energy equivalence (Carol et al., 2001; 

Cordebois and Sidoroff, 1982) between the effective configuration (i.e. the stress σ  and 

strain ε  acting on the undamaged material between microcracks and microvoids, which 

is considered elastic) and the nominal configuration (i.e. the stress σ and reversible strain 

εe obtained by averaging the corresponding effective quantities on the total surface of the 

material). Following the procedure described in (Carol et al., 2001), this assumption 

translates in the following relations: 
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: *
σ A σ

            

 (2.a) 

: *
eε A ε

            

 (2.b) 

Considering Eq. (2.a), Eq. (2.b) and σ  and ε related by the elastic stiffness operator D0: 

: 0σ D ε

            

 (3) 

the expression for DE is the following: 

     + + +,d ,d ,d ,d : : ,d ,d     * *
E p p 0 pD ε ε A ε ε D A ε ε

            

 (4) 

The definition for the mapping operator A* is the one proposed in (Cervera and Tesei, 

2017): 

     1 1+ +,d ,d d d       
*

e e eA ε Q ε + I Q ε

            

 (5) 

From Eq. (5), it is evident that the tensorial nature of the mapping operator A* is provided 

by the fourth-order projection operators Q and I – Q, scaled by the square root of the 

corresponding integrity quantities. They are responsible for the spectral decomposition of 

the nominal elastic strain tensor εe into its positive and negative parts, respectively: 

3

:ei i i
i=1

= ε = +
e ep p Q ε

             

  := 
   e e e eε I Q ε  (6) 

      
3 3

+ei i i i i ei e j

i=1 i, j=1
 j>i

= H ε H ε +H ε     ij ij
Q p p p p P P  

(7) 

In Eqs. (6) and (7), εei and pi are the principal value and the eigenvector associated to the 

i-th principal direction of εe. The Macaulay brackets act on εei in such a way that: if εei is 

positive, <  εei  > = εei , else <  εei > = 0 while H(εei) 
is the Heaviside function, such that, 

if εei is positive, H(εei) = 1; else, H(εei) = 0. The definition (6) for the projection operator 

is present in (Carol and Willam, 1996; Wu and Xu, 2013). 

The dependence of the mapping operator A*(5), i.e. of the secant stiffness matrix DE (4), 

on the projection operator Q (7), reflects the fundamental idea of representing the 

orthotropy induced in the material by the degradation process by means of the spectral 

decomposition of a second order tensor. Direct consequence of this choice is the 

coincidence, in a generic case with εei of discordant sign, of the axes of orthotropy of the 

damaged material with the strain εe and the stress σ principal directions. Moreover, the 

energy-equivalence assumption is preferred to the strain-equivalence one (Faria et al., 

1998; Simo and Ju, 1987; Wu and Li, 2008) because it guarantees thermodynamic 
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consistency. In fact, the secant stiffness operator DE (4) holds both major symmetry and 

positive definiteness, features which are fundamental for an adequate representation of 

the damage-induced orthotropy. 

2.2 Clausius-Duheim inequality 

According to the second law of thermo-dynamics, irreversible processes are characterized 

by increasing entropy and non-negative dissipated energy. These conditions can be 

ensured guarantying the satisfaction of the Clausius-Duheim inequality, as stated in 

(Lubliner, 1972), which is the following: 

γ ψ : 0   σ ε    (8) 

Replacing the total derivative of the energy potential (1) with its partial derivatives with 

respect to the strain ε and the internal variables d+, d−
 and εp, the inequality (8) becomes: 

: 0
ψ ψ ψ ψ

γ d d
d d

 

 

    
         

    
p

p

σ ε ε
ε ε

   (9) 

Since ε is a free variable, in order to have the non-negativeness of the dissipated energy 

satisfied in the general case, the quantity between round brackets in Eq. (9) has to be null; 

this results in one of the Coleman’s relations (Coleman and Gurtin, 1967) and leads to the 

establishment of the constitutive law: 

:
ψ

 


E eσ D ε
ε

   (10) 

Hence, the Clausius-Duheim inequality reduces to: 

0
ψ ψ ψ

γ d d :
d d

 

 

  
      

 
p

p

ε
ε

   (11) 

From Eq. (11), it is evident that the dissipative behaviour of the material is due to both 

damage evolution and generation of permanent strains. On the one hand, the derivatives 

of the free energy potential with respect to d+ and d−, with sign reversed, represent the 

strain-energy release rates associated to a unit growth of the corresponding damage 

variables. The full expressions for these quantities, as well as the discussion on the non-

negativeness of the energy dissipated due to damage evolution, are provided in (Cervera 

and Tesei, 2017). On the other hand, the derivative of the free energy with respect to εp, 
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with sign reversed, coincides with the nominal stress σ and plays the role of a 

thermodynamic force associated to the permanent strain; the non-negativeness of the 

energy dissipated by this quantity is proven in Section 2.3.1, where the definition of the 

permanent strain rate pε  is provided. The positiveness of all the terms present in Eq. (11) 

will allow concluding on the consistency of the proposed damage model for what regards 

the second principle of thermo-dynamics. Moreover, the satisfaction of the first principle 

of thermodynamics is stated in (Cervera and Tesei, 2017). 

2.3 Internal variables 

2.3.1 Permanent strains 

The modeling of permanent strains is relevant in the prediction of the structural behavior 

of concrete and quasi-brittle materials in general, since during a loading history 

irreversible strains accumulate, affecting in a non-negligible way both strength and 

stiffness. A simplified way of taking into account permanent strains, which is a 

modification of the one adopted in (Faria et al., 1998), is here proposed, without the 

necessity of introducing concepts as the plasticity surface or the flow rule: 

   
:

b H d b H d
:

        
  

e
p e

e e

σ ε
ε ε

σ ε
   (12) 

In Eq. (12), b+ and b− are two positive material parameters defining the entity of the 

permanent strains under tensile and compressive regimes, ranging from 0 (only damage) 

to 1; regarding the tensor quantities, ε is the total strain rate, εe is the reversible strain 

and σe  is the elastic stress tensor, whose expression is: 

:e 0 eσ D ε    (13) 

The ratio between the elastic power σe : ε and the double of the elastic strain energy 

σe :  εe contributes to define the intensity of the plastic strains. The simplifications with 

respect to a plastic theory are recognizable in Eq. (12): instead of the adoption of a flow 

rule, the irreversible strain evolves in the direction of the elastic strain tensor εe and of the 

elastic stress tensor σe. This is coherent with the definition of the evolution of damage in 

terms of the elastic stress values, as discussed in Section 2.3.2. 

In addition, the same conditions holding for damage progression are taken into account 

for the permanent strain evolution and this relation is established by means of the 

Heaviside functions  H d   and  H d  . With respect to the proposal made in (Faria et 
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al., 1998), the development of irreversible deformations is not only associated to 

compressive regimes but the possibility of permanent strain evolution under tensile 

regimes is also considered. This choice is addressed to catch more realistic results both 

in pure tension and in case of coexistence of compressive and tensile regimes, i.e. in shear 

conditions. 

Moreover, referring to the definition here provided for pε (12), the quantity 





 pε
 : pε , 

appearing in Eq. (11) can be expressed in the following way 

   

2

:
: : : : b H d b H d

:

a : : a






          
  

    

e
p p E e e

p e e

E e e

σ ε
ε σ ε D ε ε

ε σ ε

D ε ε

   (14) 

where the scalar a is: 

   
:

a b H d b H d
:

       
  

e

e e

σ ε

σ ε
 (15) 

Since a (15) is non-negative and the free energy potential (1) is a quadratic form ruled by 

the positive definite secant stiffness DE, the quantity contained in (14), i.e. the energy 

dissipated due to irreversible deformations, is non-negative and this assures the 

satisfaction of the Clausius-Duheim inequality (11) discussed in Section 2.2. 

2.3.2 Damage variables 

The definition and progression of the tensile and compressive damage variables is treated 

separately, by means of independent equivalent stress quantities τ  , independent damage 

thresholds r   and independent damage evolution laws.  

In analogy with (Petracca et al., 2017; Saloustros et al., 2017), the failure criterion 

considered as reference for the definition of the damage surface is the one proposed in 

(Lubliner et al., 1989) for concrete. The definitions for the equivalent stress quantities, 

monitoring the strain-stress state under tension and under compression, are the following: 

   
1

3
1

+
+ e

emax 2 1 emax

e

f
τ = H σ J +αI + β σ

α f 
            

 (16.a) 

   1
3

1

-
emin 2 1 emaxτ = H σ J +αI + β σ

α


            

 (16.b) 

where the material strength parameters α and β, defined accordingly to (Lubliner et al., 

1989),  are: 
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1

2 1

b

b

( f f )
α=

( f f )

 

 




     

   1 1e
+
e

f
β = α α

f
 





       

 (17) 

In expressions (16), I1, J2, σemax and σemin are the first invariant, the deviatoric second 

invariant, the maximum and minimum principal values referred to the elastic stress tensor 

σe defined in Eq. (13). The choice of adopting the elastic stress tensor (13), instead of the 

effective one (3), in Eqs. (12), (16.a), (16.b) allows to avoid the recourse to an iterative 

procedure in the evaluation of the internal variables. In fact, the computation of σe is 

straightforward and follows directly from the computation of the nominal elastic strain 

tensor εe. The other parameters appearing in Eqs. (16) and (17) are the uniaxial tensile 

and compressive peak strengths of the material f+ and f−, the biaxial compressive strength 

fb
− and the values fe

+ and fe
−, which define the onset of damage in uniaxial tension and 

compression respectively, by means of the proportional parameters γe
+ and γe

− (0 <γe 

  1): 

     

± ± ±
e ef = γ f

       

 (18) 

In order to distinguish among loading, unloading or reloading, the Kuhn-Tucker relations 

and the persistency conditions are considered:  

0±r 

            

0± ± ±g τ r 

            

0± ±r g   (19.a) 

0± ±r g 

            

 (19.b) 

g   = 0 is the damage limit surface, increasing in size in case of loading (g  = 0, r   > 0) 

and remaining unchanged during the unloading or in the undamaged situation (g   < 0, 

r  = 0). The definition for the non-decreasing functions r  , representing the damage 

thresholds, can be inferred by imposing g  = 0, necessary condition for satisfying 

Eq. (19.b) in the loading case: 

 0

[0, ]

max max± ± ±

t

r = r ; τ

 
 
  
              

 (20) 

where: 

0
±

er = f 

            

 (21) 

and max(τ  ) represents the maximum value until the current instant t.  
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As visible from Eqs. (19), the shape of the damage limit surface g   = 0 depends on the 

specific choice done for the equivalent quantities τ  . By referring to Eqs. (16.a) and 

(16.b), the initial damage surface shown in Fig. 2 for the plane stress case is obtained.  

 
Figure 2 – Initial damage surface in plane stress conditions, for α  = 0.121, β = 7.667. 

In pure tension (1st quadrant) and pure compression (3rd quadrant), the surface is affected 

only by τ+ and τ− respectively, meaning that only d+ can be activated in the 1st quadrant 

and only d− in the 3rd  quadrant. Differently, when principal stress values with opposite 

signs are present (2nd and 4th quadrants), the same damage surfaces are identified by τ+ 

and τ− and the activation of tensile and compressive damage is simultaneous.  

For what regards the evolution laws of the internal variables d+ and d−, they are defined 

as non-decreasing functions of the thresholds quantities r+ and r−, taking inspiration from 

the trends proposed in (Cervera, 2003), which simulate both a parabolic hardening stage 

and an exponential softening one:  

 
2

± ±±
± ± ± ± ± ±0

d 0 p± ± ±
p 0

r rf
d r = A r r f

r f r





 
   
 
       

 (22.a) 

  1 exp 2

± ±±
p± ± ± ± ±

d p± ±

f rf
d r = H r > f

r f




  
   

  
        

 (22.b) 

The introduction of two further variables fp
+ and fp

−, representing the equivalent quantities 

for which the maximum peak strength is attained, is necessary (γp    1): 

     

± ± ±
p pf = γ f

       

 (23) 

Moreover, the definitions for the parameter Ad and the exponential softening modulus 

Hd are the following: 



14 
 

± ±
p±

d ±

f f
A =

f



     

 (24) 

 
 

1 1 1
1

22 1

± ± ±
f p± ±

d± 2 ± ±
± disd

EG f b
b A

lH f bf

 
 

     
 

 

±
dA

     

 (25) 

In the definition (25) of the softening modulus 2Hd
± governing the descending 

exponential behavior, the presence of the fracture energies Gf
± and of the length ldis, 

representing the crack width and related to the discretization (see (Oliver, 1989)), assures 

mesh-size objective results, in accordance with the crack band theory presented in (Bažant 

and Oh, 1983).  

The realistic assumptions done for the values of γe
±  (Eq. (18)) and γp

± ( Eq. (23)) in case 

of quasi brittle materials are the following: in tension, γe+ = 1 =  γp+ ; in compression, the 

parabolic hardening before the attainment of f− is taken into account, meaning that 

γe− < 1 < γp− . 

Other parameters affecting the damage evolution, visible in (25), are b ± , i.e. the material 

parameters introduced in the evaluation of the permanent strain rate ε p (12) and defining 

the intensity of the irreversible deformations. This choice is addressed to consider the two 

causes of dissipation identified in the Clausius-Duheim inequality (11), which are the 

progression of damage and the development of permanent strains, within a unified 

approach. Eq. (25) represents a modification with respect to the exponential softening 

modulus provided in (Cervera et al., 1996; Cervera, 2003), whose expression is: 

 

1 1 1

22

± ±
f p

± 2 ±
± disd

EG f

lH ff

 
 

   
 
 

±
dA

     

 (26) 

The details regarding the derivation of the new version of the exponential softening 

modulus (25)  and the full expressions of all the terms appearing in Eq. (25) are provided 

in Appendix A, together with further observations on the topic. 

The uniaxial σ-ε curves for a loading-unloading history in pure tension and pure 

compression are displayed in Fig. 3.a and Fig. 3.b, respectively. In each graph, the 

responses obtained with both the softening modulus (25) and (26) are collected, in order 

to have further insight on the influence that the parameters b ±  have on the non-linear 

behavior. The objective of the correction here provided to the softening modulus (Eq. 

(25)) is evident and consists in avoiding over dissipation of energy: for a given amount 
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of irreversible deformations, i.e. for a given b ± , the adoption of Eq. (25) with respect to 

Eq. (26) causes a steepest softening response. As observed in Appendix A, this allows 

maintaining the same dissipated energy with or without irreversible deformations, 

compensating the additional dissipative contribution due to permanent strains with a 

reduced contribution related to damage.  

 
Figure 3 – 1D loading – unloading behavior of the material (a) in tension and (b) in 

compression, showing the difference between the new version of the softening modulus (25) 

and the old one (26). 

3. Multidirectional d+/d− damage procedure for cyclic loadings: formulation and 

numerical aspects 

In order to overcome the limitation of scalar damage formulations to simulate MCR 

effects in shear cyclic conditions (Fig. 1), the constitutive model presented in Section 2 

is enriched with a “multidirectional d+/d− damage procedure”, able to ensure the 

preservation of memory regarding microcracks orientation, without the necessity of 

resorting to a tensor definition for damage. 

In this section, the fundamental aspects of this new approach, formulated in (Cervera and 

Tesei, 2017), are summarized, making reference, for the sake of clarity and without loss 

of generality, to plane problems. Moreover, the synergy between the multidirectional 

damage approach and the definition provided in Eq. (12) for the permanent strain tensor 

is underlined, showing how their combined adoption affects favorably the structural 

dissipative behavior under cyclic shear conditions. Then, an interesting interpretation of 

the multidirectional damage approach is provided by establishing some parallels with the 

concepts of fixed, multi-directional fixed and rotating crack models (Rots and 

Blaauwendraad, 1989). To complete the section, a numerical regularization technique of 

the multidirectional procedure is proposed, addressed to improve the convergence in 

correspondence of closure and reopening of cracks. 
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3.1 Formulation of the multidirectional damage model 

At the base of the “multidirectional d+/d− damage model”, there is the idea of considering 

two independent damage evolution processes for tension and two independent damage 

evolution processes for compression, differing for the direction in which they act. This 

translates in the necessity of monitoring separately two damage values in tension and two 

damage values in compression and this is performed by means of a plane partition into 

two regions for d+ and two regions for d−. Each region is endowed with its own (tensile 

or compressive) degradation parameter d and damage threshold r. The assignment of a 

tensile (compressive) damage value to a certain region occurs on the base of the maximum 

(minimum) principal strain direction which has caused it; specifically, the reference 

tensor quantity is the elastic strain εe, in order not to alter the strain-driven formalism 

followed in the evaluation of the secant matrix and of the internal variables (Section 2.1 

and Section 2.3, respectively). 

The active value of d+ (d−), i.e. the one affecting the constitutive law (10), is computed 

starting from the internal variables d+ and r+ (d− and r−), associated to the damage region 

in which the current maximum (minimum) principal strain direction falls. In order not to 

compromise the irreversibility of the damage process, the updating of the active damage 

values is performed taking into account, within each region, the Kuhn-Tucker and 

persistency conditions (19) and the monotonically increasing evolution laws (22). The 

inactive damage values are however kept in memory with the possibility of being re-

activated in correspondence of a principal directions’ rotation. 

In analogy with (Cervera and Tesei, 2017), the distinction between two families of cyclic 

loading conditions is herein considered: 

i. Cyclic loadings characterized by a fixed principal reference system and by changes 

of the principal configuration only in presence of load reversal; this is the case in a 

1D cyclic history or in pure shear cyclic conditions, when the rotation of the principal 

directions is represented by a swapping between minimum and maximum principal 

directions. 

ii. Cyclic loadings with continuous rotation of maximum and minimum principal 

directions; this is the case of cyclic histories preceded by non negligible not-cyclic 

loadings. 

It is important to underline that the multidirectional concepts above described, based on 

the monitoring of damage depending on its orientation, hold for both the types of loading. 

As discussed in the follow-up, the differences mainly lie in the way according to which 
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the damage regions are identified during the loading history, and consequently, in the 

stiffness recovery capabilities which could be modeled. 

3.1.1 Load Type (i) 

Regarding load Type (i), since, except changes in correspondence of load reversal, the 

principal directions are fixed during the loading history, also the damage regions in 

tension and compression in which the space is divided are considered fixed: their bisectors 

are assumed coincident with the principal reference system (pmax_d , pmin_d) in 

correspondence of which damage occurs for the first time and their amplitude is equal to 

π/2: 

_ 2 _

_ 2 _

π / 2

π / 2

+ +
1 max d min d 1,2

1 min d max d 1,2

amplitude

amplitude



  

  

  

bisector p bisector p

bisector p bisector p
     

 (27) 

The orthogonality between the bisectors of the tensile (compressive) damage regions, 

visible in Eq. (27), allows assuming that the full fracture energy Gf
+ (Gf

−) is consumed in 

each tensile (compressive) region, independently from one other. When a change of the 

principal configuration occurs for the first time after the plane partition, i.e. after 

appearance of damage, two situations are contemplated: if the rotation is significant, for 

instance equal to π/2 in case of swapping between maximum and minimum principal 

directions, a complete regain of the initial stiffness is assured; if the rotation is not 

relevant, and lower than π/4, there is no switching from a region to the other one, and no 

unilateral effects are visible in the structural response.  

The problems which can be treated according to this procedure are mainly represented by 

structural elements in which permanent loads are negligible with respect to variable loads 

with cyclic nature, as wind and seismic actions. 

To clarify the bases of the multidirectional approach in case of load Type (i), the problem 

of pure shear cyclic loading is considered at a local level (see Fig. 4.a). It can be classified 

as load Type (i) since, as visible from Fig. 4.b, the angle between the maximum principal 

elastic strain direction θ and the horizontal axis is fixed during the loading history, except 

at loading reversal (instant t1), when a swapping between the maximum and minimum 

principal directions occurs. The response obtained with the adoption of the 

multidirectional damage model is shown in Fig. 4.c: differently from the curve in Fig. 1.d, 

here a complete stiffness recovery is clearly visible after loading reversal. Such a result 

is achieved by partitioning the plane, according to Eq. (27), in the way illustrated in 
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Fig. 4.d and Fig. 4.e, which represent the tensile and compressive damage regions, 

respectively. Before loading reversal, the active damage values are the ones related to 

tensile and compressive damage regions 1 (as indicated in Fig. 4.d and Fig. 4.e), while, 

after the rotation of the principal directions, they become the ones associated to regions 

2. 

 

Figure 4 – Load Type (i) problem depicted in (a): (b) typical rotation of the principal maximum 

direction during the loading history; (c) local response under shear cyclic action; identification 

of the (d) tensile and (e) compressive damage regions. 

3.1.2 Load Type (ii) 

Regarding load Type (ii), the continuous rotation of the principal directions and the 

oscillation around the initial configuration requires the adoption of a criterion for defining 

the activation of a multidirectional damage approach and the consideration of evolving, 

non-fixed, damage regions. To do this, the introduction of two sets of variables is 

performed, monitoring the deviation of the principal reference system with respect to the 

initial conditions; the definition of the first set of variables, the equivalent deviation 

quantities τ
±

θ , is the following: 

 cos± ±
θ ττ = θ

     

 (28) 

where θ+
τ (θ

−
τ) represents the absolute value of the angle between the current maximum 

(minimum) principal strain direction and the initial maximum (minimum) principal strain 

direction, ranging from 0 to π/2. 
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The second set of variables is constituted by the threshold deviation quantities r ± θ, which 

can be computed according to the expression: 

     
[0, ]

cos min cos ;min± ± ±
θ r min

t
r = θ θ 

 
  

 
     

 (29) 

From Eq. (29), it results that θ+
r  (θ

−
r  ) represents the maximum value assumed by the 

equivalent angle θ+
τ (θ−

τ) until the current time t, provided that it is higher than the 

minimum threshold deviation θmin  This parameter assumes the important role of the 

minimum deviation angle for which an independent treatment of the damage variable is 

valid. The analogy between the definition of the damage threshold r
±

 (20) and the 

deviation threshold r
±

θ (29) is evident: as r+ (r−) rules the evolution of the damage 

variable d+ (d−), as r+
θ (r

−
θ) governs the evolution of the damage regions, in terms of their 

bisector and their amplitude. Specifically: 

2 π / 4

π / 4 π / 2 > π / 4

+
1,2 r 1,2 r r

+
1,2 1,2 r

amplitude if

amplitude if

  



   

 

    

 

bisector

bisector      

 (30) 

where bisector+1,2 (bisector−1,2) refer to the directions evaluated starting from the initial 

maximum pmax_0 (minimum pmin_0) principal strain direction. As visible in Eq. (30), the 

amplitude of each region increases with the evolution of the region’s bisector: this 

translates in the fact that two directions initially belonging to the same damage region 

continue to be affected by the same degradation parameter during the whole loading 

history. Moreover, due to the orthogonality between maximum and minimum principal 

directions, τ+θ = τ−θ and r+θ = r−θ ; hence, the activation of the multidirectional procedure 

and the updating of the damage regions in tension and in compression, whose conditions 

are expressed in Eqs. (31), occur simultaneously. For this reason, hereafter, the 

superindex ±  is neglected. 

0θr 

     

0g τ r   

     

0θ θr g 

     

0θ θr g   (31) 

Once again, a similarity between the conditions (31) and (19) ruling the updating of the 

damage variables is present. According to Eqs. (31), four different situations can be 

distinguished: 

 gθ > 0, r = 0 and rθ = cos(θmin): the multidirectional procedure is not active since the 

equivalent deviation angle θτ (28) has never overcome the minimum deviation θmin . 
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The value of d+( d−) is the same in both the tensile (compressive) damage regions, 

identified according to Eq. (30); 

 gθ = 0, r < 0 and θr < π/4 (loading conditions): the multidirectional procedure is active 

and the bisectors of the damage regions rotate, accompanied by an increase of the 

regions’ amplitude, according to Eq. (30); 

 gθ = 0, r < 0 and θr ≥ π/4 (loading conditions): the multidirectional procedure is active 

but the damage regions do not evolve, according to Eq. (30), to avoid overlapping; 

 gθ > 0, r = 0 and rθ < cos(θmin) (unloading conditions): the multidirectional procedure 

is active and the damage regions coincide with the ones assumed at the last loading 

step. 

From the above considerations, the introduction of a minimum threshold deviation θmin 

allows to simulate three different situations in presence of load Type (ii): if the cyclic 

conditions do not generate significant deviations from the initial principal configuration, 

the multidirectional damage approach is not activated and no unilateral effects are taken 

into account; if the multidirectional procedure is activated and some damage is already 

present, the model holds partial stiffness recovery capabilities; finally, if the 

multidirectional procedure is activated without any damage already present, total stiffness 

recovery is assured. 

Conversely to load Type (i), this procedure allows to model situations in which permanent 

loads are non-negligible with respect to variable cyclic loads. 

For the sake of clarity, a problem identifiable as load Type (ii) is solved with the 

multidirectional approach. Specifically, the case of a panel subjected first to a vertical 

pre-contraction and then to a cyclic horizontal displacement on the top side is taken into 

account (Fig. 5.a). The continuous rotation of the maximum principal elastic strain 

direction with respect to the initial configuration (pmax_0), coincident with the x-axis, is 

shown in Fig. 5.b in terms of the deviation θ. Except for the positive and negative sign, 

this curve represents the trend of the equivalent quantity θτ (see Eq. (28)), which coincides 

with the absolute value of the actual deviation angle θ. Since θ overcomes the minimum 

threshold θmin, the resulting τ - γ curve, Fig. 5.c, shows shear stiffness recovery after 

loading reversal (instant t1). Due to the evolving nature of the damage regions, foreseen 

by the multidirectional procedure in case of rotating principal directions (Fig. 5.b), the 

plane partition changes during the loading history. In particular, the one depicted in 

Fig.  5.d and Fig. 5.e refers to the specific loading time tmax1, i.e. the instant associated 
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with the maximum rotation θmax < π/4. Since this case corresponds to a loading condition 

(gθ  = 0, r  < 0 and θr < π/4), in accordance with Eq. (30), bisector+1 coincides with the 

principal direction pmax associated to εmax while bisector−1 coincides with pmin associated 

to εmin. Similarly to the case of load Type (i), the description of the MCR effects is ensured 

by the transition from a damage region to the other one, occurring in correspondence of 

load sign reversal.  

 

Figure 5 –Load Type (ii) problem depicted in (a): (b) typical continuous rotation of the 

maximum principal direction during the loading history; (c) local response under cyclic shear 

action with pre-contraction; identification of the (d) tensile and (e) compressive damage regions 

in loading conditions.  

3.2 Enhanced dissipative behavior under cyclic conditions 

The versatility of the multidirectional damage approach in modelling a partial or complete 

stiffness regain in shear cyclic conditions has been extensively discussed in (Cervera and 

Tesei, 2017). A further positive aspect deriving from the adoption of the multidirectional 

procedure is here highlighted by solving at a finite element level the problem of a panel 

subjected to in-plane cyclic shear, classified as load Type (i) (see Fig. 1 and Fig. 4). The 

analyzed loading history is composed of five complete cycles of loading and reloading, 

with increasing amplitude, and the structural responses obtained with the multidirectional 

procedure (Fig. 6a) and without the multidirectional procedure (Fig. 6b) are compared.  
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Besides the unilateral capabilities appreciable in Fig. 6.a, particularly evident in the elastic 

stiffness recovery at the beginning of the first reloading stage, another effect strictly 

related to the adoption of the multidirectional procedure is the more adequate 

representation of the evolution of permanent deformations under cyclic shear. Here, the 

possibility of differentiating the damage processes depending on the orientation of the 

principal strain directions reflects in taking into account, realistically, the energy 

dissipated in the formation of both the orthogonal cracks. This translates in considering 

the active damage values increasing even after loading reversal and has, as consequence, 

the accumulation both in loading and reloading of the permanent strains (12), defined on 

the base of d
and d

(see Fig. 6.a). Contrarily, in a pure scalar damage formulation, the 

lack of unilateral effects in shear conditions implies, due to Eq. (12), an underestimation 

of the irreversible deformations in the reloading stages (see Fig. 6.b). 

These enhanced dissipative capabilities under cyclic conditions ensured by the proposed 

multidirectional damage model are further underlined in the section devoted to structural 

applications, where the comparison with experimental data is provided.  

 
Figure 6 – Cyclic response for the pure shear problem depicted in Fig. (1.a) (a) with the 

multidirectional procedure and (b) without the adoption of the multidirectional procedure. 

3.3 Parallels among the multidirectional damage model and fixed/rotating smeared crack 

concepts 

The consistent damage model proposed in section 2 fits within the framework of the 

rotating smeared crack concept, introduced for the first time in (Cope et. al, 1980). In fact, 

as outlined in Section 2.1, the alignment between the axes of orthotropy of the damaged 

material and the principal strain directions is a feature of the proposed orthotropic damage 

model. Moreover, the limitations observed in the modelling of MCR effects in presence 

of shear cyclic loading (Fig. 1) are comparable to the inability of the rotating crack models 

to take into account the orientation of previous defects. As stated in the Introduction, the 
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inclusion of the procedure described in Section 3.1 consists in enriching the damage 

formulation with some properties proper of the fixed crack models (Rots et al., 1985), 

specifically the preservation of memory regarding damage orientation. Rather than to a 

pure fixed crack model, the present proposal can be assimilated to a multidirectional fixed 

crack model (de Borst and Nauta, 1985; Riggs and Powell, 1986; Rots and 

Blaauwendraad, 1989).  

First of all, a similar use of a threshold angle is present in the multidirectional damage 

model and in the multidirectional fixed crack model. As in the former, the transition 

between two different damage values is performed only when a rotation of the principal 

directions greater than a certain angle occurs, in the latter, a new crack is initiated only 

when the inclination of the principal directions with respect to existing cracks overcomes 

a certain threshold. Moreover, some specific hypotheses discussed in (Rots and 

Blaauwendraad, 1989) for the implementation of a multidirectional model are in good 

agreement with the choices here done in the modelling of the multidirectional damage. In 

fact, the assumption to consider the value of the damage variables evolving in a region 

independently of what happens in the other region is analogous to consider the behaviour 

of each multidirectional crack as the one of a single crack. In view of this, adequate values 

for θmin, the minimum threshold deviation appearing in Eq. (29), can be chosen in 

accordance with (Rots and Blaauwendraad, 1989) and range between π/12 and π/6. 

In addition, the choice of considering only one active value of damage in tension and one 

in compression is in line with the hypothesis done in multidirectional models of adopting 

the most recent initiated defect as the only currently-active crack. This is supported by 

experimental evidence: only the most recently initiated crack is active in a system of non-

orthogonal defects (Vecchio and Collins, 1986). A difference between the 

multidirectional fixed crack concept and the multidirectional damage model lies in the 

fact that the former deals with a collection of several fixed defects of different orientation 

while the latter considers only two independent damage regions (2D problems). Finally, 

differently from the multidirectional fixed damage models, the multidirectional damage 

formulation maintains during the whole damage process the coaxiality between principal 

directions of strains and axes of orthotropy. Hence, it keeps the motivating feature of the 

rotating crack models, coaxiality, which reduces stress locking, while remedying the 

impossibility of tracking memory of the material defects, the main objection arisen 

against the rotating crack concept (Bažant, 1983).  



24 
 

3.4 Numerical aspects of the multidirectional damage approach: smooth transition in 

correspondence with crack closure and re-opening 

Here, the improvement of the numerical robustness of the multidirectional procedure is 

addressed. The passage from a damage region to the other one, performed on the base of 

the current principal strain directions, implies modifications of the active damage 

variables d+ and d− affecting the secant stiffness (4). Therefore, in analogy with the 

considerations provided in (Jefferson and Mihai, 2015), the multidirectional damage 

approach described in section 3.1 may suffer from convergence problems. Hindrance in 

achieving convergence on the residual nodal forces has been observed especially in case 

of load Type (ii); in fact, due to the partition adopted for this kind of loads (see Fig. 5), at 

load sign reversal, principal directions tend to oscillate around the boundary between a 

damage region and the other one. 

In order to eliminate these convergence difficulties, the introduction of a transition region, 

of amplitude 2θt, is here proposed, with the purpose of making smoother the passage 

between two different damage regions.  

The working principle of this smoothing procedure is explained in Fig. 7.a, where it is 

shown how the transition region has, as bisector, the boundary between the damage region 

1 and the damage region 2. Superindices + and – for identifying the regions and their 

corresponding quantities r and d are dropped, since the procedure hereafter described 

holds for both tensile and compressive regions, provided that the principal current strain 

direction p refers to pmax and pmin, respectively. 

When the current principal strain direction p belongs to the transition region, the active 

damage threshold quantity r is evaluated according to Eq. (32), resorting to a hyperbolic 

tangent function: 

   1 2 1 2

21 1
tanh

2 2

p
t

t

r = r r r r




 
     

 
 (32) 

where the pedix t stands for transition, r1 and r2 are the damage threshold values 

pertaining to region 1 and 2, respectively, and θp is the angle between p and the boundary. 

Hence, the active damage value d in the transition region is evaluated starting from the 

smoothed damage threshold (32) and referring to the evolution damage laws expressed in 

Eqs. (22). 

The trend of the smoothing transition, operated on the damage threshold quantity, is 

plotted in Fig. 7.b, where the amplitude of the transition region is also identified. This 
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amplitude, defined by the parameter θt, is chosen to be sufficiently small compared to the 

rotation performed by the principal directions, which can be, at most, π/2.  

In case of p falling outside the transition region, the active value of the damage variable 

is computed referring to r1 or r2, according to the procedure declared in Section 3.1. 

The impact that such transition has on the numerical robustness of the multidirectional 

damage approach is studied in Section 5.2.3, where convergence histories for different 

values of the parameter θt are compared. 

 
Figure 7– Smoothing of the multidirectional procedure: (a) identification of the transition region 

and (b) hyperbolic tangent function operating the regularization.  

4. Numerical implementation of the damage model 

The damage model presented in Section 2 and enriched with the multidirectional 

procedure described in Section 3 is implemented in a displacement-based FE code written 

in FORTRAN. In order to face the material non-linearity, the numerical algorithm works 

in an incremental-iterative way. Within a generic load increment, going from the step n−1 

to the step n, the equilibrium global equations at each iteration i are solved using the 

Picard’s method, based on the adoption of the global secant stiffness matrix S. The 

solving algebraic system assumes the following form: 

   1 1i i i
n n n  S u u R u    (33) 

where δ i
nu

 is the iterative displacement vector correction adopted to compute the iterative 

displacement vector inu
  

1i i i
n n n u = u u    (34) 

and the residual force vector R is expressed in terms of the internal P and external F force 

vectors: 
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     1 1 1 1i i i i
n n n n n n
      R u P u F S u  u F    (35) 

The choice of a Picard’s method has two main reasons. On the one hand, it allows taking 

advantage, from a computational point of view, of the symmetric constitutive stiffness 

operator DE (4): in fact, a symmetric local secant matrix implies a symmetric algebraic 

system to be solved (Eq. (33)). On the other hand, it is addressed to avoid the computation 

of the consistent tangent stiffness matrix necessary for the application of the Newton 

Raphson method. In fact, in the case of the constitutive d+/d− damage model here 

presented, this matrix is non-symmetric and requires the evaluation of the derivative of 

the projection operator (7), which is not straightforward.  

Regarding the numerical scheme for the derivation of the constitutive law, despite the 

assumption of energy-equivalence and the multidirectional treatment of damage, 

characterizing the new formulation, a full strain-driven formalism is maintained, in order 

to guarantee algorithmic efficiency. To achieve this, the updating of the permanent strain 

tensor εp is made explicitly, meaning that it is performed only once, at the end of the 

loading step, after the attainment of convergence. This allows to compute, within each 

iteration, the elastic strain tensor εe directly from the iterative displacements and to 

evaluate, on the base of it, the active damage variables d+ and d−, the projection operator 

Q (7), the active secant stiffness DE (4) and, finally, the nominal stress tensor σ (10). The 

numerical algorithm of the d+/ d− multidirectional damage model is synthetized in 

Table 1. Three subroutines are adopted in order to make clearer the working principles of 

the multidirectional procedure. They are: 

 Damage multidirectional saving (d
±

, r
±

, εe; d1,2
±

, r1,2
±

): the converged d+ (d−) 

damage value is saved as d1
+ or d2

+ (d1
− or d2

−) in a region, depending on the 

maximum (minimum) strain (εe) direction which has generated it (input parameters 

εe, d
±

, r
±

; output parameters d1,2
±

, r1,2
±

); 

  Damage multidirectional updating (εe, d1,2
±

, r1,2
±

, τ
±

; d
±

, 
±d , r

±
): it provides 

the active damage value d+ (d−), its rate d
( d

) and the active damage threshold r+ 

(r−) on the base of the current damage equivalent stress quantity τ+ (τ−) which is 

compared with the damage threshold r1
+ or r2

+ (r1
− or r2

−) saved in the region where 

the principal maximum (minimum) strain (εe) direction falls (input parameters εe, d1,2

±
, r1,2

±
, τ

±
; output parameters d

±
, 

±d  and r
±

); 
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 Damage regions updating: in loading conditions, for load Type (ii), it changes the 

bisectors and the amplitudes of the damage regions, with reference to (30). 

 

Load increment n: 

Known quantities:  

    n-1ε, n-1εp, 
n-1d1,2

±
,
 n-1r1,2

±
; only for load Type (ii): n-1rθ

±
. 

Iteration i: 

(i) Compute the nominal elastic strain tensor n, iεe: 
n, iεe = n, iε – n-1εp. 

(ii) Compute the projection operators n, iQ and I − n, iQ by means of the spectral 

decomposition of the nominal strain tensor n, iεe (Eqs. (6) and (7)). 

(iii) Compute the elastic stress tensor n, iσe (Eq. (13)). 

(iv) Compute the equivalent stress quantities n, iτ
±

 (Eqs. (16)); 

(v) Only for load Type (ii): compute the equivalent deviation quantity n,iτθ
±

(Eq. (28)) 

on the base of n, iεe; 

if n,iτθ
±

 < n-1rθ
±

: n,irθ
±

 = n,iτθ
±

 and call “Damage regions updating”; 

if n,iτθ
±

 > n-1rθ
±

: n,irθ
±

 = n-1rθ
±

. 

(vi) Call “Damage multidirectional updating ( 
n, iεe, 

n-1d1,2
±

,
 n-1r1,2

±
, 

n,  iτ 
±

;n ,  id 
±

, 

n ,  i ±d , 
n ,  ir 

±
)”. 

(vii) Compute the operator n,iA* (Eq. (5)): 

 , , , , ,1 1n i n i + n i n i n id d   *
A Q + I Q . 

(viii) Compute the nominal stress 
n, iσ (Eq. (10)):

 

, , , ,n i n i n i n i: : : * *
0 eσ A D A ε . 

(ix) Check convergence: 
NO convergence: go to the iteration i+1 and start again from (i). 
YES convergence: 

 Update: nε = n,iε; only for load Type (ii): nrθ
±

 = n,irθ
±

. 

 Update permanent strain tensor (Eq. (12)):

 

   
 , 1

, , ,

, ,

n i n n

n n i n i n i

n i n i

:
b H d b H d

:



   


      
  

e

p e

e e

σ ε ε
ε ε

σ ε

1n n n  p p pε ε ε . 

 For load Type (i): call “Damage multidirectional saving (n ,  id 
±

, 
n ,  ir 

±
, 

n, iεe
; nd1,2

±
,
 nr1,2

±
)”. 

 For load Type (ii) 

if nrθ
±

 < cos(θmin): call “Damage multidirectional saving (n ,  id 
±

, 
n ,  ir 

±
, 

n, iεe
;  nd1,2

±
,
 nr1,2

±
)”; 

if nrθ
±

 = cos(θmin):
 nd1,2

+ =  n,id+ ; nd1,2
− =  n,id− ; nr1,2

+ =  n,ir+ ; nr1,2
− =  n,ir−. 

 Go to the next increment load n+1. 

Table 1 – Numerical algorithm of the constitutive law for the multidirectional damage model. 
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5. Validation examples 

In this section, the energy-equivalent damage model described in Section 2 and the 

multidirectional procedure specifically thought for cyclic loadings (Section 3) are 

validated by means of comparisons between experimental and numerical results, 

considering 2D plane stress problems. In Section 5.1, three examples involving 

unreinforced concrete structural elements are solved, in order to investigate the adequacy 

of the new d+/d− damage model, specifically the effects produced by the adoption of the 

constitutive secant stiffness operator (4), derived within an energy-equivalence 

framework. For these purposes, only monotonically increasing loadings are analysed. 

Conversely, in Section 5.2, the potentialities of the multidirectional damage procedure 

described in Section 3 are shown with reference to a masonry wall and a reinforced 

concrete wall, both subjected to cyclic shear conditions. Finally, the efficiency of the 

smooth transition proposed in Section 3.4 for crack closure and reopening is discussed. 

In all the analyses, the numerical algorithm detailed in Table 1 is adopted. Specifically, 

the convergence in a time step n is attained when both the ratio between the norm of the 

iterative residual forces R and the external forces F (see Eq. (35)) and the ratio between 

the norm of the iterative displacement increments δ i
nu

 and the total displacements inu (see 

Eq. (34)) are lower than 1%. 

Depending on the example of application, triangular (3-nodes) and/or quadrilateral (4-

node) elements are adopted in the discretization. The crack width parameter ldis, 

introduced in the evolution damage law (22.b) for guaranteeing mesh-size objectivity of 

the results, is computed according to the area Ae of the finite element: for triangles, 

l2
dis = 4/ 3 Ae for quadrilateral elements, l2

dis = Ae.  

5.1 Monotonic loadings: validation of the energy-equivalent d+/d− damage model  

Three different structural applications are studied with the energy-equivalent d+/d− 

damage model: a wedge-splitting test performed on a concrete specimen in the 

experimental program described in (Trunk, 2000), a three-point bending test shown in 

(Kormeling and Reinhardt, 1983) and a mixed-mode three-point bending test documented 

in (Gálvez et al., 1998), both on single-edged-notched concrete beams. The geometry, the 

boundary and the loading conditions for the just mentioned examples are illustrated in 

Fig. 8, Fig. 9 and Fig. 10, respectively.  

In all the problems, the increasing forces P are applied by imposing increasing 

displacements of the application points.  
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Figure 8 – Wedge-splitting test set-up. 

 

Figure 9 – Three-point bending test set-up. 

 

Figure 10 – Mixed mode three-point bending test set-up. 

The mechanical properties assumed for concrete in each case are summarized in Table 2, 

Table 3 and Table 4, respectively. 

E 

[MPa] 

ν 

[-] 

f+ 

[MPa] 

f− 

[MPa] 

γe
− 

[-] 

γp
− 

[-] 

Gf
+ 

[N/mm] 

Gf
− 

[N/mm] 

b+ 

[-] 

b− 

[-] 

fb
−/f− 

[-] 

28300 0.2 1.59 -25 0.33 1.33 0.35 35 0.05 0.3 1.16 

Table 2 – Constitutive parameters of concrete for the wedge-splitting test. 

E 

[MPa] 

ν 

[-] 

f+ 

[MPa] 

f− 

[MPa] 

γe
− 

[-] 

γp
− 

[-] 

Gf
+ 

[N/mm] 

Gf
− 

[N/mm] 

b+ 

[-] 

b− 

[-] 

fb
−/f− 

[-] 

20000 0.2 2.4 -24 0.33 1.33 0.133 30 0.05 0.3 1.16 

Table 3 – Constitutive parameters of concrete for the three-point bending test. 
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E 

[MPa] 

ν 

[-] 

f+ 

[MPa] 

f− 

[MPa] 

γe
− 

[-] 

γp
− 

[-] 

Gf
+ 

[N/mm] 

Gf
− 

[N/mm] 

b+ 

[-] 

b− 

[-] 

fb
−/f− 

[-] 

38000 0.2 3 -54 0.33 1.33 0.069 38 0.05 0.3 1.16 

Table 4 – Constitutive parameters of concrete for the mixed-mode three-point bending test. 

The mesh has been generated taking care of refining the discretization where the 

propagation of the crack is expected; for the wedge-splitting test, a mesh of 3353 

quadrilateral elements is adopted with a representative length in the proximity of the 

cracking zone equal to 17.5 mm. In the three-point bending and in the three-point mixed-

mode bending tests, the concrete beams are discretized with 2752 and 13336 elements, 

respectively: in the regions around the notch, triangular elements with an average size of 

2.5 mm are used while the other zones are discretized with larger quadrilateral meshes.  

The adequacy of the proposed orthotropic d+/d− damage model in capturing the nonlinear 

behaviour is proven by comparing the numerical and the experimental results in terms of 

deformed configurations, damage distribution, applied load P – crack mouth opening 

displacement CMOD and/or applied load P – displacement of relevant points.  

Regarding the wedge-splitting test, as expected due to the problem symmetry, the 

localization of the tensile damage occurs in correspondence of the notched zone (see Fig. 

11.a and Fig. 11.b) and is vertical, in accordance with the vertical crack path found 

experimentally. The numerical P - CMOD curve is compared in Fig. 12 with the 

experimental one: both the peak-load and the post-peak behaviour are satisfactorily 

described with the proposed model.  

 

Figure 11 – Wedge-splitting test: (a) deformed configuration (× 100) (in mm)and (b) tensile 

damage distribution. 
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Figure 12 – Load P – CMOD curve for the wedge-splitting test: comparison between numerical 

and experimental results. 

The accordance of the results obtained numerically with the experimental ones is evident 

also for the three point bending test, as confirmed by the deformed configuration of the 

beam and by the d+ distribution (Fig. 13.a and Fig. 13.b), which show the localization of 

the maximum deformations in correspondence of the mid-span, above the notch. The 

agreement between experimental and numerical results is evident also in Fig. 14, where 

the load P – mid-point displacement δ curve obtained with the proposed damage model 

falls in between the maximum and minimum experimental envelopes.  

 

Figure 13 – Three-point bending test: (a) deformed configuration (× 100) (in mm) and (b) 

tensile damage distribution map. 
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Figure 14 – Load P – δ curve for the three-point bending test: comparison between numerical 

and experimental results. 

Finally, as regards the three-point mixed-mode bending test, the deformed configuration 

(Fig.  15.a) and the distribution of the tensile damage (Fig. 15.b) are in perfect agreement 

with the crack trajectory found in the experiment, which has an inclined direction of 

propagation, as accurately documented in (Gálvez et al., 1998). The structural curves 

obtained with the proposed orthotropic model, in terms of applied load P – CMOD 

(Fig. 16.a) and applied load P  – displacement of point B (Fig. 16.b), fit satisfactorily with 

the experimental results, except for a slight overestimation of the dissipated energy in the 

post peak regime. 

All the problems just described are solved also with the constitutive law presented in 

(Faria et al., 1998), derived in the framework of strain-equivalence, but resorting to the 

same permanent strain rate (12), damage criterion Eqs. (16) and damage evolution laws 

(22) here considered. The corresponding numerical curves are plotted in Fig. 12, Fig. 14 

and Fig. 16 together with the experimental ones and the ones obtained with the d+/d− 

damage model of Section 2. 
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Figure 15 – Three-point mixed-mode bending test: (a) deformed configuration (in mm) (× 100) 

and (b) tensile damage distribution map. 

 

 

Figure 16 – (a) Load P – CMOD curve and (b) load P – uB curve for the three-point mixed-

mode bending test: comparison between numerical and experimental results. 

The objective is to discuss the effects of the energy-equivalence assumption, here adopted 

for the derivation of the constitutive law (10), compared with the strain-equivalence 

hypothesis. In all cases, it is possible to note how the differences between the two different 

formulations are substantially slight, being both of them able to reproduce satisfactorily 

the laboratory results. Hence, although the choice of energy-equivalence ensures a gain 

in thermodynamic consistency with respect to the strain-equivalence one, as observed in 

(Cervera and Tesei, 2017), both the formulations are adequate in describing the strain-

softening response typical of quasi-brittle materials.  

5.2 Cyclic loadings: validation of the multidirectional d+/d− damage model  

5.2.1 Masonry shear panel under cyclic conditions  

The first problem analyzed with the model presented in Section 2 enriched with the 

multidirectional procedure described in Section 3 is an unreinforced brick masonry wall 

under in-plane quasi-static shear loading conditions. The reference solution is represented 

by the results of laboratory tests provided in (Anthoine et al., 1994) and (Magenes and 

Calvi, 1997), dealing with a laboratory campaign addressed to investigate the seismic 
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behavior of masonry existing buildings. The loading conditions of the analyzed problem 

are representative of the ones sustained by vertical structural elements during a seismic 

event, i.e. permanent vertical loads and double bending moments. 

According to the experimental set-up (Anthoine et al., 1994), the wall, with an height H-

width ratio equal to 1.35, width B 1000 mm and thickness 250 mm, is first subjected to a 

vertical compressive force of 150 kN (p = 0.6 N/mm2) and then to cyclic horizontal 

displacements uh of increasing amplitudes applied on the top boundary. The base of the 

panel is completely constrained and the vertical displacements of its top side are 

prevented, forcing the bottom and top panel sections to remain parallel. Both the geometry 

and the loading conditions adopted in the numerical analyses are summarized in Fig. 17. 

 

Figure 17 – Geometry, boundary and loading conditions for the masonsry shear wall. 

Regarding the mechanical parameters, except for the Young’s modulus and the 

compressive uniaxial strengths f−, inferable from (Anthoine et al., 1994), the majority of 

the other values have been chosen in accordance with the experimental data expressed in 

(Berto et al., 2002; Magenes and Calvi, 1992) for brick masonry panels with mechanical 

features comparable with the ones of the analyzed wall and belonging to the same 

research program. The input values for the constitutive parameters adopted in the 

numerical simulations are collected in Table 5. 

E 

[MPa] 

ν 

[-] 

f+ 

[MPa] 

f− 

[MPa] 

γe
− 

[-] 

γp
− 

[-] 

Gf
+ 

[N/mm] 

Gf
− 

[N/mm] 

b+ 

[-] 

b− 

[-] 

fb
−/f− 

[-] 

1500 0.15 0.26 -6.2 0.5 1.5 0.25 28 0.1 0.3 1.15 

Table 5 – Constitutive parameters for the masonry panel under cyclic shear. 

Due to the presence of a non-negligible constant vertical force in addition to the cyclic 

actions, the problem is solved by resorting to the multidirectional procedure specifically 

devised for load Type (ii) (Section 3.1.2), i.e. taking into account the evolution of the 
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damage regions related to the continuous rotation of the principal directions. The two 

additional deviation parameters required by the multidirectional damage procedure, θmin 

(Eq. (29)) and θt (Eq. (32)), are assumed equal to π/8 and π/36, respectively. 

The response of the panel obtained in the laboratory test is plotted in Fig. 18.a, in terms 

of the horizontal shear force Fh recorded at the top side versus the imposed horizontal 

displacement uh. The curve is typical of a brittle failure mechanism dominated by shear, 

where the peak load, equal to 84 kN in correspondence of a drift of 0.20 %, corresponds 

to the formation of diagonal cracks in the center of the panel; the pre-cracking behavior 

is characterized by a modest hysteresis behavior while, after the attainment of the 

maximum carrying capacity, rapid strength and stiffness degradation and high energy 

dissipation are visible. The cyclic conditions are responsible for a trapezoidal cracking 

pattern which presents two sets of intersecting cracks in the mid-height of the panel, as 

well as horizontal flexural ones in correspondence of the corners.  

The Fh - uh curves obtained by the application of the multidirectional damage model, 

considering three quadrilateral mesh configurations with different refinement, are shown 

in Fig. 18.b, 18.c and 18.d. For comparison purposes, each numerical curve is plotted 

together with the envelope of the experimental one.  

Analyzing these figures, it is evident how the dependence of the results on the 

discretization, ensured by the presence of the length ldis in the definition of the softening 

moduli in tension and compression (Eq. (25)), is very small and can be considered 

negligible. In addition, it can be noticed that the numerical results reproduce satisfactorily 

the overall structural response of the shear panel: both the peak load, achieved at a drift 

of 0.22 % (uh = −3 mm) and equal to 84,8 kN (curve in Fig. 18.d), and the post-peak 

softening trend are well approximated. Moreover, the effect of the multidirectional 

procedure is visible in the similarity of the response in terms of ultimate load, ultimate 

displacement and softening behaviour between positive and negative displacements. This 

is simulated thanks to the stiffness recovery capabilities of the multidirectional model in 

correspondence of loading reversal; in fact, going from negative to positive 

displacements, an increase in stiffness is visible in the numerical response, particularly 

evident in the unloading stage after the attainment of the maximum carrying capacity 

(cycle 2, amplitude 3mm): here, the closure of a set of diagonal cracks just opened 

translates in almost the total recovery of the initial stiffness, since the generation of the 

diagonal cracks in the orthogonal direction is not occurred yet. In the subsequent cycles, 
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this phenomenon, although present, is less evident because the closure of a set of cracks 

coincides with the re-activation of the other set of cracks previously originated.  

 

Figure 18 – Masonry wall under in-plane cyclic shear: (a) experimental results; (b), (c) and (d) 

numerical results obtained with the multidirectional procedure for different mesh refinments.  

To make clearer how this stiffness regain is simulated, the contour plots of the active 

tensile damage value d+ corresponding to different stages of cycle 2 are shown in Fig. 19. 

In Fig. 19.a, 19.b and 19.c, the contour plots refer to the situations of maximum loading 

(uhmax= −3 mm), loading reversal (uhmax= +0.12 mm) and maximum reloading 

(uhminx= +3 mm). In Fig. 19.a, the high values of damage at the center of the panel and at 

the two corners identify the formation of the shear and flexural cracks, respectively, 

induced by a horizontal displacement towards the right. Just after loading reversal, in 

Fig. 19.b, the closure of the previously generated cracks is represented by making inactive 
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the damage values displayed in Fig. 19.a: in fact, due to the rotation of the principal 

directions, the transition from a damage region to the other one has occurred and the 

active damage values coincide with the maximum ones attained during the reloading in 

cycle 1. Starting from this damage configuration, due to the increase of the horizontal 

displacement towards the left, the active damage distribution in Fig. 19.c is obtained, 

almost symmetric with respect to the one in Fig. 19.a.  

 

Figure 19: Active d+ contour plots in cycle 2: (a) uh=−3mm, (b) uh=+0.12mm and (c) uh=+3mm. 

A further confirmation that the collapse mechanism captured by the numerical analysis is 

governed by shear is given in Fig. 20 and Fig. 21, where the maximum tensile strains εmax 

are displayed in cycle 2 and in cycle 5, respectively, at the end of loading and at the end 

of the reloading stages.  

 

Figure 20: Maximum tensile strain contour plots in cycle 2: (a) uh= −3 mm and (b) uh= +3 mm. 
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Figure 21: Maximum tensile strain contour plots in cycle 5: (a) uh= −7.5 mm and (b) 

uh= +7.5 mm. 

The contour plots in Fig. 20 confirm the formation of the dominant cracking mechanism 

in the center of the panel; in Fig. 21, the results refer to the end of the analysis, when the 

crack propagation towards the corners has occurred, causing the maximum strain values 

to leave the central part. Although the adoption of a smeared approach does not allow 

identifying with accuracy the strain localization, the results shown in Fig. 20 and Fig. 21 

are in good agreement with the cracking pattern observed in laboratory and documented 

in (Anthoine et al., 1994). 

For comparison purposes, the Fh - uh curve obtained by the adoption of the damage model 

without a multidirectional treatment of damage is shown in Fig. 22.a. Even though the 

peak load and the envelope of the experimental curve are basically captured, the lack of 

unilateral effects reflects in a relevant underestimation of the dissipated energy. This can 

be noticed both in the unrealistic shape of the hysteretic cycles and in the evolution of 

permanent deformations, which accumulate mainly in the positive loading stages, and not 

in reloading ones (in accordance with the observations provided in Section 3.2). 

Differently, in the response obtained with the multidirectional damage model (see 

Fig. 18.d), although the permanent strains are a little underestimated, their evolution is 

qualitatively correct, meaning that permanent deformations are generated both in the 

loading and in the reloading stages. In order to provide a quantitative proof of the 

beneficial role of the multidirectional damage approach in terms of representation of the 

dissipative behavior, the equivalent viscous damping coefficients are computed for each 

load cycle, referring to the numerical response with and without enhanced MCR 

capabilities, Fig. 18.d and Fig. 22.a, respectively. The equivalent viscous damping is 
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evaluated as the ratio between the energy dissipated in a cycle Wd and the elastic energy 

We at the maximum displacement uhmax: 

 2

d
eq

e e

W

W W


  



 (36) 

In Fig. 22.b, these quantities are plotted as a function of the drift (uhmax/H) and compared 

with the ones derived from the experimental response (data provided by Magenes and 

Calvi (1997)). On the one hand, Fig. 22.b shows the adequacy of the multidirectional 

model in treating the cyclic shear failure: after cracking, the numerical trend of the 

equivalent viscous damping is close to the experimental one, meaning that the growth of 

the dissipated energy due to increasing damage and increasing displacement demand is 

well reproduced. The slight lower values obtained in the analyses can be attributed to the 

slight underestimation of the permanent strains. On the other hand, Fig. 22.b confirms the 

incapability of a pure scalar damage formulation in describing the real dissipative 

behavior under shear cyclic conditions, because independent degradation processes along 

different directions can not be represented. 

 

Figure 22 – Masonry shear wall under in-plane cyclic shear: (a) numerical results without the 

multidirectional procedure; (b) comparison in term of viscous damping coefficients between the 

numerical response obtained with and without the multidirectional procedure. 

As mentioned above, a slight underestimation of the permanent deformations is visible in 

the numerical response from Fig. 18.d. This deserves some further consideration on the 

adequacy of the simplified definition (12) here adopted for the irreversible strain tensor 

εp and the importance of this model component in cyclic loading conditions. To do this, 

two additional analyses are carried out, varying the values of the material parameters b+ 

and b− with respect to the ones indicated in Table 5. Specifically, both the case of high 
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permanent deformations (b+= 0.17 and b−= 0.45) and null permanent deformations (b+= 0 

and b−= 0) are considered. The resulting Fh - uh curves, obtained using the finer mesh, are 

plotted in Fig. 23. Moreover, these solutions are also re-elaborated in terms of damping 

coefficients-drift trends in Fig. 24, in order to directly evaluate the variation of energy 

dissipation associated to the variation of εp.  

 

Figure 23 – Masonry shear wall under in-plane cyclic shear: Fh - uh curves in case of (a) high 

permanent deformations and (b) absent permanent deformations. 

 

Figure 24 – Masonry shear wall under in-plane cyclic shear: numerical responses with different 

levels of permanent deformations compared in terms of viscous damping coefficients. 

Some relevant aspects emerge from the analysis of these figures. Firstly, although the 

inclusion of permanent deformations in the damage model is perfomed in a simplified 

manner, it results adequate for describing the experimental evidence, both in terms of 

residual deformations at complete unloading (Fig. 23.a) and in terms of energy dissipation 

capacity (Fig. 24). Secondly, a less pronounced softening response is obtained when the 
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permanent deformations are not included (Fig. 23.b); this is not surprising because, 

according to the coupled definition (25) of the softening modulus, a reduction of the 

permanent deformations implies a reduction of the softening modulus, hence a slower 

increase of damage. Moreover, the unrealistically low values of eq  obtained with null εp 

(Fig. 24) are very similar to the ones derived without the multidirectional procedure, in 

case of b+= 0.1 and b−= 0.3 (Fig. 22.b). It is concluded that the modelling of permanent 

deformations is important as the modelling of microcrack closure-reopening effects for a 

correct representation of the behaviour of quasi-britttle structures under cyclic loading.  

5.2.2 RC wall under cyclic shear 

The second problem studied with the multidirectional procedure described in Section 3 is 

a reinforced concrete wall subjected to horizontal cyclic shear forces, tested within the 

French national research project CEOS.fr (Rospars and Chauvel, 2014). The specimen 

analyzed is the one identified in the experimental campaign with the acronym SHW2 and 

represents a 1/3 reduced-scale model of reinforced concrete thick shear walls employed 

in industrial buildings to resist seismic loadings.  

In the numerical analysis, the experimental set-up, detailed in (Rospars and Chauvel, 

2014; Bisch et al., 2014), is reproduced as shown in Fig. 25: the reinforced concrete 

specimen (Zone 1, 2), of overall dimensions 4.2 m × 1.05 m × 0.15 m, is connected on 

the top and on the bottom to highly reinforced thick horizontal beams (Zone 3 and Zone 

4), which allow redistributing the shear loading on the panel. The horizontal action, in the 

laboratory test assigned by means of hydraulic actuators placed on each side of the top 

beam, 100 mm over the wall, is provided in terms of horizontal imposed displacements 

uh alternated on the Surfaces 1 and 2.  

 

Figure 25 – Geometry, boundary and loading conditions for the masonsry shear wall. 
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Moreover, the constraint represented by the steel frame in which the whole test body is 

installed, is modelled by preventing horizontal displacements on Surfaces 3 and 4 and 

vertical displacements on Surfaces 5 and 6.  

Rebars ϕ 10, spaced 100 mm in both vertical and horizontal directions on both faces of 

the wall (Zone 1) are considered while vertical rebars ϕ 25 and ϕ 32 are added in the left 

and right sides of the wall (Zone 2), in order to control the opening of cracks due to 

bending. 

In the highly reinforced zones, specifically the top and bottom beams (Zone 3, 4) and the 

left and right parts of the wall (Zone 2), it is assumed that the concrete behaviour is elastic. 

Hence, the damage formulation developed in Section 2 and Section 3 is applied only to 

Zone 1. The mechanical parameters adopted for concrete, belonging to the class C40, are 

collected in Table 6. They have been chosen in accordance to (Rospars and Chauvel, 

2014; Vassaux et al., 2015) and, in absence of data availability, calibrated in order to 

optimize the fitting between numerical and experimental results. 

E 

[MPa] 

ν 

[-] 

f+ 

[MPa] 

f− 

[MPa] 

γe
− 

[-] 

γp
− 

[-] 

Gf
+ 

[N/mm] 

Gf
− 

[N/mm] 

b+ 

[-] 

b− 

[-] 

fb
−/f− 

[-] 

22000 0.2 3.9 -42 0.4 1.6 0.7 45 0.1 0.35 1.16 

Table 6 – Constitutive parameters for the problem of the RC wall under cyclic shear. 

The reinforcement is modeled as follows, exploiting the fact that it is oriented along the 

Cartesian directions x and y. Assuming the hypothesis of perfect adherence between 

concrete and rebars, the axial forces sustained by steel in the horizontal and vertical 

direction, Psx and Psy, are computed starting from the deformations εx and εy in the 

concrete, taking into account the percentage of horizontal and vertical reinforcement ρx 

and ρy. The uniaxial constitutive law chosen to represent the cyclic behavior of the 

reinforcement is the one proposed in (Menegotto and Pinto, 1973) and illustrated in 

Fig. 26. The expression for the steel stress σs is explicited in (Faria et al., 2004).  
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Figure 26 – Constitutive law of the reiforcement under unixial cyclic loading history. 

The parameters adopted in the analyses for the characterization of the reinforcement are 

the following: Young’s elastic modulus Es = 210000 MPa, hardening modulus 

Esh = 2100 MPa, yielding stress fy = 420 MPa and three constants suitably chosen to fit 

the Bauschinger effect observed experimentally a1 = 18.5, a2 = 0.15 and a3 = 20. The 

percentages of steel reinforcement considered in the different Zones highlighted in Fig. 25 

are summarized in Table 7, together with the thickness of each Zone. 

 ρx [-] ρy [-] Thickness [mm] 

Zone 1 0.011 0.011 150 

Zone 2 0.025 0.243 150 

Zone 3 0.043 0.005 450 

Zone 4 0.048 0.155 450 

Table 7 – Percentage of the reinforcement and thickness for each Zone of the RC shear wall’s 

body test. 

Due to the absence of vertical loads, except for the self-weight which is negligible 

compared to the horizontal cyclic action, the multidirectional approach is applied 

referring to load Type (i), considering non-evolving damage regions during the loading 

history (Section 3.1.1). 

In Fig. 27, the experimental results in terms of global horizontal force Fh – horizontal 

displacement uhA of point A on the top side of the specimen (see Fig. 25) are plotted 

(Bisch et al., 2014). In Fig. 28, four different numerical predictions are shown: Fig. 28.a 

and Fig. 28.b exhibit the force-displacement curves obtained by means of the 

multidirectional procedure, considering two different quadrilateral mesh refinements; 

Fig. 28.c represents the numerical response derived by applying the formulation of 

Section 2 without a multidirectional treatment of damage; finally, in Fig. 28.d the results 

are obtained with the multidirectional procedure and increasing the intensity of the 
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permanent deformations with respect to the values presented in Table 6 (b+= 0.18 and 

b−= 0.45). 

 

Figure 27 – RC wall under in-plane cyclic shear: experimental results. 

First of all, comparing Fig. 28.a and Fig. 28.b, a very low dependence of the results from 

the discretization can be appreciated. Secondly, good representativeness of the 

experimental curve is noticed. Specifically, the progressive evolution of degradation with 

the development of cracking is caught, as well as the lateral resistance of the structure 

(4.07 MN against 4.3 MN). Even in terms of displacement capacity, the numerical and 

observed results are in agreement: the slightly greater deformability visible in Fig. 27 for 

high load cycles is attributable to the assumption of elastic behavior for the Zones 2, 3 

and 4 displayed in Fig. 25. In addition, comparing Fig. 28.b and Fig. 28 d, it is worth 

noting that the level of permanent deformations experimentally observed is better 

modelled by increasing the parameters b+ and b−. This represents a further confirmation 

of the adequacy of Eq. (12) for describing the evolution of εp. 

For what concern the effects of the alternating loadings, the global response obtained with 

the adoption of the multidirectional procedure (Fig. 28.a, Fig. 28.b and Fig. 28.d) is 

essentially symmetric. This proves an appropriate consideration of the microcracks 

closure-reopening phenomena. In fact, the same peak loads and the same dissipative 

trends can be obtained in the loading and reloading stages only by means of appropriate 

stiffness recovery capabilities upon loading reversal. These features are absent in the 

response obtained without the multidirectional procedure (Fig. 28.c), in which the full 

conservation of damage from the loading to the reloading stages is evident and is due to 
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the impossibility of distinguishing between two sets of defects with different orientation. 

In addition, as discussed in Section 3.2, the lack of unilateral capabilities have 

consequences even on the evolution of permanent strains, which unrealistically 

accumulate only for positive thrusts. 

 

Figure 28 – RC wall under in-plane cyclic shear: (a) and (b) numerical results obtained with the 

multidirectional procedure for two different mesh refinments; (c) numerical results without the 

multidirectional procedure; (d)  numerical results obtained with the multidirectional procedure 

and with an higher level of permanent deformations. 

The only notable discrepancy between numerical and observed results lies in the pinched 

shape of the hysteresis cycles, which is evident in Fig. 27 and is not appreciable in 

Fig. 28.a, Fig. 28.b and Fig. 28.d. Pinching is associated to the bond slip between concrete 

and rebars (Vecchio, 1999), neglected in the analysis due to the hypothesis of perfect 
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adherence. Removing such an assumption would add significant complexity to the model 

and it is not in line with the objective of the present example of application, which is to 

show the enhanced unilateral capabilities of concrete ensured by the application of the 

multidirectional procedure.  

In order to exhibit how the multidirectional approach allows reproducing the stiffness 

recovery, the contour plots of the active tensile damage at the end of the loading 

(uhA = 1.55 mm) and at the end of the reloading (uhA = −1.35 mm) in the fourth cycle of 

the curve plotted in Fig. 28.b are displayed in Fig. 29.a and Fig. 29.b, respectively. The 

approach is based on the deactivation of some values of damage (the one referred to the 

closed cracks) and on the reactivation of other values (the one referred to the open ones).  

 

Figure 29 – Contour plots of the active tensile damage value d+for the RC wall under in-plane 

cyclic shear: (a) uhA = 1.55 mm and (b) uhA = −1.35 mm. 

Finally, the symmetry found in the active damage contour plots (Fig. 29) between the two 

sets of alternating active cracks reflects in a symmetric distribution of the longitudinal 

strains εxx, between the situation uhA  = 2.35 mm and uhA  = −2.2 mm, as shown in Fig. 30.a 

and Fig. 30.b respectively. These contour plots reproduce satisfactorily the two symmetric 

sets of cracks observed in the laboratory test (Rospars and Chauvel, 2014) and confirm 

the adequacy of the proposed mechanical model in dealing with cyclic shear actions. 

 

Figure 30 – Contour plots of the longitudinal strains εxx for the RC wall under in-plane cyclic 

shear: (a) uhA = 2.35 mm and (b) uhA = −2.2 mm. 
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5.2.3 Numerical robustness of the multidirectional procedure: problem of the masonry 

shear panel  

In Section 3.4, a smooth transition between different damage regions is proposed with the 

aim of alleviating the convergence difficulties expected when cracks close and re-open. 

In the present section, the effects of this procedure on the numerical performance of the 

multidirection damage approach are investigated and quantified with reference to the 

problem of the masonry shear panel studied in 5.2.1. This is carried out by varying the 

value of the parameter θt which identifies the amplitude of the transition region (see 

Eq. (32) and Fig. 7) for each level of permanent deformations considered in the numerical 

analyses (Fig. 24). The variable used to quantify the numerical performance is the number 

of iterations necessary to achieve convergence in a load step.  

The convergence data which are discussed in the following regards the unloading-

reloading stages after the achievement of the maximum load (cycle 2, amplitude 3 mm). 

As previously discussed, this is in fact the situation in which stiffness recovery is more 

emphasised and hence convergence difficulties are expected to be higher. Specifically, 

the load increments around crack-closure, which require the higher number of iterations 

to converge, are thirteen. For these thirteen load steps, the number of necessary iterations 

is indicated in Fig. 31.a, Fig. 31.b and Fig. 31.c, which refer to the case of high permanent 

deformations (b+= 0.17 and b−= 0.45), intermediate permanent deformations (b+= 0.1 and 

b−= 0.3) and null permanent deformations (b+= 0.0 and b−= 0.0), respectively. In each 

graph, different values of θt are taken into account: from θt = π/180 (1°) to θt = π/36 (5°). 

Higher is θt, smoother is the modelling of the crak closure. Moreover, Fig. 31.d shows 

the structural responses obtained with different values of θt , in case of b+= 0.1 and b−= 0.3. 
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Figure 31 – Numerical convergence in correspondence of crack closure for varying θt: (a) high 

permanent deformations, (b) intermediate permanent deformations, (c) zero permanent 

deformations and (d) effects of θt on the structural response. 

Analysing Fig. 31, it is possible to observe that, passing from θt =  π/180 to θt =  π/36, 

there is a non-negligible reduction of the total number of iterations, which is of 22% in 

the case of high εp and 24% in the case of intermediate εp. However, the beneficial effect 

of the smoothing procedure is more significant in the case of zero permanent 

deformations, where the inclusion of a sufficiently wide transition region (θt= π/36) 

allows to obtain convergence in 57 iterations, while, with the adoption of θt= π/180, a 

lack of covergence has been encountered. For this reason the curve associated to θt= π/180 

is not present in Fig. 31.c. This consideration is in agreement with another trend inferable 

from Fig. 31: permanent deformations improve the numerical performance as they 

mitigate the abrupt stiffness changes in correspondence of crack closure. Finally, 

Fig. 31.d shows that the structural response is unaffected by the transition parameter θt, 

confirming that its role is only the one of improving the robusteness of the 

multidirectional damage procedure.  
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6. Conclusions 

A d+/d− damage model based on the spectral decomposition of the reversible strain tensor, 

suitable for the analysis of quasi-brittle structures under monotonic and cyclic loadings, 

is presented.  

The main aspects of the formulation are the following:  

 The damage-induced orthotropy is modeled by means of the energy-equivalence 

assumption between nominal and effective configuration, with the consequent 

derivation of a constitutive operator (Eq. (4)) which is positive definite and 

symmetric. 

 A multidirectional damage approach is adopted to deal with microcrack closure-

reopening effects, especially effective in case of orthogonal, or however intersecting, 

set of cracks, typical of cyclic shear conditions (Section 3.1). The procedure consists 

in activating or deactivating a damage value on the base of the current principal strain 

directions, in order to simulate the opening and the closure of cracks, respectively. To 

improve the numerical robustness and performance, the modelling of these unilateral 

effects incorporates a smoothing procedure in the transition from an unloading 

stiffness to a reloading one. 

 Permanent deformations εp are taken into account in a simplified as well as effective 

way and a modification (Eq. (25)) of the mesh-adjusted softening modulus proposed 

for linear and exponential softening is proposed with the aim of treating the evolution 

of the internal variables d+, d−
 and εp in a coupled way. 

 The implementation of the constitutive model in a displacement-based finite element 

framework is ruled by a full strain-driven formalism. 

The validation of the damage model is successfully carried out at a structural level, 

combining it with the crack band theory to ensure mesh size objective results.  

Unreinforced concrete notched elements subjected to pure tension, pure bending and 

mixed-mode bending are considered to study the performance of the mechanical model 

under monotonic conditions. In addition, the same problems are analyzed with the 

damage model based on strain-equivalence, described in (Faria et al., 1998). No 

significant differences are appreciable in the structural responses obtained with the 

energy-equivalent model here proposed and the strain-equivalent one, being both of them 

able to fit adequately the experimental results. However, the adoption of the constitutive 
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symmetric operator DE (Eq. (4)) is convenient in computational terms because it allows 

solving the algebraic system of equations with the Picard’s method, referring to a 

symmetric secant stiffness matrix.  

In order to validate the damage multidirectional approach, the problems of a masonry and 

a reinforced concrete panel subjected to in-plane cyclic shear are solved. In both the 

examples, the experimental evidence is satisfactorily reproduced in terms of lateral 

resistance, crack mechanisms, irreversible deformations, hysteretic behavior and 

symmetry in the response between loading and reloading. To highlight the enhanced 

stiffness recovery capabilities ensured by the new approach, a comparison between the 

results obtained with the multidirectional approach and with a pure scalar damage 

formulation is discussed. Moreover, by varying the intensity of the permanent strain 

tensor, the effect of this component on the structural response is also investigated, with 

the conclusion that a combined modelling of permanent deformations and unilateral 

effects is necessary in order to describe the real energy dissipation capacity of quasi-

brittle structures under cyclic loading. 

Finally, the adoption of permanent deformations is beneficial not only in terms of 

accuracy of the results but also in terms of numerical performance and robustness: the 

smoothing procedure introduced to alleviate convergence difficulties in presence of 

unilateral effects is more effective when irreversible strains are not considered. 
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Appendix A 

The steps needed to derive the form of the exponential softening modulus 2Hd (25) are 

here shown. An adjusted expression for the softening modulus comes from the necessity 

of considering the evolution of the internal variables d+, d−
 and εp within a unified 

approach, treating in a combined way the two causes of dissipation, i.e. damage and 

irreversible deformations.  

Referring to the expression for γ  provided in Eq. (11), the energy per unit volume gf  

dissipated in a monotonic loading history from an initial unstressed state to a complete 

damaged one can be evaluated through the following integral, as done in (Wu and 

Cervera, 2016): 
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where the split between the specific fracture energy contribution due to damage (gfd) and 

to permanent strains (gfp) is put in evidence. 

In order to express the relation between gf  and the softening modulus Hd, a 1D loading 

history is considered. Since analogous considerations can be found in 1D tension and in 

1D compression, hereafter the superindex   is omitted. In a 1D stress-strain state, 

considering Eqs. (16), after the attainment of r0 (Eq. (21)) the damage threshold r 

(Eq.  (20)) can be expressed in terms of the reversible axial strain εe according to the 

relation: 

er E  

     

 (A.2) 

Since the damage energy release rates for the model here presented (Cervera and Tesei, 

2017) coincide in the 1D case with the ones deriving from the model described in 

(Cervera, 2003), the first integral in Eq. (A.1) can be computed, considering the damage 

evolution laws (22), as follows: 
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where    3 2 3
2
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.  

For what concerns the computation of the dissipated energy due to irreversible 

deformations gfp, the following relation holding in a 1D stress-strain state has to be 

considered: 
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Therefore, taking into account Eqs. (A.4), (A.5) and the damage evolution laws (22), the 

second integral in Eq. (A.1) results: 
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Hence, collecting the expressions provided in Eqs. (A.3) and (A.6), the specific fracture 

energy (A.1) in a monotonic 1D loading history is the following: 
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This quantity is equal, according to the crack band theory formulated in (Bažant and Oh, 

1983), to the ratio between the fracture energy per unit surface Gf  and the mesh length 

ldis. Therefore, since Gf is a material property, the dissipation has to be maintained 

constant and this can be achieved by establishing a coupling between the dissipation 

related to damage gfd and to permanent strains gfp. According to this concept and 

specifically equating the fracture energy in the form (A.7) to the ratio Gf  / ldis, the 

expression for the softening modulus in Eq. (25) is derived. Note that for the limit case 

of fe = f = fp , the softening modulus in Eq. (25) reduces to: 
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where H is the material property defined as:
 

 2 2 fH f E G  . From Eq. (A.8), it is clear 

that higher is the parameter b, higher is the value of Hd. In addition, for b = 0, the softening 

modulus in (A.8) brings to a well-established result for linear and exponential softening 

(Cervera et al., 1996; Cervera, 2003).  
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On the contrary, computing the softening modulus as suggested in Eq. (26) means to 

neglect the dissipative contribution related to the permanent strains and to match only gfd 

(Eq. (A.3)) to the ratio Gf  / ldis. 

Four figures, Fig. A.1.a, Fig. A.1.b, Fig. A.2.a and Fig. A.2.b, show the differences 

between the unified dissipative approach here proposed (softening modulus (25)) and the 

uncoupled one (softening modulus (26)).  

 
Figure A.1 – 1D tensile behavior: (a) unified dissipative approach for the computation of the 

internal variables (adoption of softening modulus (25)) and (b) uncoupled dissipative approach 

(adoption of softening modulus (26)). 

 
Figure A.2 – 1D compressive behavior: (a) unified dissipative approach for the computation of 

the internal variables (adoption of softening modulus (25)) and (b) uncoupled dissipative 

approach (adoption of softening modulus (26)). 

In each figure, the 1D stress-strain curve in case of b = 0 (null irreversible deformations) 

and 0 < b < 1 (non-null permanent deformations) are plotted. In Fig. A.1.a and Fig. A.1.b, 

the case of 1D tension in analysed while in Fig. A.2.a and Fig. A.2.b the case of 1D 

compression. 

As evident from Fig. A.1.a and Fig. A.2.a, the energy released with or without permanent 

deformations is exactly the same resorting to the softening modulus (25), whereas a 
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relevant over-dissipation can be noticed with the adoption of the softening modulus (26) 

(Fig. A.1.b and Fig. A.2.b), passing from the case of b = 0 to the case of 0 < b < 1.  
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