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(e development of high-speed railways (HSR) in China has attracted a large number of passengers from highway and aviation to
railways due to their comfort and high speed. In this case, HSR passenger transportation can improve the operating income by
optimizing the ticket allocation. Here, we propose an optimization method of multiclass price railway passenger transport
ticket allocation under high passenger demand. First, for the “censored data” problem in the railway passenger demand forecast,
we constructed an unconstrained model of railway passenger demand and solved the unconstrained demand through an ex-
pectation-maximization algorithm. (en, on this basis, we use gray neural networks (GNNs) to predict the passenger demand of
different origins and destinations (ODs), and according to the prediction results, we propose two ticket allocation methods based
on operation and capacity control: accurate predivided model and fuzzy predivided model. And we solve this problem by
constructing a particle swarm optimization algorithm. Lastly, we use examples to prove that the proposed ticket allocationmethod
can meet the passengers’ needs and have good economic benefits.

1. Introduction

China’s high-speed railway (HSR) is developing rapidly. By
the end of 2016, Chinese railway operating miles are about
23000 km, indicating that China HSR network has been
initially completed (Figure 1). Figure 2 shows China’s HSR
annual growth in mileages.

China HSR has high fixed construction costs and low
passenger revenue. (erefore, except for the Beijing-Tianjin
intercity, most HSR lines are still at a loss. High-speed rail
transportation has the advantages of high speed, punctuality,
low environmental impact, low pollution, large trans-
portation volume, and high safety performance. However,
the rapid development of highways and air transportation
has also transferred part of the HSR passenger demand.

(erefore, HSR companies need to use management
methods to optimize the allocation of existing trans-
portation resources, attract more passengers, and increase

revenue without increasing costs. At the same time, due to
the continuous growth of China’s per capita income,
passenger demand has changed from single to diversified.
(e existing historical data cannot fully reflect the actual
demand of passengers, thus forming an unlimited demand
forecast.

Cross proposed that revenue management is a method to
maximize economic benefits by subdividing the market and
dynamically forecasting demand [1]. Unconstrained de-
mand is a process of estimating the distribution parameters
of “initial demand” of historical passengers before “spill-
over” and “reproduction” [2]. When revenue management is
applied in the HSR passenger transport market, we can
analyze the market demand, identify the different passenger
transport market demand, and formulate a reasonable fare
grade through the passenger transport market segmentation.
At the same time, the unrestrained demand forecast can
infer the unrestrained demand data according to the
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censored data, find out the passengers who cannot order the
ideal ticket because of the reservation restriction, and ef-
fectively improve the passenger revenue of the railway de-
partment and improve the service quality through more
accurate demand analysis. (erefore, the introduction of
revenue management and unstrained demand forecasting
into China’s HSR passenger transport market can achieve
the rational allocation of existing high-speed rail transport
resources and capacity.

(e first part of the paper puts forward the necessity of
introducing revenue management and analyzes the feasi-
bility of introducing revenue management in HSR passenger
transport from the adaptive perspective and social envi-
ronment. (e second part reviews the literature on un-
constrained demand and railway revenue management. (e
third part establishes the corresponding model according to
the demand prediction and capacity control methods of
revenue management. (e fourth part, with the Wuhan-
Guangzhou HSR, proves our method can bring economic

benefits to the railway agency. Finally, the conclusions and
shortcomings of this paper are put forward.

2. Literature Review

Due to its complexity, demand forecasting occupies most of
the resources of the revenue management system [3], but the
theoretical research on it has not received the same attention
[3–6]. Demand data censoring is the most complex problem,
and ignoring the effect of demand censoring will reduce the
accuracy of forecasting [7, 8]. (e early unconstrained es-
timation method is mainly a single-compartment method.
Swan [9] proposed the spill model, which laid the foundation
for the unconstrained demand estimation model. Richard
[10] used the EMmethod to deal with “censored” data in the
field of aviation revenue management. (e multicabin ap-
proach can effectively avoid “vertical recapture” of different
price classes for the same flight, so it is closer to the actual
situation. At the same time, in the practice of revenue
management, the multidistribution assumption of uncon-
strained demand is more in line with the demand charac-
teristics in different situations. In addition to the normal
distribution and the gamma distribution [11], scholars also
proposed the lognormal distribution and the gamma dis-
tribution [12], and the multidistribution hypothesis [13].

Since 1999, researchers have shown through analysis that
applying revenue management to the railway industry is
feasible and of great value [14, 15]. Zhou [16] et al. analyzed
the feasibility of the application of revenue management in
China’s high-speed rail. (e authors in [17–19] studied the
feasibility of applying revenue management to Chinese
railways from different perspectives. Yao et al. [20] proved
that the use of floating fare strategy can improve the profit of
HSR, Wang et al. [21] solved the problem of capacity al-
location under the new transport requirements of the
multimodal transport system by simulating the seat reser-
vation system, and Valtteri [22] analyzed four differences
between air transportation and railway transportation. In
2004, Deutsche Bahn also launched a new plan, PEP [23],
which aims to benefit the long-distance passenger transport
of Deutsche Bahn. Cinzia [24] proposed an online ticketing
model to make ticket refunds and ticket changes common,
so it is necessary to use revenue management to predivide
the market. Abe [25] introduced and discussed the appli-
cation of revenuemanagement theory in Japan and Portugal.
(ere are also some studies to analyze the revenue man-
agement model of railway passenger transportation and
study the timing of passengers purchasing air tickets [26, 27].

(e research on railway revenue management methods
mainly focuses on three aspects: demand forecasting, differ-
ential pricing, and capacity control. In terms of predicting
railway passenger flow, there are mainly GA
wavelet algorithms [28], logit models [29], and the traditional
four-stage method [30]. In terms of differential pricing, there
are mainly single fare models and multirange multilevel dy-
namic fare models [31, 32], pricing strategies based on dif-
ferent populations [33], and dynamic pricing strategies [34].
And Hetrakul and Cirillo [27] use the discrete selection
method (DAC) to optimize themodel tomake the relationship

China high-speed railway map

0
0

500km
500meters

Figure 1: HSR network in China.
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Figure 2: China HSR growth and accumulative mileage.
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between seat and price more clear. Xiao et al. [35] proposed an
allocation model suitable for intercity high-speed trains and
made the passenger seat levels flexible and changeable.

Generally speaking, scholars’ research studies on revenue
optimization for the railway are mainly focused on basic
demand forecasting, differential pricing, and capacity control,
especially differential pricing and capacity control. However,
there are a few types of research on HSR ticket allocation
optimization based on unconstrained demand.

In high passenger demand, the demand for high-speed
rail passengers may exceed the capacity limit, but the res-
ervation system will not record the demand exceeding the
capacity limit. (erefore, during peak demand, the system
records inaccurate demand data, that is, censored data.
When dealing with the above problems in practice, there are
two main methods: one is to remove the censored data and
only consider the data that are not affected by the pre-
determined restrictions when performing demand distri-
bution and forecasting. Another processing method
considers that the demand observed by the system is a real
demand, without considering the predetermined limitations
of the system, that is, unconstrained processing. (erefore,
we propose an HSR ticket allocation optimization method
based on the unconstrained processing of censored data to
improve the accuracy of prediction.

3. The HSR Ticket Allocation
Optimization Method

3.1. Method Procedures. (e process of the HSR
ticket allocation optimization method has three main stages
(Figure 3). In the first stage, the method performs an un-
constrained demand forecast on the historical data recorded
by the HSR system. (e unconstrained method can effec-
tively solve the “censored data” that cannot reflect the real
needs of passengers and restore the “actual demand”. In the
second stage, we predict the real travel demand of pas-
sengers. We use “actual demand” as the input variables for
the gray neural network prediction model. In the third stage,
we apply the accurate and fuzzy predivided models to al-
locate tickets on different OD sections of the HSR railway,
then compare the results of these two predivided models,
and choose the better one as our final result.

3.2. Unconstrained Demand Model. Here, we propose an
HSR passenger demand unrestricted estimation method
based on the normal distribution form and a demand un-
restricted EM algorithm. (e specific process is shown in
Figure 4. First, we extracted historical demand data from the
HSR reservation system and determine whether the data are
censored data. For a dataset with censored data, we obtained
inaccurate demand data. (en, we apply unconstrained
demand estimation on the censored data, and the prediction
model parameters are initialized through the positive dis-
tribution assumption. Finally, the dataset containing cen-
sored data is combined with the dataset without censored
data and together these data will be used in the next stage of
demand forecasting.

3.2.1. 2e Model Symbol. We assume that the passenger
demand distribution in a certain OD zone and a certain seat
category on a certain departure date can be approximated as a
normal distribution. (us we use unconstrained demand
estimation based on the passenger demand that follows a
normal distribution. Because the EM (expectation-maximi-
zation) algorithm is based on the idea of iteratively estimating
incomplete data, it is a relatively simple algorithm that can
estimate the maximum probability of determining distribu-
tion parameters from a dataset containing censored data. (e
advantage of the EM algorithm is that it can increase the value
of the likelihood function through iteration and eventually
converges to a relatively stable point. Since the EM algorithm
is also solved based on the form of a normal distribution,
before using the EM algorithm, we assume that the needs of
different price levels are independent of each other. (at is to
say, if the reservation system for a certain HSR ticket category
is closed, the requirements of this category will not be con-
verted to other high-level or low-level requirements.

(e meaning of the unconstrained demand model
symbol in high-speed rail passenger transport is shown in
Table 1.

3.2.2. Model Formulation. Passenger demand X in the
presale period is approximate to a normal distribution,
which means that the demand request is issued according to
the normal distribution curve, it follows the normal dis-
tribution with the parameter (μ, σ2), and its density function
is given by

f(x) �
1
���
2π

√
σ
exp −

(x − μ)
2

2σ2
􏼢 􏼣. (1)

(e model building process is as follows:

(1) Judge the state of I(p, x), if I(p, x) � 0/C, it indi-
cates that the system is in an open state at the ob-
servation point p, and the system can accept the
booking request when the demand comes. On the
contrary, if I(p, x) � 1/O, it indicates that the system
is closed at the observation point p, and the system
does not accept the booking request when there is
demand.

(2) When the system is in a state I(p, x) � 1/O, the EM
algorithm is used for unconstrained processing. (e
difference between the demands of two adjacent
observation points is the newly added demand in the
system:

IB(p, m) � OB(p, m) − OB(p + 1, m). (2)

According to whether the system is open or not,
there are the following relations:

U D(p, m)

�
IB(p, m) + U D(p + 1, m) if I(p, x) � 1/O,

I D(p, m) + U D(p + 1, m) if I(p, x) � 1/C.
􏼨

(3)
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In the relations I D(p, m) � E[x | x> IB(p, m)], the
purpose of the EM algorithm estimation is to de-
termine the booking demand number between two
adjacent observation points when the system is
closed.

(3) Parameter initialization: it is using the observed data
to derive the initial parameter value that determines
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Figure 3: Process of HSR ticket allocation optimization method.
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Figure 4: Unconstrained demand forecast process.

Table 1: (e meaning of unconstrained demand model symbol in
high-speed rail passenger transport.

Symbol Meaning

P (observation point) Selected observation points during
the presale period

OB (observation booking) Observation booking observed in the
system

BL (booking limit) Booking limit in the system
U D (unconstrained
demand) (e real needs of passengers

U Dt c (unconstrained
demand-to-come)

(e total unconstrained demand
from a certain time to departure

ID (incremental demand) Increased demand between two
adjacent intervals

I � C/O (closed/open) (e open state of the scheduled
system at a certain time

N (number) (e number of booking situations in
the same historical period
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the demand distribution. (e expression is as
follows:

μ(0)
(p) �

􏽐
n
m�1IB(p, m)I(p, m)

􏽐
n
m�1I(p, m)

, (4)

σ2􏼐 􏼑
(0)

(p)
�

􏽐
n
m�1 IB(p, m) − μ(0)

(p)I(p, m)􏼔 􏼕
2

􏽐
n
m�1I(p, m) − 1

.
(5)

In the process of parameter initialization, it will
appear that the data in the sample are all “censored”
data limited by the booking system; then, it is
denoted by 􏽐

n
m�1 I(p, m) � 0. (en, there is the

following expression:

U D(p, m) � IB(p, m) + U D(p + 1, m). (6)

(4) (e calculation process of step E. (e calculation
process of step E is to replace its true value with its
expected value. Assume

f xi, μ, σ( 􏼁 �
1
���
2π

√
σ
exp −

xi − μ( 􏼁
2

2σ2
􏼢 􏼣, (7)

E[x|x> IB(p, m)] �
􏽒
∝
IB(p,m)

xf(x)dx

􏽒
∝
IB(p,m)

f(x)dx
. (8)

λ � IB(p, m) and it can be substituted into the above
equation to standardize its normal distribution:

􏽚
∝

IB(p,m)
f(x)dx � 􏽚

∝

IB(p,m)

1
σ

���
2π

√ e
− (x− μ)2/2σ2dx

� 􏽚
∝

λ

1
σ

���
2π

√ e
− (x− μ)2/2σ2dx

� 􏽚
∝

λ− μ/σ

1
���
2π

√ e
− y2/2( )dy,

(9)

􏽚
∝

IB(p,m)
xf(x)dx � 􏽚

∝

IB(p,m)
x

1
σ

���
2π

√ e
− (x− μ)2/2σ2dx

� 􏽚
∝

λ

x

σ
���
2π

√ e
− (x− μ)2

2σ2 dx

� 􏽚
∝

λ− μ/σ

σy + μ
���
2π

√ e
− y2/2( )dy

� σ 􏽚
∝

(λ− μ/σ)

y
���
2π

√ e
− y2/2( )dy

+ μ􏽚
∝

(λ− μ/σ)

1
���
2π

√ e
− y2/2( )dy

�
σ
���
2π

√ e
− (λ− μ)2/2σ2

+ μ􏽚
∝

λ− μ/σ

1
���
2π

√ e
− y2/2( )dy.

(10)

According to the property and theorem of a normal
distribution, if X∗ is the standardization of X, the
following formula is always true:

P(a≤X≤ b) � P
a − μ
σ
≤X
∗ ≤

b − μ
σ

􏼠 􏼡

� Φ
b − μ
σ

􏼠 􏼡 − Φ
a − μ
σ

􏼒 􏼓,

(11)

P x>
λ − μ
σ

􏼠 􏼡 � 1 − Φ
λ − μ
σ

􏼠 􏼡. (12)

(en bring it into the requested expression:

E[x | x> λ] �
􏽒
∝
λ xf(x)dx

􏽒
∝
λ f(x)dx

�
(σ/

���
2π

√
)e

− (λ− μ)2/2σ2
+ μ(1 − Φ(λ − μ/σ))

1 − Φ(λ − μ/σ)
.

(13)

(e above is the method to calculate the expectation
of the passenger booking demand in the EM algo-
rithm. (en, the M step is taken to maximize the
expected booking demand. A simple idea for max-
imization is to find the derivative, which is to take the
partial derivative of each of them for an expression
with two parameters, and by setting the partial de-
rivative equal to zero, the value of the parameter will
be found.

(5) (e calculation process of step M. Step M is to
reestimate the parameters of demand distribution
using the original data and the unconstrained de-
mand dataset obtained by estimating parameters in
step E.
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μ(t)
(p) �

􏽐
∝
m�1 IB(p, m)I(p, m) + I D(p, m)

t− 1
(1 − I(p, m))

n
, (14)

σ2􏼐 􏼑
(t)

(p)
�

􏽐
n
m�1 IB(p, m) − μ(t)

(p)I(p, m)􏼔 􏼕
2

+ 􏽐
n
m�1 I D(p, m)

t− 1
− μ(t)

(p)􏼐 􏼑(1 − I(p, m))􏼔 􏼕
2

n − 1
.

(15)

Since it is assumed that the arrival process of pas-
sengers is independent of each other, the total
probability is the product of the individual proba-
bilities. (erefore, its likelihood function is given by

L xi, μ, σ2􏼐 􏼑 � 􏽙
n

i�1
f xi, μ, σ( 􏼁

� (
���
2π

√
σ)

− n
e

− 1/ 2σ2( )􏽐
n

i�1 xi − μ( )
2

.

(16)

In order to simplify the calculation process, the
likelihood function will be logarithmic and the
constant term will be ignored, and then the following
can be obtained:

ln L x, μ, σ2􏼐 􏼑 � −
n

2
ln(2π) −

n

2
ln σ2 −

1
2

􏽘

n

i�1

xi − μ( 􏼁
2

σ2

� −
n

2
ln σ2 −

1
2

n(x − μ)
2

σ2
−

n

2
s
2

σ2
,

(17)

x �
􏽐

n
i�1xi

n
,

s
2

�
􏽐

n
i�1 xi − x( 􏼁

2

n
.

(18)

(e way to maximize is to take the partial derivative
of the above likelihood function:

zl μ, σ2􏼐 􏼑

zμ
�

z − (n/2)ln σ2 − (1/2) n(x − μ)
2/σ2􏼐 􏼑 − (n/2) s2/σ2􏼐 􏼑􏼐 􏼑

zμ
�

z − (1/2)n(x − μ)
2/σ2􏼐 􏼑

zμ

zl μ, σ2􏼐 􏼑

zσ2
�

z − (n/2)ln σ2 − (1/2)n(x − μ)
2/σ2 − (n/2) s2/σ2􏼐 􏼑􏼐 􏼑

zσ2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(19)

If the above two expressions are 0, then we can get

z − (1/2) n(x − μ)
2/σ2􏼐 􏼑􏼐 􏼑

zμ
� 0

z − (n/2)ln σ2 − (1/2)n(x − μ)
2/σ2 − (n/2) s2/σ2􏼐 􏼑􏼐 􏼑

zσ2
� 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⟹
μ∗ � x

σ2􏼐 􏼑
∗

� s
2

⎧⎪⎨

⎪⎩
. (20)

(6) Determine whether the algorithm accepts. Set an
error limit, ξ � 0.001, if

μ(t)
(p) − μ(t− 1)

(p) |> 0.001.
􏼌􏼌􏼌􏼌􏼌 (21)

(en let i � i + 1, repeat steps 4 and 5 to continue the
calculation. If the difference between the two means is less
than 0.001, then let μ∗ � μ(i+1)and σ∗ � σ(i+1), and the al-
gorithm terminates.

3.3. Demand Forecasting Model

3.3.1. Model Formulation

(1) First, establish a gray differential equation and
transform it.
First, a new sequence is obtained by adding up the
original data. Among them

X
1
(t) � 􏽘

t

i�1
X

0
(i). (22)
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Let z(1)(t) � 0.5x(1)(t) + 0.5x(1)(t − 1), among
them X(0)(t) + aZ(1)(k) � b, then the white differ-
ential equation of the response is given by

dx
(1)

(t)

dt
+ ax

(1)
(t) � b. (23)

By solving the above equation, we can get

x
(1)

(t) �
b

a
+ Ce

− at
, (24)

where when t � 0, we get

C � x
(1)

(0) −
b

a
. (25)

(en, the time response function is determined as
follows:

X
(1)

(t) � X
(1)

(0) − b/a􏽨 􏽩e
− at

+
b

a
. (26)

(e time response function considers that the
existing data conform to the change rule of a certain
function, and uses a limited discrete data to fit a
function, then forms the change rule of the data, and
forecasts the changing trend of the data according to
the rule. Assuming that the parameters in the above

formula are known, the time response function is
taken as the time response function of GNNM (1,1),
which is written as follows:

y(t) � X
(1)

(0) −
b

a
􏼢 􏼣e

− at
+

b

a
. (27)

In the above model, assume that the number of
elements in the original sequence is N, then
t � 0, 1, . . . N − 1, the following formula can be
obtained by transforming the above discrete-time
response function:

x
(1)

(t)
1

1 + e
− at � x

(1)
(0) −

b

a
􏼢 􏼣e

− at 1
1 + e

− at +
b

a

1
1 + e

− at. (28)

x
(1)

(t) � x
(1)

(0) −
b

a
􏼠 􏼡e

− at 1
1 + e

− at +
b

a

1
1 + e

− at􏼠 􏼡 1 + e
− at

􏼐 􏼑

� x
(1)

(0) −
b

a
􏼠 􏼡 1 −

1
1 + e

− at􏼒 􏼓 +
b

a

1
1 + e

− at􏼠 􏼡 1 + e
− at

􏼐 􏼑

� x
(1)

(0) −
b

a
􏼠 􏼡 − x

(1)
(0)

1
1 + e

− at +
2b

a

1
1 + e

− at􏼠 􏼡 1 + e
− at

􏼐 􏼑.

(29)

(2) Map the response function that has been trans-
formed into the neural network structure, define the
weights between different layers, and determine the
activation function between different neurons.

Map the above formula into the neural network and get
the GNNM (1,1) structure, which is shown in Figure 5.

In Figure 5, t(n) is the input sample value, in which
n � 0, 1, 2, . . . N − 1; N is the sample size, n is the training
times, ω are the weight values, dj represents the measured
value of the output, y is an analog value, and ej is the output
error.

3.3.2. Model Solution

(1) Initialize the parameters in the above model. (e
initialization results are as follows:

ω21 � a, ω31 � a,

ω42 � − x
(1)

(0), ω43 �
2b

a
,

ω54 � 1 + e
− ak

, θy1
�

b

a
− x

(1)
(0).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

(e activation function of layers 1, 3, and 4 is taken
as a linear function, and the second layer takes the
final stable state of the system into account and takes
a sigmoid-type function. (e corresponding acti-
vation functions of different neurons are as follows:

φ1(x) � xφ2(x) �
1

1 + e
− x,

φ3(x) �
1

1 + e
− xφ4(x) � x,

φ5(x) � x.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(31)

1

2

3

4 5t(n)

y1 y

dj(t)

ej(t)

L4L3L2L1

ω43ω31

ω21 ω42

ω54

θy1

Figure 5: (e prediction of gray neural network.
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Among the above weights, ω42, ω54, and θy1
remain

unchanged.
(2) Use the forward algorithm to calculate input sam-

ples, and the calculation results are as follows:

ρ1 � φ1(x) � k,

ρ2 � φ2(x) � φ2 ω21 × ρ1( 􏼁 �
1

1 + e
− ω21×ρ1 ,

ρ3 � φ3(x) � φ3 ω31 × ρ1( 􏼁 �
1

1 + e
− ω31×ρ1 ,

ρ4 � φ4(x) � ρ2 × ω42 + ρ3 × ω43,

ρ5 � φ5(x) � ρ4 − θy1
􏼐 􏼑 × ω54.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

(erefore,

y � ω42 × φ2 ω21 × ρ1( 􏼁 + ω43 × φ3 ω31 × ρ1( 􏼁 − θy1
􏽨 􏽩

× ω54.

(33)

(3) Use the inverse algorithm to calculate the local
gradient and output the neuron:

δ5 � φ5′ (x) d5 − ρ5( 􏼁. (34)

Hidden neurons:

δ4 � δ5ω54,

δ5 � ρ2 1 − ρ2( 􏼁δ4ω42.
(35)

(4) Modify the weight value and threshold value,
according to the calculation results of the reverse
algorithm. η is the step size, and the initial step size is
η � 0.01, which is continuously reduced during the
training process to achieve rapid convergence:

η(n) �
η(0)
�����
1 + n

√ ,

ω31(n + 1) � ω21(n) + ηδ2(n)ρ1(n),

ω42(n + 1) � ω42(n) + ηδ4(n)ρ2(n),

ω43(n + 1) � ω43(n),

ω54(n + 1) � 1 + e
− ω21×t,

θy1
�
ω42

2
− x

(1)
(0).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

(5) n � n + 1, repeat the above steps until they converge
to the specified error range or complete the specified
training times.

(6) Enter new samples and repeat the above steps until
all samples are trained. Forecast new value x(0)(N).

3.4. O&DTicket AllocationModel. HSR trains pass through
multiple stops during a single operation. (e HSR

currently implements a three-level fare system, so the
control of HSR O&D is a problem of seat inventory
control in multiple fare classes between multiple OD
sections. Figure 6 shows the operation of a single train
through four sections and five stations. Each curve rep-
resents a different OD.

3.4.1. Model Assumptions. For the convenience of the
construction of the model and the process of subsequent
solution, we propose the following assumptions before
modeling:

(1) All the models are based on the single train ODs, and
the interactions between different trains are not
considered

(2) All tickets are sold at the stopover station of the train,
regardless of the effect of the sales restriction

(3) Based on the current fare setting method, the dis-
count of fare is not considered

(4) Regardless of the situation of refund, or the situation
of not getting on the bus after purchasing the ticket

(5) (e transport capacity of fixed lines is fixed and will
not change with time

(6) (e fares between different ODs are known and will
not change with the presale period.

3.4.2. 2e Accurate Predivided Model. Assuming that there
are N sections in a train’s operating area; it includes N+1
stopover station, which can meet N × (N + 1)/2 OD travel
demands. (e fixed transport capacity of the train is C, and
m represents different sections, then m � 1, 2, 3 · · · N. Each
OD pair is denoted by (i, j), where 1≤ i≤ j≤N+ 1.K � 1, 2, 3
represents three different levels of fares, representing
business seats, first-class seats, and second-class seats, re-
spectively. (e fare for level k of the specific OD pair (i, j) is
pijk, and the demand for level k of the OD pair (i, j) is dijk.

(e accurate allocation model of OD ticket amounts
refers to finding the optimal allocation quantity of different
ticket price levels in different OD sections, and the goal is to
maximize the revenue of transportation enterprises. If the
protection level of the allocated quantity for a certain OD is
bijk, then this formula holds:

xijk ≥ bijk. (37)

(e above formula indicates that the number of seats
assigned to a certain OD should be greater than its pro-
tection level, which means the protection level should be
determined when considering the social significance of
railway transportation, and at the same time, it should be less
than the passengers’ demand for this section. (e benefits
are as follows:

Rijk xijk􏼐 􏼑 � pijk 􏽚
∝

0
xijkfijk(x)dx. (38)
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(e model is as follows:

max 􏽘
m

i�1
􏽘

M+1

j�i+1
􏽘

K

k�1
Rijk xijk􏼐 􏼑

s.t.

􏽘

m

i�1
􏽘

M+1

j�i+1
􏽘

K

k�1
􏽚
∝

0
xijkfijk(x)dx􏼒 􏼓≤Cm

xijk ≥ bijk

xijk ∈ Z.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(39)

3.4.3. 2e Fuzzy Predivided Model. In the process of con-
trolling the stock of HSR passenger tickets, the maximization
of revenue is achieved through the design of restrictions on

the number of seats for different OD sections and different
fare classes. BLijk represents the number of nested booking
limits for OD pair(i, j) of train on class k fares, where
BLiM+1K ≤ · · · ≤BLijk ≤ · · · ≤BLi1k, and xijk represents the
quantity of distribution for OD pair (i, j) of train on class k
fares. Rijk(BLijk) represents the expected revenue under the
booking limit, and the following relationship is involved:

Rijk BLijk􏼐 􏼑 � pijk 􏽚
BLijk

0
xijkfijk(x)dx

+ pijkBLijk 􏽚
∝

BLijk

fijk(x)dx.

(40)

(en the total model can be expressed as follows:

max 􏽘
m

i�1
􏽘

M+1

j�i+1
􏽘

K

k�1
Rijk BLijk􏼐 􏼑

s.t.

􏽘

m

i�1
􏽘

M+1

j�i+1
􏽘

K

k�1
􏽚

BLijk

0
xijkfijk(x)dx + BLijk 􏽚

∝

BLijk

fijk(x)dx􏼠 􏼡≤Cm

0≤xi1k ≤ xijk ≤ · · · ≤xiM+1k

xijk ∈ Z.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(41)

3.4.4. Model Solution. Particle swarm optimization is an
intelligent optimization algorithm, the principle of which is
relatively simple, involving few parameters, and easy to
achieve global optimization, so it is a better method to solve
integer programming [36]. In this paper, we refer to Li
Lihui’s particle swarm algorithm which is designed for the
problem of ticket allocation to solve the OD ticket accurate
preseparation model and fuzzy preseparation model in this
paper [37]. (e standard process of particle swarm opti-
mization is shown in Figure 7.

(e problem to be solved by the model in this section is
the control of seats in N(N + 1)/2 OD pairs, and each OD
section has K ticket price levels, so in particle swarm op-
timization, it is the vector problem of N(N + 1)K/2 di-
mension. In this paper, the specific process of solving the
particle swarm optimization algorithm (PSO) is referred to
as the solution process of the article which studies on

revenue optimization of HSR based on passenger behavior
[37]. Set the number of particle swarms as H, xt

h represents
the result of the h particle after t iterations and represents the
current position of the h particle. According to the objective
function in the model, the fitness function of the K particle
can be obtained. In the accuracy preclassification model, the
fitness function is as follows:

τ x
t
h􏼐 􏼑 � R x

t
h􏼐 􏼑. (42)

In the fuzzy preclassification model, the fitness is given
by

τ x
t
h􏼐 􏼑 � R B

t
h􏼐 􏼑. (43)

For the t+1 update of the particle, its velocity is vt+1
h , and

the specific formula is given by

A B C D E

Figure 6: Single train running in four OD sections.
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v
t+1
h � ωv

t
h + c1r

t
(1)h p

t
(best)h − x

t
h􏼐 􏼑 + c2r

t
(2)h g

t
(best)h − x

t
g d􏼐 􏼑,

(44)
where rt

(1)h and rt
(2)h are uniformly distributed random

numbers, c1 and c2 are learning factors, and set c1 � c2 � 2,
pt

(best)h is the best location of the h particle in history, and
gt

(best)h is the best location for all particles.(e location of the
h particle after t iterations is given by

x
t+1
h � x

t
h + v

t+1
h . (45)

(erefore, the steps to solve the above particle swarm
algorithm are as follows:

(1) Set the initial location of particle swarm x0
h, where

h � 1, 2, . . . H, and the initial revenue R0
h。

(2) Calculate the update speed vt
n, get new particle lo-

cation xt
h, and then get xt

h and Bt
h

(3) If τ(xt
h)>R0

h, and satisfy the constraints, R � τ(xt
h),

xh � xt
h，and Bh � Bt

h, then go to the next step to
judge all particles

(4) Update the speed and location of all particles and
repeat the above steps until the optimal location is
found

4. Case Analysis

4.1.Wuhan-GuangzhouHSR. (is section takes the Wuhan-
Guangzhou HSR as an example. Wuhan-Guangzhou HSR is
the first HSRwith longmileage in China (Figure 8), and it was

put into operation in 2009. (e route spans Hubei, Hunan,
and Guangdong provinces, passing 17 stations, and the total
length is 1068.6 kilometers. It runs through the three major
economic regions of Central and South China, Wuhan
Metropolitan Area, ChangzhutanUrbanGroup, and the Pearl
River Delta. (ere are four stations and six OD sections
involved in this example. (e corresponding names and fares
of each section are shown in Table 2, where A represents the
passenger traffic of the OD section between WH and CSN
stations and other letters B, C, · · ·, F have similar meanings.

4.2. Unconstrained Process and GNN Prediction on Demand.
From October to December 2017, we collected passenger
demand data from the Wuhan-Guangzhounan HSR trains
G1103, G1109, G1117, G1121, G1123, G1133, G1135, and
G1143 for 80 days. We use the “114 ticket network” as the
specific ticket demand data acquisition source because it
provides the most comprehensive HSR ticket booking
balance information. (e booking data of the G1117 train is
selected for the demand forecast. For comparison, we first
use the gray neural networks (GNNs) directly by the historic
demand data of the first 70 days, and the prediction and
verification are performed using the data of the last 10 days.
It can be seen that the prediction results of certain days in
OD sections are not particularly ideal (Figure 9).

Start

Initialize the particle swarm

Determine whether the 
termination condition is met

End

Calculate the fitness value of particles

Calculate the best position of individual 
in history

Calculate the best position of population 
in history and the best fitness value of 

population

Update the speed and position of particles

Yes

No

Figure 7: Particle swarm optimization flowchart.

WH

CSN

HYD

GZN

WUHAN-GUANGZHOU high speed railway map

Figure 8: (e first long mileage HSR in China: Wuhan-
Guangzhounan (WH-GZN).
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(rough the unconstrained processing of the obtained
data, we make a comparative analysis of the direct GNN
demand forecast results and the unconstrained and GNN
demand forecast (UGNN) results. A comparison of these
two kinds of prediction results is shown in Figure 10. We
also compare the RMSE between the two models in
Figure 11. We can see that in all OD sections, the UGNN
model performed better than the direct prediction model.
According to Figure 11, through the prediction of the un-
constrained data, the error of the predicted data is signifi-
cantly lower than the direct predicted value. It has higher
reliability and reduces errors, which can reflect the real travel
needs of passengers.

4.3. TicketAllocation onODSections. (ere are four stations,
six OD sections, and 923 second-class seats involved in this

example. (e ticket prices and demand distribution among
the sections are shown in Table 3. Figure 12 shows the
distribution of tickets for different sections in a bar chart.

On the basis of these data, the particle swarm optimi-
zation algorithm is used to solve the ticket allocation scheme
design for different sections of a certain train. Suppose that
the number of different particle swarms H � 20, six OD
sections are divided into six dimensions, the number of
iterations per particle is t � 100, the number of the evolu-
tions of the particle swarm is set as 300, the fare class k is 1
(only considering second-class seats), and the initial velocity
of the particle is 0. We use MATLAB to solve the problem.
(e results of accurate predivided and fuzzy predivided
models are shown in Table 4.

Checked by particle swarm optimization, when the
allocated ticket amount of each section of a train is sold
out, that is, when the ticket data can no longer accurately
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Figure 9: (e direct prediction results by GNN.

Table 2: (e labels and fares of the major OD sections in WH-GZN HSR.

Section
CSN HYD GZN

Fare Demand Fare Demand Fare Demand
WH 164.5 A∗ 244 B 463.5 C
CSN — — 79.5 D 314 E
HYD — — — — 244 F
∗Note: A represents the passenger traffic of the OD section between WH and CSN stations.
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Figure 10: Comparisons of GNN and UGNN prediction results.
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Figure 11: RMSE comparison of two kinds of prediction results.

Table 3: Ticket booking in different OD sections.

Section
CSN HYD GZN

Fare Demand Fare Demand Fare Demand
WH 164.5 (225, 9) 244 (237, 9) 463.5 (301, 11)
CSN — — 79.5 (154, 9) 314 (171, 12)
HYD — — — — 244 (211, 8)
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reflect the needs of passengers, the unconstrained de-
mand forcast model can better reflect the actual needs of
passengers. Table 5 shows the ticket selling result of the
three modes based on the ticket allocation method and
the real demand obtained through an unconstrained
method, respectively, the original, accurate predivided,
and the fuzzy predivided.

Figure 12 compares the ticket selling results of original,
accurate predivided, and fuzzy predivided models. With the

support of the prediction data processed by the uncon-
strained method, after predivided accurately of different OD
tickets, the ticket revenue of the train within the section is
373,734 yuan, and in the case of fuzzy predivided, the
revenue is 374,7446 yuan. However, before the uncon-
strained method, the ticket revenue was 351,775 yuan. (is
method can increase ticket revenue by up to 6.80%, and it
can be concluded that the unconstrained method can ef-
fectively improve the ticket revenue of HSR.
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Fuzzy predivided

Figure 12: (e ticket selling result of three modes: original/accurate predivided/fuzzy predivided.

Table 4: (e result of different O&D demand and ticket amount under accurate and fuzzy predivided models.

Section
CSN HYD GZN

Original Accurate Fuzzy Original Accurate Fuzzy Original Accurate Fuzzy
WH 225 253 233 237 245 240 301 312 322
CSN — — 154 162 159 171 176 179
HYD — — — — 211 245 256

Table 5: (e ticket selling result of three models.

Section
CSN HYD GZN

Original Accurate Fuzzy Original Accurate Fuzzy Original Accurate Fuzzy
WH 225 234 233 237 245 240 301 312 312
CSN — — 154 162 159 171 176 179
HYD — — — — 211 219 219

Journal of Advanced Transportation 13



China has the largest number of HSR lines in operation,
but only a few are profitable. (e empirical analysis of the
Wuhan-Guangzhou HSR proves that the revenue man-
agement method based on unconstrained demand can in-
crease the revenue of HSR and improve the operation.
Demand prediction is the basis of revenue management, and
the accuracy of prediction directly affects the effect of
revenue management, and the improvement of precision
plays a positive role in revenue management. In the em-
pirical analysis, the accuracy of data prediction has been
effectively improved after the unconstrained method.
(erefore, it is necessary to pay enough attention to the
unconstrained method.

5. Discussion and Conclusion

In this paper, we propose a method for optimizing the
distribution of HSR tickets based on the unconstrained
demand model. (e biggest feature of this method is that in
the case of high passenger demand, historical demand data,
that is, “censored data”, cannot fully reflect the real needs of
passengers. We can effectively solve this problem through an
unconstrained method and restore the “real demand” that
the ticketing system failed to record.

By using “real demand” as the input variable of the gray
neural network prediction model, the prediction accuracy
can be effectively improved, and a more accurate prediction
value is the guarantee of a reasonable ticket allocationmodel.
Finally, we verified our optimization method with a practical
example of China’s HSR, and the total ticket income ob-
tained by this method is 6.80% higher than the uncon-
strained model optimization method.

(erefore, we can say that it is feasible to introduce
ticket allocation optimization methods into China HSR;
second, accurate demand forecasting is essential to optimize
HSR passenger income. By constructing an unconstrained
model of HSR passenger demand and solving it by the EM
algorithm, the accuracy of demand forecasting can be
improved.

In our proposed optimization method, the gray neural
network combines the advantages of the gray system and the
neural network system and can obtain more accurate results
when the sample size is small.

We build accurate predivided models and fuzzy pre-
divided models for different OD sections and solve them
by designing the particle swarm optimization algorithm.
(e results show that whether it is a fuzzy predivided
model or an accurate predivided model, the results are
superior to the original method without unconstrained
processing.

Due to the uncertainty of passenger transportation
needs, national policies support HSR companies to adjust
the number of tickets between different ODs according to
demand during the presale period [38]. In addition, with the
development of computer hardware technology, big data,
and machine learning algorithms [39, 40], the demand
forecasting model, differential pricing model, and capacity
control model are used in the ticket allocation optimization
system to analyze massive ticket data to obtain better results.

(e demand for ticket allocation plans to meet the needs of
passengers has become a reality.

(e proposed method here is mainly for HSR trans-
portation with high passenger demand. For ordinary rail-
ways, there are also high passenger demands during holidays
such as the Spring Festival. (erefore, our method is also
applicable to ordinary railways under high demands.

However, our method only considers the unconstrained
situation where passenger demand follows a normal dis-
tribution. In the future, it can be optimized according to
different demand distribution. In addition, this article does
not consider differential pricing, but only considers demand
forecasting and capacity control during high-speed rail
passenger transportation. (erefore, we can continue to
study from this point in the future. Finally, we use a static
ticket allocation model in the method, and future research
may consider incorporating a dynamic ticket allocation
model.
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