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Abstract. In this paper, we firstly introduce a nodal-integration-based finite element method. The
method allows the use of first-order tetrahedral elements without suffering from the volumetric lock-
ing problem. The most important advantage of tetrahedral meshes is that they can be automatically
generated for complex geometries using existing reliable meshing tools. The method is then applied to
3 types of applications. The first application is a large displacement, large strains elastic-plastic simu-
lation on a notched specimen. The second application is an elastic-plastic bending problem. And the
last example concerns the numerical simulation of the thermo-mechanical problem. In all the cases, the
solution given by the nodal-integration-based FEM is compared to more classical FEM results.

1 INTRODUCTION

Finite element simulations of the behavior of structures made up of materials obeying the von Mises
plasticity criterion (the most commonly used criterion especially for metal materials) face particular
difficulties. These difficulties come from the plastic incompressibility condition imposed by the behavior
of the material. This condition of (nearly-)incompressibility which should be resolved at each integration
point can lead to a volumetric locking phenomenon.

Finite element formulations have thus been proposed to alleviate these difficulties. These formulations
are generally based either on reduced numerical integration schemes, or on mixed formulations of the
problem [1, 2]. In practice, formulations based on reduced integration schemes are easily applicable
only with hexahedral elements. The absence of automatic meshing tools with this type of finite element
then leads engineers to tedious operations which are costly in human time. The existence of automatic
tetrahedral meshing tools gives this type of finite element an indisputable economic advantage. New
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first order tetrahedral finite elements have thus been developed in recent years on the basis of mixed
displacement-pressure formulations of the problem [3, 4, 5]. However, the presence of different degrees
of freedom (displacement and pressure) or even that of internal degrees of freedom for certain elements,
such as the element P1+P1 [6, 7], can then lead to significant additional computation costs.

In the literature, choosing the nodes as integration points can be found both in meshless methods and in
the finite element method. In meshless methods especially, the Stabilized Conforming Nodal Integration
(SCNI) technique proposed by Chen et al. [8, 9, 10] performs very well in several benchmark problems.
The principle of SCNI technique is to consider nodal deformations calculated on average over a volume
surrounding the node. The volume integral is then transformed into a surface integral thanks to the
divergence theorem (Figure 1). These volumes can be obtained for example from a tesselation of Voronoi
cell. Puso et al. [11] has proposed a schema of improvement for solving low energy mode that appears
in the nodal integration technique.

Figure 1: Cell integration for SCNI [16].

As far as the finite element method is concerned, Bonet et al. [12] has proposed an average nodal
pressure tetrahedral element for explicit dynamic applications. The element avoids volumetric locking
problems by computing average nodal pressures from surrounding elements. Dohrmann et al. [13] et al.
presented a new tetrahedral element for small strain elasticity with an averaging procedure now applied
on all the strain components. The formulation prevents the volumetric locking by producing a favorable
constraint ratio for the volumetric response. Bonnet et al. [14] has extended this node-based formulation
to explicit dynamics applications. Krysl et al. [15] presents assumed-strain finite elements based on
nodal integration. They show that the three-node triangle, four-node tetrahedron, and eight-node and
27-node hexahedra give good performance in both compressible and almost incompressible regime. The
combined use of the Finite Element Method with the SCNI technique has been developed in 2D on the
basis of triangular meshes by Qual et al.[16] and Canales et al. [17]. Ce method has been extended for
3D thermo-mechanical applications by Jia et al. [18]. In this paper, we present several benchmark tests
by comparing the results obtained with the nodal-integration-based finite element method as proposed
by Jia et al. [18] with those coming from more classical finite element solutions. All the simulations are
performed using SY SWELDT M software.
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2 Notched tensile specimen

The objective of the first test is to compare the nodal-integration-based solution to classical FEM solu-
tions on a 3D large strain elastoplastic problem. For symmetry reasons, only half of the specimen on an
angular area is considered. Symmetry boundary conditions are applied to the faces of the model. The nu-
merical model is presented in figure 2. Four numerical simulations based on the following formulations
have been performed and compared:

1. P1 element: linear variation of the displacements inside the element,

2. P1P1 element: linear variation of the displacements and pressure inside the element

3. P1+P1 element: linear variation of the displacements and pressure inside the element plus 3 addi-
tional internal degrees of freedom associated with a bubble shape function.

Figure 2: Mesh of the notched tensile specimen (unit: mm).

Large displacements, large strains are taken into account with an updated lagrangian formulation. The
steel behavior is supposed to be elastoplastic with an isotropic hardening. The Young’s modulus E =
200,000 MPa, the Poisson ratio v = 0.3 and the yield stress is a function of the cumulated equivalent
plastic strain σy
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Figure 3 provides comparisons of force-axial displacement curves and CPU times. P1 element is known
to be too stiff and to present volumetric locking problems. As expected it gives a result far from those
from the other formulations. The nodal-integration-based FEM leads to a force-axial displacement curve
very close to those obtained using P1P1 and P1+P1 elements, without any volumetric locking problem
while requiring less CPU time.

Figure 4 shows the axial displacement and axial stress distributions obtained with P1+P1 element and
the nodal-integration-based FEM. The displacement and stress distributions are very close.
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Figure 3: Force-axial displacement curves and CPU times.

Figure 4: Stresses given by nodal-integration-based FEM and P1+P1 element.

3 Large deformation elastoplastic bending

As we know, the tetrahedral P1 element exhibits poor performances in bending dominated problems.
Therefore the present section is dedicated to the investigation of bending performances of different ap-
proaches. We consider a beam on simple support at its ends and loaded in the middle. For symmetry
reasons, only a quarter of the beam is considered. Figure 5 shows the model including loading and
boundary conditions and the meshes considered. Mesh (a) is prepared for Q2 hexahedral elements. It
is well known that Q2 elements give very accurate results for bending problems [1, 2]; the Q2 element
solution will be therefore considered as a reference solution. Mesh (b) is prepared for Q1P0 hexahe-
dral elements based on a mixed displacement (Q1)-pressure (P0) formulation. Mesh (c) is prepared for
linear tetrahedral elements (P1P1 element, nodal-integration-based FEM). The dimensions of the model
are 1 ∗ 2 ∗ 12 mm. An elastoplastic behavior law is considered with isotropic hardening and a constant
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Figure 5: Numerical model and boundary conditions for bending simulations; meshes—(a) hexahedral mesh:
1,721 nodes/ 280 Q2 elements; (b) hexahedral mesh: 3,075 nods/ 2,240 Q1 elements; (c) tetrahedral mesh: 3075
nodes/ 13,440 tetrahedral elements.

hardening slope. The material properties are given in Table I.

Table I: Material properties.
Yuong’s Modulus Poisson ratio Yield stress Hardening slope
E = 195,122MPa v = 0.30 σY = 170MPa H = 5,000MPa

Figure 6 shows the contours of von Mises’ stress and Uz vertical displacement. The von Mises’ stress dis-
tributions obtained with the different formulations are rather similar. The nodal-integration-based FEM
gives a vertical displacement distribution very close to the ones obtained using Q2 and Q1P0 elements
while the P1P1 element exhibits a too stiff bending behavior. This comes from the fact that because in-
tegration points are the nodes of the mesh, the nodal-integration-based FEM leads to an underintegration
of the problem.

Table II provides a comparison of the maximum vertical displacement and of the CPU times obtained
with the different approaches. Compared with the reference solution (Q2 element), the nodal-integration-
based FEM exhibits a behavior a little too flexible. But, despite the increase of the matrix bandwidth it
leads [18], the nodal-integration-based FEM gives a CPU time significantly less than the ones obtained
with Q1P0 and P1P1 elements for a problem gathering the same number of nodes. This is related to
the elastoplastic resolutions that are performed at the elements integration points with the Q1P0 and
P1P1 meshes and at the nodes (which are much less numerous than the integrations points) with the
nodal-integration-based FEM.
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Table II : Maximum displacement in Z direction.
element type integration point Uz ∆z ∆z

|Uz| CPU
Q2 element 5600 -3.95 reference reference 187

Q1P0 element 17920 -3.88 -0.07 -0.0177 578
P1P1 element 13440 -3.38 -0.57 -0.144 860

nodal-integration-based FEM 3075 -4.11 0.16 0.04 256

Figure 6: von Mises stress and vertical displacement distributions on the deformed shape

4 Thermo-mechanical simulation

In this section, we will present the application of thermo-mechanical simulation. The dimensions of
problems and meshes are shown in figure 7. This problem is solved by performing a 2D axisymmetry
simulation. A gaussian heat source is applied and its energy distribution is described by equation (1).
The heat source parameters are a = 8, b = 2, and Q0 which is given in Table II. The center of the heat
source is defined at ( X0 = 0, Y0 = 5). 316L material properties taken from SY SWELDT M database [19]
is used in this simulation. The convective and radiative losses are taken into account.

Q(X ,Y ) = Q0(t)∗SQRT (1− (X−X0)
2

a2 − (Y −Y0)
2

b2 ) (1)
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Table II: Q0 in function of time.
time (second) 0 1.5 3 100

Q0 0 20 0 0

Figure 7: Problem studied and meshes— (a) triangle mesh: 942 nodes / 1849 2D elements; (b) quadrilateral mesh:
1281 nodes / 1200 2D elements.

Figure 8 shows the residual stresses given by the nodal-integration-based FEM and classical FEM and
the contours of residual stresses show no difference.

Figure 8: Residual stresses simulated by (a): nodal-integration-based FEM and (b): Q1 FEM.

5 CONCLUSIONS

Three applications of the nodal-integration-based finite element method have been presented. These
applications are representative of different classical problems: large strain elastoplasticity, bending dom-
inated problem, thermo-mechanical application. All the simulation are carried out with the same PC.

According to the comparisons, the nodal-integration-based FEM gives accurate results. The main ad-
vantage of the method lies on the use of tetrahedral meshes. There is no longer any volumetric locking
problem. Meshing of complex structures is so greatly facilitated by the use of existing reliable meshing
tools. The other benefits of nodal-integration-based FEM come from the fact that all the mechanical
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quantities (displacements, strains, stresses, internal variables) are now defined at nodes. So the results
files are much smaller than those coming from the classical FEM. In addition, post-processing is easier as
it does not need an averaging procedure to extrapolate stresses and internal variables from Gauss points
to the nodes. An easier transfer of mechanical quantities between two meshes is also expected. The main
drawback of the method comes from a somewhat larger bandwidth of the tangent matrix. This drawback
is compensated by the fact that the material constitutive equations are now solved at nodes that are much
less numerous than Gauss points.
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