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Abstract. Structures for sound attenuation have been explored in many scenarios, ranging from civil
construction to automotive and aerospace industries. However, the proper multiphysics interactions
of acoustic-poroelastic-elastic structures are still challenging, especially when topology optimization
techniques are involved. This work entails a new topology optimization methodology based on the Bi-
directional Evolutionary Structural Optimization (BESO) approach to design bidimensional structures
for sound attenuation enhancements. The full modeling of poroelastic bodies is done by the mixed u/p
technique. At the same time, the elastic and acoustic (air) materials are obtained by the degeneration
of the latter, leading to the well-known elasto-dynamic and Helmholtz formulations, respectively. Such
procedure is done in by the combination of the Finite Element Method (FEM) with the Unified Multi-
phase (UMP) modeling approach, which in turn contributes to the development of material interpolation
schemes suited for the application. In this scenario, the topology optimization problem is established
as the maximization of the time-averaged dissipative power, composed by the summation of its struc-
tural, viscous and thermal dissipative components. The numerical examples show the effectiveness of
the proposed methodology since it provides well-defined topologies with generally enhanced dissipative
performances.

1 INTRODUCTION

This paper presents a methodology to maximize the time-averaged dissipated power. It is considered a
multiphysics system composed of acoustic, elastic and poroelastic elements. The Bi-directional Evolu-
tionary Structural Optimization (BESO) method is chosen as the optimizer, since it provides clearly de-
fined boundaries throughout the entire optimization process. The first ones to use a similar optimization
methodology were Xie and Steven [1], with the proposition of the Evolutionary Structural Optimization
(ESO) method. In this case, the aim was to gradually remove inefficient material from the structure,
while enhancing some physical properties of the system. In 1999, Yang et al. [2] modified the ESO
technique by allowing not only material removal, but also addition to the design domain. After a series
of modifications that included sensitivity filters [3] and material interpolation schemes [4], Huang and
Xie [5] proposed the new BESO approach, being extensively used ever since.

As this work also deals with acoustic, elastic and poroelastic materials, careful attention has to be paid
to the boundary tracking problem in a context of topology optimizations. For example, when acoustic
elements change to elastic or poroelastic, the coupling between the boundaries has to be properly im-
posed. However, such procedure is not straightforward, in a way that a few solutions have been proposed
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to overcome this issue. Yamamoto et al. [6] considered three distinct poroelastic materials inside the
design domain, modifying specific variables in order to fully simulate acoustic, elastic and poroelastic
structures within the same region. The success of this approach was due to the fact that the materials
were all derived from Biot’s equation, therefore being naturally coupled with each other. In the same
year, the Unified Multiphase (UMP) technique was proposed by Lee [7, 8], which used these same Biot’s
equations, in the u/p form, as a foundation to describe the aforementioned medias. The main difference
between both approaches concerns the amount of different porous materials needed in the methodology.
While Yamamoto’s [6] approach used three different poroelastic medias, Lee’s [7, 8] considered only
one.

Finally, this work also proposes a new material interpolation scheme for systematic material changes
along the iterative procedure. According to Pereira et al. [9], the interpolations are generally polynomial
functions of the design variables, first used in density-based approaches [4]. Besides, penalty variables
are often used as degrees of freedom of the polynomial function. Although the BESO method does
not need material interpolations, it has been shown that such a procedure contributes to the avoidance
of singularities, as well as to the reduction of computational costs involved in multiphysics problems
[10, 11].

2 FINITE ELEMENT FORMULATION FOR POROELASTIC MEDIA: THE MIXED U/P

As of 1956, Biot [12, 13] proposed expressions that were able to microscopically describe the behavior
of the wave in poroelastic media, being mainly based on the displacements of the elastic (ü) and fluid
components (Ü), that is,

∇ ·σσσs = ρ11ü+ρ12Ü+ b̃(u̇− U̇), (1)

∇ ·σσσ f = ρ22Ü+ρ12ü− b̃(u̇− U̇), (2)

where σσσs and σσσ f are the stress tensor of the solid and fluid phases, respectively. The homogenized
densities related to the solid and fluid phases are ρ11 and ρ22, while ρ12 relates to the interaction between
the inertial forces of both phases. Finally, the viscous damping coefficient that accounts for the viscous
iteration forces is b̃, while the gradient operator is ∇.

In a mathematical perspective, the aforementioned homogenized densities and damping coefficient can
also be defined as [14],

ρ12 =−φρ f (α∞−1), ρ11 = (1−φ)ρs−ρ12, ρ22 = φρ f −ρ12, b̃ = φ
2
σG̃(ω), (3)

with φ being the porosity, α∞ the tortuosity, σ the static flow resistivity, ρ f the fluid phase density and ρs

the solid phase density. Following Johnson’s model [15], G̃(ω) is written [16] as,

G̃(ω) =

[
1+
(

2α∞η

φΛσ

)2 jωρ f

η

]1/2

. (4)

Here, η is the fluid kinematic viscosity, Λ is the viscous characteristic length, ω is the angular frequency
and j2 =−1 is the imaginary number.

Assuming that the porous material properties are homogeneous and subject to harmonic oscillations,
a more suitable way to describe the wave behavior in poroelastic materials was proposed by Atalla et al.
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[14, 17], by turning Eqs. (1) and (2) into a mixed displacement-pressure (u/p) formulation,

∇ · σ̂σσs +ω
2
ρ̃u+ γ̃∇p = 0, (5)

∇
2 p+ω

2 ˜ρ22

R̃
p−ω

2 ˜ρ22

φ2 γ̃∇ ·u = 0, (6)

where the combined effective density ρ̃ and the coupling coefficient γ̃ are written as,

ρ̃ = ρ̃11−
ρ̃2

12
ρ̃22

, γ̃ = φ

(
ρ̃12

ρ̃22
− Q̃

R̃

)
, (7)

with the effective densities that account for the inertia effects in the solid (ρ̃11), fluid (ρ̃22) and in the
viscous coupling that happens between the two (ρ̃12) being,

ρ̃11 = ρ11 +
b̃
jω

, ρ̃22 = ρ22 +
b̃
jω

, ρ̃12 = ρ12−
b̃
jω

. (8)

The stress tensor of the porous material in vacuo σ̂σσ
s also has a mathematical expression associated with

it,

σ̂σσ
s =

(
Ã− Q̃2

R̃

)
∇ ·uI+2Nεεε

s = Â∇ ·uI+2Nεεε
s, (9)

where I is the identity tensor, Ã is the first Lamé constant of the poroelastic material, N is the elastic shear
modulus, Q̃ is the coupling coefficient between the dilatation of both component phases, R̃ is the bulk
modulus of air occupying a fraction of volume aggregate and Â is the first Lamé constant of the elastic
phase [14, 18]. At last, since the majority of poroelastic media has high porosity in the applications here
considered, the variables N, Ã, Q̃ and R̃ can be written in a simplified manner,

N =
E(1+ jηe)

2(1+ν)
, Ã =

νE(1+ jηe)

(1+ν)(1−2ν)
(10)

Q̃ = (1−φ)K̃ f , R̃ = φK̃ f (11)

where E, ηe and ν are the Young’s modulus, the loss factor and the Poisson’s ratio of the elastic material,
respectively. K̃ f is the bulk modulus of the air in the poroelastic material pores.

The weak form of Eqs. (5) and (6) is then obtained by the combination of the Weighted Residuals
Method and the divergence theorem, followed by the consideration of material isotropy, that is [8, 19],∫

Ωp

{
σ̂σσ

s(u) : εεε
s(δu)−ω

2
ρ̃u ·δu− (γ̃+ ξ̃)∇p ·δu− ξ̃p∇ ·δu

}
dΩp−

∫
Γp

(σσσt ·n) ·δu dΓp = 0, (12)∫
Ωp

{
φ2

ω2ρ̃22
∇p ·∇δp− φ2

R̃
pδp− (γ̃+ ξ̃)∇δp ·u− ξ̃δp∇ ·u

}
dΩp−

∫
Γp

φ(U−u) ·nδp dΓp = 0, (13)

where δu and δp are test functions related to the solid phase displacement and the interstitial pressure,
respectively, while Ωp represents the poroelastic domain with Γp as its boundary. The newly introduced
variable ξ̃ = φ(1+ Q̃/R̃) may be also viewed as a coupling coefficient, and n is the outward unit normal
vector.
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The Finite Element Method (FEM) [20] is then considered in the discretization of the aforementioned
continuous problem, being also followed by Galerkin’s approach. The result is a linear system of equa-
tions [16], as can be seen next,[

K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

]{
u

p

}
=

{
fs

fp/ω2,

}
, (14)

where K, M̃, H̃, Q̃, C̃1, C̃2 denote the global stiffness, mass, kinetic, compression and coupling matrices,
respectively. The global displacement and acoustic pressure vectors, as well as the global structural and
acoustic loads are respectively defined as u, p, fs, fp.

3 UNIFIED MULTIPHASE MODELING: ACOUSTIC, ELASTIC AND POROELASTIC RE-
LATIONS

In this technique, six variables are controlled, namely, ξ̃, ρ̃, N, Â, φ2/ρ̃22 and φ2/R̃. For the acoustic
case, these variables take the following values: 1, 0, 0, 0, 1/ρa and 1/κa, where κa is the bulk modulus
of the air (identified by the subscript a). For the elastic case, one gets the sequence: 0, ρe, Ne, Ãe, 0 and
0, with the subscript e being related to the elastic material. In order to solve numerical issues that may
appear with the above relations, small valued coefficients are assigned to each of the properties that have
to be zero so that the final sequences get the following results,

{ξ̃, ρ̃,N, Â,(φ2/ρ̃22),(φ
2/R̃)}p = {ξ̃, ρ̃,N, Â,φ2/ρ̃22,φ

2/R̃}, (15)

{ξ̃, ρ̃,N, Â,(φ2/ρ̃22),(φ
2/R̃)}a = {1,εaρ̃,εaN,εaÂ,1/ρa,1/κa}, (16)

{ξ̃, ρ̃,N, Â,(φ2/ρ̃22),(φ
2/R̃)}e = {εeξ̃,ρe,Ne, Ãe,εe(φ

2/ρ̃22),εe(φ
2/R̃)}, (17)

where the subscript p refers to the poroelastic material. Here, εa = 1× 10−4 and εe = 1× 10−9 were
chosen.

The multiphase material interpolation scheme is then written,

ξ̃ = ξ̃e + xζ2
2 (ξ̃p− ξ̃e)+ xζ1

1 (ξ̃a− ξ̃p), (18)

ρ̃ = ρ̃e + xζ2
2 (ρ̃p− ρ̃e)+ xζ1

1 (ρ̃a− ρ̃p), (19)

N = Ne + xζ2
2 (Np−Ne)+ xζ1

1 (Na−Np), (20)

Â = Âe + xζ2
2 (Âp− Âe)+ xζ1

1 (Âa− Âp), (21)

φ
2/ρ̃22 = (φ2/ρ̃22)e + xζ2

2 [(φ2/ρ̃22)p− (φ2/ρ̃22)e]+ xζ1
1 [(φ2/ρ̃22)a− (φ2/ρ̃22)p], (22)

φ
2/R̃ = (φ2/R̃)e + xζ2

2 [(φ2/R̃)p− (φ2/R̃)e]+ xζ1
1 [(φ2/R̃)a− (φ2/R̃)p], (23)

where x1,2 represents the design variables and the superscripts ζ1,2 are the penalty coefficients. After a
series of tests, the following values were chosen for the design variables,

{x1, x2}= {1, 1}, for acoustic elements, (24)

{x1, x2}= {xmin, 1}, for poroelastic elements, (25)

{x1, x2}= {xmin, xmin}, for elastic elements, (26)
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and for the penalty variables, {ζ1, ζ2}= {2, 2}. In order to avoid numerical singularities, xmin = 0.001 is
adopted, being the lower limit that the design variable can get. Table 1 shows the poroelastic and elastic
material properties adopted in this work, while the acoustic characteristics used have been the same as
the ones brought by Pereira et al. [9].

Table 1: Poroelastic and elastic material properties [6]

Parameters Polyurethane foam Olefin sheet
Porosity φ 0.97 –
Tortuosity α∞ 2.5 –
Static flow resistivity σ (N s m−4) 7×104 –
Viscous characteristic length Λ (µm) 36×10−6 –
Thermal characteristic length Λ′ (µm) 170×10−6 –
Solid mass density ρ (kg m−3) 1433 1790
Young’s modulus E (Pa) 2.67×105 1.75×108

Poisson ratio ν 0.4 0.4
Loss factor η 0.11 0.205

4 DESCRIPTION OF THE TOPOLOGY OPTIMIZATION PROBLEM

The topology optimization problem investigated in this work aims to maximize the time-averaged
dissipated power (Πdiss) composed of its structural, viscous and thermal components. Throughout the
numerical procedure, a frequency band of [ωi, ω f ] is also considered, together with the multimaterial
and multiphysics constraints, therefore,

Maximize: Φ =
1

ω f −ωi

∫
ω f

ωi

10 log
Πdiss

Πref
dΩp, (in dB units) (27)

Subjected to:



 K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

{u
p

}
=

{
fs

fp/ω2,

}
,

V ∗1 −
(

∑
Nel
i=1Vixi

)
1

V ∗2 −
(

∑
Nel
i=1Vixi

)
2

=

0

0

 ,

x =




x1
...

xNel


1

,


x1
...

xNel


2

 .
(28)

In Eq. (28), the prescribed final volume fraction is V ∗, with the design domain volume fraction being
∑

Nel
i=1Vixi. Nel is the number of elements of the entire porous domain and x is the design variable matrix.

The subscript numbers 1 and 2 represent the changes along the optimization process, in other words,
the number 1 refers to variations from acoustic to poroelastic elements, while the number 2 regards the
changes from poroelastic to elastic.
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Generally, the Πdiss formula can be obtained as,

Πdiss =
ω

2

{
u
p

}H

Im

([
K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

]){
u
p

}
, (29)

where the superscript H represents the transpose conjugate of the solution vector, Im() is the imaginary
part and Πref is the reference acoustic power (Πref = 1×10−12 watts).

4.1 Sensitivity analysis

As the current work adopts the BESO method as the optimizer, the sensitivity analysis needs to be car-
ried out to identify each elemental contribution to the maximization of the objective function of choice.
The derivation of Eq. (27) follows,

αi =
dΦ

dxi
=

1
ω f −ωi

(∫
ω f

ωi

10
ln10

dΠdiss/dxi

Πdiss
dΩp

)
, (30)

with,

dΠdiss

dxi
=

∂Πdiss

∂xi
+2Re

λλλ
T




∂K
∂xi
−ω2 ∂M̃

∂xi
−
(

∂C̃1

∂xi
+

∂C̃2

∂xi

)
−
(

∂C̃1

∂xi
+

∂C̃2

∂xi

)T 1
ω2

∂H̃
∂xi
− ∂Q̃

∂xi


{

u
p

}
−


∂fs

∂xi

1
ω2

∂fp

∂xi



 (31)

and, [
K−ω2M̃ −(C̃1 + C̃2)

−(C̃1 + C̃2)
T H̃/ω2− Q̃

]
λλλ =−1

2

 ∂Πdiss

∂

(
Re
{

u
p

}) − j
∂Πdiss

∂

(
Im
{

u
p

})


T

, (32)

where Re() represents the real part.

5 NUMERICAL EXAMPLES

This section presents numerical examples regarding the optimization of the system illustrated in Fig. 1.
Here, the design, Ωd , and the non-design, Ωnd , domains are represented by the grey region at the center
of the system, and by the white and black areas located at the sides, respectively. Initially, poroelastic
structures fill the entire Ωd , while acoustic and elastic elements are set in the major white areas and
on the thin walls surrounding the design domain. At the upper and lower sides, symmetric boundary
conditions are imposed (only the degrees of freedom in the y direction are blocked); a plane wave enters
the composition at the left boundary, while at the right, an anechoic termination is set.

In the represented scenario, first order quadrilateral elements of size 1x1,25 mm2 are considered,
meaning that 22x40 elements are placed at both sides of Ωnd and 80x40 in Ωd . The BESO parameters
are then set to be ER = ARmax = 1% and rmin = 2 cm. Besides, V ∗2 = 0.05 is fixed, defining the amount
of elastic material that enters the design domain along the optimization procedure. Meanwhile, V ∗1 is
variable, that is, in some cases V ∗1 = 0.5 and in others V ∗1 = 0.6. Besides, two distinct low-to-mid
multifrequency bands are also treated in this work, namely B1 = [150, 200] Hz and B2 = [200, 250].
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Figure 1: Schematic representation of the considered geometry

Fig. 2 shows the optimized results obtained from the maximization of the time-averaged dissipated
powers when considering multiple frequency bands and distinct porous volume fractions. In Fig. 2 (a)
and (c), the topologies are strongly related to one another, with the one of item (c) being the most effective
in enhancing the objective function (see Fig. 2 (e)). This same aspect is not observed in Fig. 2 (b) and (d),
where B2 is considered. In this case, the topologies are entirely different, with the case of 50% of porous
material being similar, from a purely dissipative point of view, to its counterpart. This unsuspected result
illustrates how efficient the proposed topology optimization methodology can be, as effective topologies
may be generated with less material than expected. Finally, it is noted that even though some topologies
may present disconnected porous materials, such characteristic does not affect, in a considerable manner,
the dissipative effects of the main resulted topologies.
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Figure 2: Optimized topologies when considering (a) 50% and (c) 60% of porous material in band 1, together with
(b) 50% and (d) 60% in band 2. (e) The initial and final time averaged-dissipated powers are also shown
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6 CONCLUSIONS

This work proposed a multifrequency topology optimization methodology to maximize time-averaged
dissipated powers of an acoustic-poroelastic-elastic structure. For this, the Bi-directional Evolutionary
Structural Optimization approach was considered as the optimizer, in order to provide clearly defined
designs throughout the iterative procedure. The unified multiphase technique was then combined with
the finite element method to fully describe elastic and acoustic systems, starting from Biot’s poroelas-
ticity equations. This combination proved to be an efficient solution to the boundary tracking problem,
common to fluid-structure systems.

Furthermore, a newly introduced material interpolation scheme was also proposed, systematically
combining acoustic-poroelastic-elastic properties. With this, the numerical examples showed to be highly
effective in maximizing the objective function while generating topologies with low material disconnec-
tions.
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