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Abstract

In this paper we describe a �nite element formulation for the numerical solution of

the stationary incompressible Navier-Stokes equations including Coriolis forces and the

permeability of the medium. The stabilized method is based on the algebraic version

of the sub-grid scale approach. We �rst describe this technique for general systems

of convection-di�usion-reaction equations and then we apply it to the linearized 
ow

equations. The important point is the design of the matrix of stabilization parameters

that the method has. This design is based on the identi�cation of the stability problems of

the Galerkin method and a scaling of variables argument to determine which coe�cients

must be included in the stabilization matrix. This, together with the convergence analysis

of the linearized problem, leads to a simple expression for the stabilization parameters in

the general situation considered in the paper. The numerical analysis of the linearized

problem also shows that the method has optimal convergence properties.
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1 Introduction

When the Navier-Stokes equations for an incompressible viscous 
uid are written in a rotating

frame of reference two new terms appear, namely, the centrifugal force and the Coriolis force.

The former can be written as 1
4
! � (! � r), where ! is twice the velocity of rotation of the

frame of reference and r the vector of position of the particles referred to this system. This

term can be included in the vector of body forces and o�ers no additional di�culty. On the

other hand, the Coriolis force is ! � u, where u is the velocity �eld referred to the rotating

reference. This term has to be added to the Navier-Stokes operator. Another term that has

to be included in this operator is the one coming from the medium resistance to the 
ow

when the permeability of this medium is �nite. In the simplest model considered here, this

term has the form �u, where � � 0 is the inverse of the permeability coe�cient (in the case

of anisotropic media � is a second order tensor).

Another term that we shall include in the 
ow equations is a penalty parameter in the

continuity equation, which then will be written as "p + r � u = 0, p being the kinematic


uid pressure and " � 0 given. This parameter " will be assumed small in the formulation

presented herein. Precise upper bounds for it will be speci�ed in terms of the stabilization

parameters of the formulation.

Taking into account all the e�ects described, the problem to be solved in the steady-state

case is

(u � r)u+
1

2
(r � u)u+ ! � u� ��u+ �u+rp = f in 
; (1)

"p+r � u = 0 in 
; (2)

u = 0 on �; (3)

where f is the vector of body forces, including also the centrifugal force, � is the kinematic

viscosity of the 
uid and 
 is the computational domain, with � = @
 its boundary. For

simplicity, we consider only homogeneous Dirichlet boundary conditions. Also, we assume

that the solution to this nonlinear boundary value problem is unique, a situation that can be

guaranteed if the viscosity � is large enough compared to the convective term (see e.g. [1]).

Observe that we have written it in its skew-symmetric form. For truly incompressible 
ows,

the term 1
2
(r � u)u can be omitted, but when " > 0 it helps to ensure that the problem is

well posed.

There are several numerical di�culties associated with problem (1)-(3) when the standard

Galerkin �nite element method is used. The �rst of them is classical and concerns the

compatibility of the �nite element spaces for the velocity and the pressure. It is well known

that they have to satisfy the so called inf-sup or Babu�ska-Brezzi stability condition (see e.g.

[2]). There is also the possibility of using the same interpolation for both the velocity and

the pressure by modifying the discrete variational form.
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The second numerical problem is also well known. It concerns the relative importance of

the viscous and convective terms. When the latter becomes important the standard Galerkin

formulation fails and numerical oscillations occur.

Another di�culty encountered when one tries to solve the problem with small values of

the viscosity is the presence of spurious oscillations due to the Coriolis force. This problem

was identi�ed and discussed for the Stokes case (that is, without the nonlinear convective

term) in [3]. These oscillations are due to the pressure p, which may be understood as a

Lagrange multiplier to enforce the incompressibility of the 
ow. If this incompressibility

were not imposed, small viscosities could lead to local oscillations, only in the neighborhood

of the boundary layers. This phenomenon is well known and appears in problems with terms

proportional to the unknown function. In this case it is not possible to obtain a global

stability estimate in the H1 norm, although it is in the L2 one, thus explaining why these

local oscillations may exist but can not deteriorate the solution globally. However, for problem

(1)-(3) it is not possible to obtain the aforementioned estimates due to the presence of the

pressure.

Localized oscillations are precisely the result of having large values of the coe�cient � in

(1). This could occur if the permeability of the medium where the 
ow takes place is very

low. The situation is similar to what happens when there is an important reactive term in

the linear scalar convection-diffusion-reaction equation. Stabilized methods for this kind of

problem have been studied for example in [4, 5]. We shall see that the formulation presented

here is in fact simpler than those proposed in these references (although we apply it to a

much more complex case).

In this paper we propose a stabilized �nite element method for the problem that deals

with all the numerical di�culties discussed, that is, it allows to use equal velocity-pressure

interpolation, it solves the instabilities due to dominant convective and Coriolis forces, and

it is also able to deal with the case of large coe�cients � in (1). Clearly, the idea of using a

stabilized method able to deal with the pressure instability and convection dominated 
ows

is old and is in fact the origin of the Galerkin/least-squares method [6]. Extensions of this

method specially oriented to the incompressible Navier-Stokes equations are presented for

example in [7, 8, 9], among others, and convergence analyses can be found already in [10, 11]

and, more recently, in [12], where the full nonlinear problem is analyzed.

The method proposed here can be formulated starting from the sub-grid scale concept,

an idea presented in [13] and described in the following section for systems of convection-dif-

fusion-reaction equations. We use here a particular version of this stabilization technique.

In Section 3 we apply it to the �nite element approximation of Eqs. (1)-(3). The resulting

numerical method depends on two algorithmic parameters, �1 and �2, that are designed from

the analysis of what happens in a simple one-dimensional problem [14]. However, this only

serves as a motivation for the expression of these parameters. Once they are determined,
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a stability and convergence analysis can be conducted showing that the resulting method is

stable and optimally convergent. This is done in Section 4 for the linearized problem. This

analysis is not only a theoretical exercise, but clearly shows how �1 and �2 must behave. The

expression we propose for them allows this analysis to be very simple, at least compared to

the analyses that can be found for example in [7] (for the linearized problem) or in [12], where

neither the Coriolis forces nor the permeability of the medium are taken into account. In

Section 5 we present some numerical results showing the good numerical performance of the

stabilized formulation and �nally we draw some conclusions.

2 Sub-grid scale approach

When the Navier-Stokes equations are linearized, they lead to a system of convection-diffu-

sion-reaction equations of the form

L(U) :=
@

@xi
(AiU)�

@

@xi

 
Kij

@U

@xj

!
+ SU = F in 
; (4)

where U and F are vectors of nunk unknowns and Ai, Kij and S are nunk � nunk matrices

(i; j = 1; :::; nsd). The usual summation convention is implied in (4), with indices running

from 1 to the number of space dimensions nsd. We shall refer to the terms of the left-hand-

side of this equation as the convective, the di�usive and the reactive term. The algebraic

bilinear form associated to Kij , i; j = 1; :::; nsd, is positive-semide�nite for the linearized

Navier-Stokes equations, as we shall see. However, for the purpose of this section we can take

it positive-de�nite. This allows us to consider the simplest Dirichlet boundary condition

U = 0 on �:

Let W := (H1
0 (
))

nunk , and assume for the sake of simplicity that F 2 (L2(
))nunk . The

weak form of the problem consists in �nding U 2 W such that

a(U ;V ) = l(V ) 8V 2 W; (5)

where the bilinear form a and the linear form l are de�ned as

a(U ;V ) :=

Z


V

t @

@xi
(AiU) d
 +

Z



@V
t

@xi
Kij

@U

@xj
d
+

Z


V

t
SU d
; (6)

l(V ) :=

Z


V

t
F d
:

The Galerkin �nite element approximation of this problem is standard. If Wh is a �nite

element space to approximateW, the discrete problem consists in �nding Uh 2 Wh such that

a(Uh;V h) = l(V h) 8V h 2 Wh:
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It is well known that this formulation lacks stability when the di�usive terms are small,

compared either to the convective or to the reactive terms. Several numerical methods have

been proposed in order to overcome this misbehavior, such as the SUPG or the GLS methods

[15, 16]. In this section we present a stabilized �nite element method for this problem based

on the sub-grid scale concept introduced in [13] (see also [17]).

Let us split the continuous space W as W = Wh �
~W , where ~W can be in principle any

space to complete Wh in W. We call it the space of sub-scales or sub-grid scales. The weak

form of the continuous equation (5) can now be written as the system

a(Uh;V h) + a( ~U ;V h) = l(V h) 8V h 2 Wh; (7)

a(Uh;
~V ) + a( ~U ; ~V ) = l( ~V ) 8 ~V 2 ~W; (8)

where U = Uh + ~U , with Uh 2 Wh, ~U 2 ~W.

Let nel be the number of elements of the �nite element partition of the domain 
 and

let 
e be the region ocuppied by the e-th element, with boundary �e. It is useful for the

following to introduce the notation

Z

0

:=

nelX
e=1

Z

e

;

Z
@
0

:=

nelX
e=1

Z
�e
:

We denote by he the diameter of 
e. The superscript e in he will be omitted if there is no

possibility of confusion.

Let us assume that the solution of the continuous problem U is smooth. Integrating by

parts within each element domain it is found that problem (7)-(8) can be written as

a(Uh;V h) +

Z
@
0

~U
t
niKij

@V h

@xj
d� +

Z

0

~U
t
L
�(V h) d
 = l(V h); (9)

Z
@
0

~V
t
niKij

@

@xj
(Uh + ~U) d� +

Z

0

~V
t
L( ~U) d
 =

Z

0

~V
t
[F �L(Uh)] d
; (10)

for all V h 2 Wh and ~V 2 ~W, where ni is the i-th component of the exterior normal to @


and L� is the adjoint operator of L with homogeneous Dirichlet conditions, given by

L
�(V h) = �A

t
i

@V h

@xi
�

@

@xi

 
K

t
ij

@V h

@xj

!
+ S

t
V h:

Since the normal component of the di�usive 
ux

qn := niKij
@

@xj
(Uh + ~U); (11)

must be continuous across inter-element boundaries, the �rst term in the left-hand-side of

(10) vanishes. Therefore, this equation reduces toZ

0

~V
t
L( ~U) d
 =

Z

0

~V
t
[F �L(Uh)] d
;
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for all ~V 2 ~W , which is equivalent to �nding ~U 2 ~W such that

L( ~U) = F �L(Uh) + V h;ort in 
e
; (12)

~U = ~U ske on @
e
; (13)

for e = 1; :::; nel, where V h;ort is obtained from the condition that ~U must belong to ~W

(and not to the whole space W) and ~U ske is a function de�ned on the element boundaries

and such that the normal component of the di�usive 
ux is continuous across inter-element

boundaries.

Problem (7)-(8) is exactly equivalent to (9)-(12)-(13). The approximate problem is de�ned

by the way in which problem (12)-(13) is solved as well as by the way in which the functions

V h;ort and ~U ske are taken.

A particular case of the method described above is an algebraic approximation to the

sub-scales [13]. The approximation of problem (12)-(13) in this case is

~U � � [F �L(Uh)] (14)

where � is a nunk�nunk matrix de�ned within each element domain that has to be determined.

We shall refer to it as the matrix of stabilization parameters.

The approximation given by (14) has an implicit assumption on the function ~U ske and

the space ~W, and therefore on the function V h;ort. In general, ~U will be discontinuous across

inter-element boundaries, so that the 
uxes given by (11) will not even be well de�ned.

However, from (9) it is observed that, except for the boundary integral, only the component

of ~U in L(Wh) is needed, where L(Wh) is the space of functions of the form L(V h), with

V h 2 Wh. We may think of (14) as the approximation to this component.

To close the approximation, we neglect the inter-element boundary terms in (9), so that

the problem that has to be solved is �nally

a(Uh;V h) +

Z

0

~U
t
L
�(V h) d
 = l(V h); (15)

for all V h 2 Wh, with ~U given by (14). With all these assumptions we have arrived to

the method proposed in [13] (for the scalar convection-di�usion equation) using di�erent

arguments. In particular, (14) was derived from an approximation to the Green's function

of the problem. This method was also considered in [18] and derived for the scalar di�usion-

reaction equation in [19] by using bubble functions.

Even though the justi�cation for the approximation (14) to ~U is weak, the important

point is the structure of the terms added to those coming from the Galerkin method in (15).

It is this structure which will allow us to design a stabilized �nite element method whose

approximation properties are valid for all the values of the parameters of (1) (except for ",

which must be small, as it has been already said).
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At this point it is important to remark that (15) may be obtained also if the bilinear form

associated to Kij, i; j = 1; :::; nsd, is only positive-semide�nite. The only thing that would

change is the boundary conditions to be applied to ~U on the boundaries of the elements.

3 Stabilized method for generalized incompressible 
ows

3.1 The linearized Navier-Stokes equations as a convection-diffusion-re-

action system

The previous stabilization method can be applied to problem (1)-(3) after identi�cation of

this as a system of convection-di�usion-reaction equations. The main point will be the design

of the matrix of stabilization parameters appearing in (14), � .

Since (1) is nonlinear, to make the identi�cation we need to consider a linearized form of

it. For that we assume that the advection velocity of the nonlinear convective term is known,

so that (1) is simply linearized as

(a � r)u+
1

2
(r � a)u+! � u� ��u+ �u+rp = f in 
; (16)

where the velocity �eld a is given. This corresponds to the simplest Picard linearization of

the problem. This point is discussed further later on.

Equations (16)-(2) can now be recast in the form of (4). If �ij is the Kronecker delta, for

nsd = 3 the coe�cient matrices can be expressed as

Kii =

2
66664
� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 0

3
77775 ; Ai =

2
66664
ai 0 0 �i1

0 ai 0 �i2

0 0 ai �i3

�i1 �i2 �i3 0

3
77775 ;

S =

2
66664
� + 1

2
r � a �!3 !2 0

!3 � + 1
2
r � a �!1 0

�!2 !1 � + 1
2
r � a 0

0 0 0 "

3
77775 ; (17)

for i = 1; 2; 3, andKij = 0 for i 6= j. Observe that in this case the bilinear form associated to

the matrices of the di�usion term is only positive semi-de�nite. The space where the problem

has to be posed is now W = (H1
0 (
))

nsd �Q, with

Q =

�
q 2 L

2(
)j

Z


q d
 = 0

�
:

We denote by Vh � (H1
0 (
))

nsd the velocity �nite element space, and by Qh � Q the pres-

sure �nite element space. Both are assumed to be built up using continuous �nite element

interpolations, possibly of the same order. This only a�ects the approximation properties of

the method, as we shall see.
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3.2 Stability problems of the Galerkin method

Let us examine which is the lack of stability of the Galerkin method applied to the problem

considered now. Let Uh = [u1;h; u2;h; u3;h; ph]
t and V h = [v1;h; v2;h; v3;h; qh]

t (for nsd = 3).

The bilinear form associated to the problem given by (6) is now

a(Uh;V h) = �

Z


ruh : rvh d
+

Z



�
(a � r)uh +

1

2
(r � a)uh

�
� vh d


+

Z


(! � uh) � vh d
 +

Z


�uh � vh d


+

Z


"phqh d
�

Z


phr � vh d
+

Z


qhr � uh d
:

Taking vh = uh and ph = qh and denoting by k � k the L2 norm in 
 we get

a(Uh;Uh) = �kruhk
2 + �kuhk

2 + "kphk
2
; (18)

which determines the stability provided by the Galerkin method. It is observed that the

pressure, the convective and the Coriolis terms are out of control. The stability for the

pressure has to be explicitly required by imposing that the �nite element spaces to interpolate

the velocity and the pressure satisfy the classical inf-sup or Babu�ska-Brezzi stability condition.

To have control on the convective term a sort of streamline di�usion has to be introduced in

one way or another. The Coriolis force needs to be controlled by other means (see [3]), since

otherwise it may lead to global oscillations in 
. Finally, if � is large, it is seen from (18)

that this will give a good control over the L2 norm of the velocity, but this will be at the

expense of loosing control over the H1 norm of this velocity, which may then show localized

oscillations near the boundaries.

3.3 Adjoint of the linearized Navier-Stokes operator and stability param-

eters

In order to overcome these numerical problems, let us apply the stabilization technique in-

troduced in the previous section. For that we need to compute the second term in the

left-hand-side of (15).

The adjoint of the operator L associated to (16)-(2) is

L
�(a;V h) � L

�(V h)

=

"
���vh � (a � r)vh �

1
2
(r � a)vh �rqh � ! � vh + �vh

"qh �r � vh

#
: (19)

It remains to de�ne the expression for � . Consider the case " = 0. If we take p̂ = p=� and

multiply the continuity equation (2) by �, the unit coe�cients in the Ai matrices become �,

and the velocity does not change. In other words, if the unit coe�cients in the Ai matrices
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are multiplied by �, the velocity solution is exactly the same. This suggests neglecting these

coe�cients at the moment of computing � and taking it as block diagonal, of the form

� = diag(� 1; �2); (20)

where � 1 is a nsd�nsd matrix corresponding to the momentum equations. These are coupled

through the pressure and the Coriolis force, but the former does not need to appear in � 1.

Although the latter produces a coupling between all the momentum equations, we shall see

(from the numerical analysis and the numerical results) that the same contribution to � 1 can

be used for all the equations. This amounts to saying that matrix � 1 can in fact be taken as

� 1 = �1I, where I is the nsd � nsd identity matrix. Therefore, for nsd = 3 the matrix � that

we shall use is simply

� = diag(�1; �1; �1; �2): (21)

REMARK 1. The argument of the scaling of the pressure is not valid when " > 0. The

formulation presented in what follows will not be useful to deal with instabilities arising

from large values of ", and only small values of this parameter will be allowed (these are

determined below). A possible way to deal with the most general problem of large " (and

even with other terms in the `continuity' equation) is to use expressions of � more general

than just a diagonal matrix as in (21).

From expression (21) and from (19) it follows that the terms to be added to the bilinear

form of the Galerkin method when the stabilized method is used are

�

Z

0
L
�(V h)

t
�L(Uh) d


=

Z

0
�1

�
��vh + (a � r)vh +

1

2
(r � a)vh + ! � vh � �vh +rqh

�

�

�
���uh + (a � r)uh +

1

2
(r � a)uh + ! � uh + �uh +rph

�
d


+

Z

0
�2(�"qh +r � vh)("ph +r � uh) d
: (22)

Now we need to give an expression for �1 and �2 in terms of the coe�cients of the operator

L. Observe �rst of all that �1 must have dimensions of time and �2 of (kinematic) viscosity.

From the analysis of a 1D convection-diffusion-reaction problem presented in [14] based

on the discrete maximum principle and, above all, from the numerical analysis of the following

section, it turns out that �1 may be taken within each element as

�1 =

�
c1�

h2
+
c2jaj1

h
+ c3j!j+ �

�
�1

; (23)

where c1, c2 and c3 are constants independent of the operator coe�cients and the element

size h and jaj1 is the supremum of the Euclidean norm of a within each element. For the
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same pressure scaling argument as before (recall that " is assumed to be small), we have

not considered the pressure in the design of �1. Also, it will be clear from the convergence

analysis why the coe�cient multiplying � is 1.

REMARK 2. If instead of being a scalar � were a second order symmetric and positive

semi-de�nite tensor �, all what follows would be valid using

� 1 =

��
c1�

h2
+
c2jaj1

h
+ c3j!j

�
I + �

��1
;

and (20) for � .

REMARK 3. It is important to note that although both � and 1
2
(r � a) contribute to the

diagonal of S in (17), they play a di�erent role in expression (23). The latter is in fact

considered as part of the convective operator, together with (a � r), and both contribute to

�1 with the term multiplied by c2.

Concerning the parameter �2, it helps to improve the control on the divergence of the

velocity and it is found to be e�ective in practice. Its design is exclusively dictated by the

convergence analysis of the following section. We take it as

�2 = c4� + c5jaj1h+ c6j!jh
2
; (24)

where c4; c5 and c6 are additional numerical constants.

It will be useful in the following to de�ne

'1 :=
c1�

h2
+
c2jaj1

h
+ c3j!j

and '2 as the inverse of �2, so that the parameters �1 and �2 can be written as

�1 = ('1 + �)�1 ; �2 = '
�1
2 : (25)

REMARK 4. Although it is not the purpose of this paper to analyze what happens when "

is large, let us mention that the use of �2 given by (24) in this case may lead to an ill-posed

problem. This can be circumvented by using

�
"
2 = ('2 + ")�1 (26)

instead of �2. This leads to a method that is well posed an optimally convergent in all the

cases except when � is large. We shall come back to this point later on.

Concerning the choice of the constants appearing in (23) and (24), we take c1 = 4; c2 = 2

and c3 = 1 for linear elements, a choice justi�ed from the analysis of the 1D convection-diffu-

sion-reaction equation and from many numerical experiments. These numerical experiments
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are less conclusive for the choice of c4; c5 and c6. Taking them as c4 = 4; c5 = 2 and c6 = 1

turns out to be e�ective. For the numerical analysis carried out in Section 4 we shall need

that '�11 behaves as h2'2. More precisely, there must be two positive constants c and c0 such

that

c

h2'2
� '1 �

c
0

h2'2
: (27)

For quadratic elements we use the same values of the algorithmic constants but taking h

half the element size (roughly the distance between nodes of the element).

REMARK 5. For c4 = 1, c5 = c6 = 0 and " = 0, it is seen from (24) that the contribution of

the term multiplied by �2 isZ

0
�2(r � vh)(r � uh) d
 =

Z


�(r � vh)(r � uh) d
;

which is exactly what would be obtained if the viscous term in (16) (or in the original equation

(1)) is written as 2�r � "(u), where "(u) is the symmetrical part of the velocity gradient.

This is in fact the expression for the viscous term coming from the conservation of momentum

without making use of the continuity equation. Therefore, the additional control over the

velocity divergence provided by the parameter �2 can be justi�ed on physical grounds. It is

a (kinematic) numerical viscosity that provides control over the volumetric part of the strain

rate.

3.4 Stabilized method for the nonlinear problem

Let us consider now the original nonlinear equations (1)-(2). To apply the previous stabiliza-

tion method is in principle straightforward. The idea is to add the term (22) to the Galerkin

variational formulation of the problem replacing a by u, both as advection velocity and in

the expression (23) to compute �1. In this case, the stability analysis of the following section

carries over to the nonlinear case.

Using a superscript for the iteration counter, let us approximate the convective term at

the i-th iteration as�
(uh � r)uh +

1

2
(r � uh)uh

�i
� (ui�1h � r)uih +

1

2
(r � ui�1h )uih

+�(uih � r)u
i�1
h + �

1

2
(r � uih)u

i�1
h � �(ui�1h � r)ui�1h � �

1

2
(r � ui�1h )ui�1h ; (28)

where � = 0 for the Picard method and � = 1 for the Newton-Raphson linearization. If the

momentum equations were weighted by a test function independent of the velocity �eld, it

is known that Picard's method would yield a linear convergence rate and Newton-Raphson's

method a quadratic one (provided the initial guess is close enough to the �nal solution).

However, in our case the momentum equation will be multiplied by �1[��vh + uh � rvh +

12



! � vh � �vh +rqh], with �1 depending also on uh. Therefore, the nonlinearity of the fully

discrete problem is not only quadratic, but in fact very complex due to the dependence of �1

on uh.

In our calculations we have evaluated �1 and �L
�(uh;V h) using the velocity of the pre-

vious iteration (ui�1h , with the previous notation), and the convective term multiplied by

�L�(uh;V h) approximated by (ui�1h � r)uih. However, we have left open the possibility of

using (28) even with � = 1 for the approximation of the convective term coming from the

Galerkin contribution. Even though only a linear convergence rate can be expected in the

most general situation, sometimes better convergence is found by taking � = 1. Of course

this depends on the relative importance of the stabilization term over the term coming from

the Galerkin method, which will be the only one linearized with a second order scheme.

Having this consideration in mind, we can already write down the iterative scheme for

the nonlinear Navier-Stokes equations using the stabilized �nite element method presented in

this paper. This is detailed in Box 1. Iterations of this scheme are required until convergence

is achieved. In all the examples presented in Section 5 we have used a relative tolerance of

0:01% in the discrete L2 norm. The initial guess in all the cases has been set to u0
h = 0, so

that in fact the �rst iteration corresponds to a Stokes problem. These numerical experiments

indicate that this stabilized �nite element formulation yields stable and accurate results.

Moreover, the particular design of the stabilization matrix presented herein allows to obtain

simple stability and error estimates for the linear problem. This is what is shown in the next

section, where, in particular, the role of �2 in the error analysis becomes apparent.

4 Analysis of the linearized problem

4.1 Preliminaries

In this section we study the stability and convergence of the stabilized �nite element method

introduced before for the linearized Navier-Stokes equations. The problem to be solved is

one of the iterations of the scheme in Box 1 dropping the dependence of astab and lstab on

the iteration and setting � = 0; ui�1h � a.

Let us introduce now some notation for what follows. The L2 product in a domain D

(for scalars, vectors or tensors) is denoted by (�; �)D and the associated L
2 norm by k � kD.

Subscript D is omitted when D = 
. The norm in a space X of functions de�ned on D is

denoted by k � kX(D) (we use this notation for X(D) = H
m(D) and X(D) = L

1(D)).

For �nite element functions fh and gh and for a set of parameters � de�ned within each

element, we write

(fh; �gh)h :=

nelX
e=1

Z

e

fh�gh d
;

13



Box 1: Iterative scheme for the nonlinear problem

Given a guess u
i�1
h 2 Vh, �nd (uih; p

i
h) 2 Vh �Qh =Wh such that

astab(u
i�1
h ;U i

h;V h) = lstab(u
i�1
h ;V h);

for all V h 2 Wh = Vh �Qh, where

astab(u
i�1
h ;Uh;V h)

= �

Z


ru

i
h : rvh d
+

Z



�
(ui�1h � r)uih +

1

2
(r � ui�1h )uih

�
� vh d


+�

Z



�
(uih � r)u

i�1
h +

1

2
(r � uih)u

i�1
h

�
� vh d
+

Z


(! � u

i
h) � vh d


+

Z


�u

i
h � vh d
 +

Z


"p

i
hqh d
�

Z


p
i
hr � vh d
+

Z


qhr � u

i
h d


+

Z

0
�
i�1
1

h
��vh + (ui�1h � r)vh + ! � vh � �vh +rqh

i
�

h
���uih + (ui�1h � r)uih + ! � u

i
h + �u

i
h +rp

i
h

i
d


+

Z

0
�
i�1
2 (�"qh +r � vh)("p

i
h +r � u

i
h) d
;

lstab(u
i�1
h ;V h)

=

Z


vh � f d
 + �

Z



�
(ui�1h � r)ui�1h +

1

2
(r � ui�1h )ui�1h

�
� vh d


+

Z

0
�
i�1
1

h
��vh + (ui�1h � r)vh + ! � vh � �vh +rqh

i
� f d
;

and where the parameters �1 and �2 are evaluated within each element as

�
i�1
1 =

 
c1�

h2
+
c2ju

i�1
h j1

h
+ c3j!j+ �

!
�1

;

�
i�1
2 = c4� + c5ju

i�1
h j1h+ c6j!jh

2
:

14



k�
1=2
fhkh :=

q
(fh; �fh)h:

To simplify the notation, we use the abbreviations

X(vh; qh) := (a � r)vh +
1

2
(r � a)vh +! � vh +rqh; (29)

~� := � � �
2
�1: (30)

By virtue of the expression (23) for �1, ~� is non-negative. Moreover, from (25) it is seen that

it can be written as

~� =
'1�

'1 + �
:

Using this notation, the problem to be analyzed can be written as follows: �nd Uh 2 Wh

such that

astab(Uh;V h) = lstab(V h); (31)

for all V h 2 Wh, where

astab(Uh;V h) = �(ruh;rvh) + (X(uh; ph);vh) + �(uh;vh)

+(qh;r � vh) + "(ph; qh)

(��vh +X(vh; qh)� �vh; �1(���uh +X(uh; ph) + �uh))h

(�"qh +r � vh; �2("ph +r � uh))h ; (32)

lstab(V h) = (vh;f ) + (��vh +X(vh; qh)� �vh; �1f)h : (33)

We assume that f 2 (L2(
))nsd in (33) and below.

As it has been mentioned, the parameter " must be small. The precise condition that we

shall need is

" �
C1

h2('1 + �)
� C2 '2; 0 � C1; 0 � C2 < 1: (34)

The stability and convergence of this method will be proven in the norm jjj�jjj, de�ned as

jjjV hjjj :=

�
�krvhk

2 +



~�1=2vh


2

h
+ "kqhk

2

+



�1=21 X(vh; qh)




2
h
+



�1=22 r � vh




2
h

�1=2
: (35)

The implications of using this norm are deferred to the end of this section.

Under the assumption that the family of �nite element meshes obtained from successive

re�nements is non-degenerate, the following inverse estimates hold (see e.g. [20]):

k�vhk
e �
Cinv

he
krvhk
e ; (36)

krvhk
e �
Cinv

he
kvhk
e ; (37)

kvhkL1(
e) �
Cinv

(he)nsd=2
kvhk
e ; (38)
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for e = 1; :::; nel, where Cinv is a constant, vh is a �nite element function, belonging either to

the velocity or to the pressure space, and k�kL1(
e) is the supremum norm.

The �nal ingredient we need is a mesh regularity condition in the case � > 0. Let �b be

an interior boundary of the �nite element partition, that is, a face in 3D or edge in 2D shared

by two elements, say e1 and e2. Let also 
b be the domain obtained from the union of the

domains of elements e1 and e2, that is,


b = 
e1 [ 
e2 ;

the over-bar denoting the closure of a domain. The number of such boundaries will be called

nbo in the following. The condition we need is that the jump of '1 at �
b be bounded as the

mesh size goes to zero, which can be expressed by saying that there are positive constants c

and c0 such that

c'1;e1 � '1;e2 � c
0
'1;e1 : (39)

This condition means in particular that the ratio of the sizes between two adjacent elements

is bounded as the mesh is re�ned, which is a consequence of the fact that the family of �nite

element meshes is non-degenerate.

From now on, C will denote a generic positive constant, independent of the mesh size,

possibly di�erent at di�erent occurrences.

4.2 Stability and convergence

We are now in a position to prove stability and convergence for problem (31). We will proceed

in a very classical way, �rst proving stability, then continuity of astab(Uh;V h) in a di�erent

norm for Uh and V h and �nally we will prove convergence using a C�ea-type argument.

LEMMA 1. Assume that �1 is given by (23) and the constant c1 is c1 > �C
2
inv, with � > 1

and Cinv the constant in the inverse estimates (36)-(37). Then there exists a positive constant

C such that

astab(Uh;Uh) � CjjjUhjjj
2
; (40)

for all Uh 2 Wh.

PROOF: Taking V h = Uh in (32) it is found that

astab(Uh;Uh) = �kruhk
2 + �kuhk

2 + "kphk
2

�




�1=21 (��uh � �uh)



2
h
+



�1=21 X(uh; ph)




2
h

+



�1=22 r � uh




2
h
� "

2



�1=22 ph




2
h

� �kruhk
2 + �kuhk

2 + "kphk
2
� �

2



�1=21 �uh




2
h
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��
2



�1=21 uh




2
h
� 2��




�1=21 �uh





h




�1=21 uh





h

+



�1=21 X(uh; ph)




2
h
+



�1=22 r � uh




2
h
� "

2



�1=22 ph




2
h
:

Using now the inverse estimates (36)-(37) and the fact that for any x and y and for any � > 0

�2xy � �
1

�
x
2
� �y

2
;

it follows that

astab(Uh;Uh) � �kruhk
2 + �kuhk

2 + "kphk
2
� �

2
C

2
inv





�1=21

1

h
ruh





2
h

��
2



�1=21 uh




2
h
� ��

 
1

�




�1=21 ruh




2
h
+ C

2
inv�





�1=21

1

h
uh





2
h

!

+



�1=21 X(uh; ph)




2
h
+



�1=22 r � uh




2
h
� "

2



�1=22 ph




2
h

=

nelX
e=1

(
�1

�
�

�1
� �

2
C

2
inv

1

h2
�

1

�
��

�
kruhk

2

e

+�1

�
�

�1
� �

2
� ���C

2
inv

1

h2

�
kuhk

2

e + "(1 � "�2)kphk

2

e

+�1kX(uh; ph)k
2

e + �2kr � uhk

2

e

)
: (41)

From condition (34) we have that the coe�cient multiplying the norm of ph within each

element is

"(1� "�2) � C":

On the other hand, from the expression (23) for �1 and the assumption on the constant c1,

it follows that, for � > 1, the coe�cient of kruhk
2

e is

��1

�
�

h2

�
c1 � C

2
inv

�
+
c2jaj1

h
+ c3j!j+

�
1�

1

�

�
�

�
� C�;

and the coe�cient of kuhk
2

e is

��1

�
�

h2

�
c1 � �C

2
inv

�
+
c2jaj1

h
+ c3j!j

�
� C~�:

Observe that to obtain this inequality it is essential that the coe�cient multiplying � in (23)

be 1. The stability estimate (40) follows from the last three inequalities applied to (41).

From estimate (40) it is observed that now we have control onX(uh; ph) (the term `unseen'

by the Galerkin method) as well as on r � uh. Observe that to arrive to (40) we have made

use of the expression of �1, but not of �2. However, we need both in order to prove a certain

continuity of astab.
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LEMMA 2. Assume that �1 and �2 are given by (23) and (24), respectively, with c1 and the

rest of algorithmic constants strictly positive, so that condition (27) is satis�ed. Then there

exists a positive constant C such that

astab(Uh;V h) � C

"




�
1=2
2

h
uh







h

+






�
1=2
1

h
ph







h

#
jjjV hjjj;

for all Uh; V h 2 Wh.

PROOF: From (32) and using only Schwartz's inequality for some terms we have that

astab(Uh;V h) � �kruhkkrvhk (42)

+ (vh;X(uh; ph))h (43)

+�(uh;vh) (44)

+ (qh;r � uh)h (45)

+"(ph; qh) (46)

+�2k�1�uhkhk�vhkh (47)

+�k�1�uhkhkX(vh; qh)kh (48)

+��k�1�uhkhkvhkh (49)

+�k�1X(uh; ph)khk�vhkh (50)

+k�1X(uh; ph)khkX(vh; qh)kh (51)

�� (�1X(uh; ph);vh)h (52)

+��k�1uhkhk�vhkh (53)

+� (�1uh; X(vh; qh))h (54)

��
2 (�1uh;vh)h (55)

�"
2 (�2ph; qh)h (56)

+" (r � vh�2ph)h (57)

�" (�2r � uh; qh)h (58)

+k�2r � uhkhkr � vhk: (59)

Now we have to bound these eighteen terms using the norm (35) of V h and a certain norm

of Uh. There are some of these terms that o�er no di�culty. These are (42), (51) and (59),

since their addition can be written as

�kruhkkrvhk+



�1=21 X(uh; ph)





h




�1=21 X(vh; qh)




h

+



�1=22 r � uh





h




�1=22 r � vh





h

� CjjjUhjjjjjjV hjjj: (60)
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The terms (44) and (55) can be grouped together to yield

�(uh;vh)� �
2 (uh; �1vh)h = (uh; ~�vh)h � CjjjUhjjjjjjV hjjj; (61)

and, similarly, for the terms (46) and (56) we have, using condition (34), that

"(ph; qh)� "
2 (ph; �2qh)h � 2"kphkkqhk � CjjjUhjjjjjjV hjjj: (62)

The terms (47), (48) and (49) can be bounded using the inverse estimates (36)-(37) and the

expression (23) for �1:

�
2



�1=21 �uh





h




�1=21 �vh





h
+ �




�1=21 �uh





h




�1=21 X(vh; qh)




h

+��



�1=21 �uh





h




�1=21 vh





h

� �





�1=2Cinv
1

h
�
1=2
1 ruh






h





�1=2Cinv
1

h
�
1=2
1 rvh






h

+�1=2




�1=2Cinv

1

h
�
1=2
1 ruh






h




�1=21 X(vh; qh)




h
+ �





�C2
inv

1

h2
�1uh






h

kvhk

� �kruhkkrvhk+ �
1=2
kruhk




�1=21 X(vh; qh)




h
+



~�1=2uh




h




~�1=2vh



h

� CjjjUhjjjjjjV hjjj: (63)

The term (50) can be bounded as (48) and (53) as (49), so that

�




�1=21 X(uh; ph)




h




�1=21 �vh





h
+ ��




�1=21 uh





h




�1=21 �vh





h

� CjjjUhjjjjjjV hjjj: (64)

Let us bound now (54). Using the de�nition (29) of X(vh; qh) we have:

� (�1uh;X(vh; qh))h � �kuhk





�1
�
Cinvjaj1

h
+ j!j

�
vh






h

+ � (�1uh;rqh)h

� C




~�1=2uh



h




~�1=2vh



h
+ � (�1uh;rqh)h

� CjjjUhjjjjjjV hjjj+ � (�1uh;rqh)h : (65)

Adding now the second term in the right-hand-side with (43), (45) and (52) and integrating

by parts within each element the convective term we have that

� (�1uh;rqh)h � � (�1X(uh; ph);vh)h + (qh;r � uh) + (vh;X(uh; ph))

= �� (�1vh;rph)h + � (�1X(vh; qh);uh)h +

nelX
e=1

Z
@
e

��1(n � a)(uh � vh) d�;

� (ph;r � vh)� (uh;X(vh; qh))

=: [I] + [II] + [III] + [IV] + [V] (66)
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We proceed now to bound each of these �ve terms. For [I] + [IV] we have, integrating

again by parts within each element:

� (�1vh;rph)h + (ph;r � vh) = ((1� ��1)ph;r � vh)h +

nelX
e=1

Z
@
e

��1n � vh ph d�;

=

�
'1

'1 + �
ph;r � vh

�
h

+

nboX
b=1

Z
�b
�[[�1]]n � vh ph d�; (67)

where [[�1]] is the jump of �1 across the interior boundary �b and we have made use of the

continuity of the velocity and pressure �nite element functions across this boundary. The

normal appearing in (67) is the exterior to 
e for the integral over @
e and a �xed normal

to �b for the integral over this boundary. Using the relationship (27), the �rst term in (67)

can be bounded as follows:�
'1

'1 + �
ph;r � vh

�
h

�




'1=21 hr � vh





h





 1

('1 + �)1=2h
ph






h

� C




�1=22 r � vh





h






�
1=2
1

h
ph







h

� CjjjV hjjj






�
1=2
1

h
ph







h

: (68)

The second term in (67) can be bounded making use of the inverse estimate (38) and condition

(39). If e1 and e2 are the two elements sharing �b, the measure of which is denoted meas(�b),

we have

nboX
b=1

Z
�b
�[[�1]]n � vh ph d�

�

nboX
b=1

�
j'1;e1 � '1;e2 j

('1;e1 + �) ('1;e2 + �)
kvhkL1(
b)kphkL1(
b)meas(�b)

� C

nboX
b=1

2X
i=1

�'1;ei

('1;ei + �)
2

C
2
inv

(hei)nsd
kvhk
e

i
kphk
e

i
(hei)nsd�1

� C

nelX
e=1

�
1=2
'
1=2
1

('1 + �)
1=2

1

('1 + �)
1=2

1

h
kvhk
ekphk
e

� C




~�1=2vh



h






�
1=2
1

h
ph







h

� CjjjV hjjj






�
1=2
1

h
ph







h

: (69)

Let us consider now [II] + [V] in (66). Using again (27) we have that

(uh;X(vh; qh))h � � (�1X(vh; qh);uh)h =

�
'1

'1 + �
uh; X(vh; qh)

�
h
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�




'11=2uh



h





 1

('1 + �)1=2
X(vh; qh)






h

� CjjjV hjjj






�
1=2
2

h
uh







h

: (70)

It only remains to bound [III] in (66), for which we can use steps similar to those in (69)

and the expression of '1 to give:

nelX
e=1

Z
@
e

��1(n � a)(uh � vh) d� =

nboX
b=1

Z
�b
�[[�1]](n � a)(uh � vh) d�

� C

nelX
e=1

�'1

('1 + �)2
jaj1

h
kuhk
ekvhk
e

� C




~�1=2vh



h




~�1=2uh



h

(71)

Finally, (57) and (58) are easily bounded using condition (34) on the parameter ":

" (r � vh�2ph)h � " (�2r � uh; qh)h � "
1=2



�1=22 r � vh





h
kphk+ "

1=2



�1=22 r � uh





h
kqhk

� CjjjUhjjjjjjV hjjj: (72)

Combining (60)-(72) we have that

astab(Uh;V h) � CjjjV hjjj

(
jjjUhjjj+






�
1=2
2

h
uh







h

+






�
1=2
1

h
ph







h

)
: (73)

It remains to express jjjUhjjj in terms of the other two norms within the braces for a

generic �nite element function Uh. It is easy to see that

jjjUhjjj
2
= �kruhk

2
+



~�1=2uh


2

h
+ "kphk

2

+



�1=21 X(uh; ph)




2
h
+



�1=22 r � uh




2
h

� �





Cinv
1

h
uh





2
h

+



~�1=2uh


2

h
+ "kphk

2

+3





�1=21 jaj1Cinv
1

h
uh





2
h

+ 3



�1=21 j!juh




2
h

+3





�1=21 Cinv
1

h
ph





2
h

+





�1=22 Cinv
1

h
uh





2
h

: (74)

The coe�cient multiplying the norm of uh within each element is

Cinv
�
1=2

h
+ ~�1=2 + 3�

1=2
1

�
jaj1Cinv

1

h
+ j!j

�
+ �

1=2
2 Cinv

1

h

� C'
1=2
1

 
1 +

�
1=2

('1 + �)1=2
+

'
1=2
1

('1 + �)1=2

!
+ C

�
1=2
2

h

� C
�
1=2
2

h
: (75)
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We have used here the expressions of �1 and �2 in terms of '1 and '2, as well as condition

(27). Similarly, the coe�cient multiplying the norm of ph within each element in (74) is

"
1=2 + 3�

1=2
1 Cinv

1

h
� C

�
1=2
1

h
; (76)

where we have used condition (34) on the penalty parameter ". The Lemma follows using

(75) and (76) in (74) and combining it with (73).

We proceed now to prove convergence. As usual, this can only be proved if the solution

of the continuous problem is more regular than actually required for the problem to be well

posed. The space where it has to belong is

Wr = (Hm(
) \H1
0 (
))

nsd � (Hn(
) \Q); (77)

with m � ku + 1 and n � kp and ku � 1, kp � 1 being the order of the �nite element

interpolation for the velocity and the pressure, respectively.

Let Ûh 2 Wh be an interpolant of the solution U of the continuous problem (5), with

components ûh and p̂h corresponding to the velocity and pressure interpolants, respectively.

If we de�ne

E
e
int(v) := (he)kv+1

kvkHkv+1(
e);

for a continuous function v whose �nite element interpolant of order kv is v̂h, the interpolation

error within each element satis�es

kv � v̂hkHm(
e) �
C

(he)m
E
e
int(v): (78)

We shall apply this for m = 0; 1 for the pressure (v = p) and for m = 0; 1; 2 for the velocity

(v = u). Likewise, when � > 0 we also assume that the velocity components and the pressure

are in L1(
). In this case, we have that

kv � v̂hkL1(
e) �
C

(he)nsd=2
E
e
int(v): (79)

THEOREM 1. Let U be the solution of the continuous problem, assumed to be U 2 Wr,

with Wr de�ned in (77). Under the assumptions of Lemmas 1 and 2 on the stabilization

parameters, there exists a constant C such that

jjjEhjjj � C

nelX
e=1

"
(� e2 )

1=2

he
E
e
int(u) +

(� e1 )
1=2

he
E
e
int(p)

#
; (80)

where Eh = U �Uh.
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PROOF: If U is the solution of the continuous problem and it is smooth enough (as required

in the theorem) it veri�es (31), and thus we have the consistency property

astab(U �Uh;V h) = 0 8V h 2 Wh:

From this and Lemma 1 we have that

CjjjÛh �Uhjjj
2
� astab

�
Ûh �Uh; Ûh �Uh

�
= astab

�
Ûh �U ; Ûh �Uh

�
: (81)

Let  (h) be the right-hand-side of (80). In Lemma 2, which is valid for all �nite element

functions Uh and V h, the only properties needed to obtain the norms of uh and ph within

the brackets are the inverse estimates (36)-(37), and (38) when � > 0. These can be replaced

by the interpolation estimates (78)-(79) to show that

astab

�
Ûh �U ; Ûh �Uh

�
� C (h)jjjÛh �Uhjjj;

which combined with (81) implies that

jjjÛh �Uhjjj � C (h):

The theorem follows from this and the triangle inequality:

jjjU �Uhjjj � jjjU � Ûhjjj+ jjjÛh �Uhjjj

� C (h) + C (h);

where the bound from the �rst term is obtained as (74) using again (78) instead of the inverse

estimates.

REMARK 7. In the case in which " is large, the previous error estimate does not hold. First

of all, �2 has to be replaced by � "2 given by (26). Also, the norm given by (35) is not the

appropriate one to work with. It has to be replaced by

jjjV hjjj" :=

�
�krvhk

2 +



~�1=2vh


2

h
+



~"1=2qh


2

h

+



�1=21 X(vh; qh)




2
h
+



�1=22 r � vh




2
h

�1=2
;

where

~"1=2 := "(1� �
"
2") =

"'2

("+ '2)
;

and � "2 is given by (26). We give without proof the following result:

THEOREM 2. Under the same assumptions as in Theorem 1, if � "2 is used instead of �2,

there exists a constant C such that

jjjEhjjj" � C

nelX
e=1

h
('e1)

1=2
E
e
int(u) + ('e2)

1=2
E
e
int(p)

i
:
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4.3 Discussion

The purpose of this subsection is to apply the error estimate (80) to the limiting cases found

when only one of the physical parameters �; jaj1; j!j or � is dominant. This will show why

this error estimate can be considered as `optimal'. For each case, the contribution of the

terms that do not dominate will be neglected.

In order to simplify the discussion, we consider here that the �nite element mesh is quasi-

uniform and of diameter h, so that (80) reduces to

jjjEhjjj � C

h
�
1=2
2 h

ku + �
1=2
1 h

kp
i
: (82)

Recall that ku and kp are the orders of the polynomial approximation for the velocity and

the pressure, respectively.

Case 1: � dominant. In this case problem (31) is the standard Stokes problem. After

some rearrangements, the error estimate (82) can be written as

kreuk+
h

�
krepk+ kr � euk � C

�
h
ku +

1

�
h
kp+1

�
: (83)

Here and below, eu := u� uh and ep := p� ph are the velocity and pressure �nite element

errors, respectively. It is seen that these �nite element errors are of the same order as the

interpolation errors, and therefore optimal (observe that the factor 1=� can be included in

the pressure).

Even though in (83) the pressure error is expressed in terms of the gradient of ep, it is

possible to obtain a pressure error estimate in L2. This can be done either by relying on the

inf-sup condition satis�ed by the continuous problem (as done in [21]) or by using duality

arguments (the approach followed in [22]).

From (83) it is seen that if kp +1 = ku then both terms on the right-hand-side are of the

same order, a situation that could be considered optimal. However, this is not true for the

cases discussed next.

Case 2: jaj1 dominant. When jaj1 dominates, the error estimate (82) can be written as

1

jaj1
k(a � r)eu +repk+ kr � euk � C

�
h
ku +

1

jaj1
h
kp

�
;

which is optimal. In this case, it is convenient to scale the pressure by the factor 1=jaj1.

The additional control obtained with respect to the Galerkin method is the error estimate

for the derivative along the streamline direction as well as the error estimate for the velocity

divergence.
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Case 3: j!j dominant. This case is similar to the previous one. When j!j dominates (82)

leads to

1

j!j
k! � eu +repk+ hkr � euk � C

�
h
ku+1 +

1

j!j
h
kp

�
;

which is optimal. In this case, it is convenient to scale the pressure by the factor 1=j!j.

As it could be expected from the di�erential equation to be solved, the `optimal' orders of

approximation for the velocity and pressure �nite element spaces in this case would be such

that kp = ku + 1.

Case 4: � dominant. From the de�nition of ~� in (30) it turns out that when � !1 then

~� ! �=h
2. The error estimate (82) in this case yields

kreuk+
1

h
keuk+

1

(��)1=2
krepk � C

�
h
ku +

1

(��)1=2
h
kp

�
: (84)

As in the previous cases, this error estimate is optimal. However, the improvement achieved

with respect to the Galerkin method in this case is di�erent from the others. Instead of getting

control over a new term of the di�erential equation, now the improvement comes from the

fact that the errors in the velocity gradient and the velocity itself are `well balanced', as it

can be observed from (84). For the Galerkin method, the factor 1=h in this estimate has

to be replaced by (�=�)1=2 and therefore only a L2 velocity error estimate can be obtained

for very large values of �. Velocity derivatives are out of control. In practice, localized

oscillations may appear near the boundaries when � dominates over the rest of coe�cients

of the equation.

If instead of using the result of Theorem 1 we rely on the error estimate of Theorem 2,

we obtain

kreuk+
1

h
keuk+

1

(��)1=2
krepk � C

�
h
ku +

1

�
h
kp+1

�
: (85)

In contrast to what happens with (84), now it is not possible to scale the pressure by 1=(��)1=2.

Estimate (85) deteriorates as � !1, loosing control over the pressure.

5 Numerical examples

The following numerical examples are intended to show the performance of the stabilized �nite

element formulation studied in this paper compared to the standard Galerkin approach. Since

it is based on the algebraic approximation to the sub-scales given by (14), it is referred to as

the ASGS (standing for algebraic sub-grid scale) method.

In the absence of rotation and permeability e�ects, the ASGS method is very close to the

Galerkin-least/squares (GLS) or SUPG methods (they reduce to the same method for linear
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Figure 1: (1): Streamlines using the Galerkin method with mesh 1 (Q1=P0 element); (2):

Same as (1) with mesh 2; (3): Same as (1) with mesh 3; (4): Streamlines using the ASGS

method with mesh 1 (Q1=Q1 element).

elements), whose performance in convection dominated problems is well known. Therefore,

attention shall be focussed here on the numerical performance when either the ! or the �

(or both) coe�cients are large and convection is not important. In all the examples below,

" = 0.

When the Galerkin method is used, div-stable velocity-pressure interpolations satisfying

the inf-sup condition need to be employed. The pairs used below are the Q1=P0 (bilinear

velocities and piecewise constant pressures, which is not exactly div-stable but is known to

yield good results), the Q2=Q1 (biquadratic velocities and continuous bilinear pressures) and

the P2=P1 (quadratic velocities and continuous linear pressures). For the ASGS method equal

velocity-pressure can be used, but it is obviously possible to use div-stable interpolations in

this case as well.

5.1 Convergence test

As a �rst case, let us consider a 2D steady state test with analytical solution to check

the behavior in space of the �nite element approximation to problem (1)-(3). This test

has also been presented in [23] using a slightly di�erent stabilized method. We take 


as the unit square and the force term so that the exact solution is p = 0 and u(x; y) =
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Figure 2: Velocity convergence of the ASGS method using equal velocity-pressure interpola-

tion. Top: L2 norm, bottom: H1 norm.

(f(x)g0(y);�f 0(x)g(y)), with f(x) = x
2(1� x)2 exp(7x) and g(y) = y

2(1� y)2. This velocity

�eld vanishes on @
.

As physical properties we have taken � = 0:005 and di�erent values of ! and �. In

particular, results will be shown for � = 0; 1000 and ! = 0; 1000. We have used three

uniform �nite element meshes (meshes 1, 2 and 3) of 10 � 10, 20 � 20 and 40 � 40 bilinear

elements, so that the element sizes are h = 0:1, h = 0:05 and h = 0:025, respectively. The

resulting values of the element Reynolds number are not very high and for this particular

example the standard Galerkin approach using the Q1=P0 element works in the absence
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 Figure 3: Velocity vectors for the 3D test case. Left: Galerkin method (Q1=P0 element).

Right: ASGS method (Q1=Q1 element).

of Coriolis force. However, when this force exists, the Galerkin method yields completely

oscillatory results all over the computational domain. Results for ! = 1000 and � = 0 are

shown in Fig. 1, where also the streamlines obtained using the ASGS method are shown. In

this case there are no oscillations.

In Fig. 2 we have plotted the convergence of the velocities obtained with the ASGS method

as the mesh is re�ned, both in the H1 and the L2 norms and for di�erent combinations of the

values of � and !. The convergence rate is optimal in both norms and for all the combinations

of � and !.

Similar results are obtained in the 3D extension of this example that we consider now.

The domain is �
 = [0; 1] � [0; 1] � [0; 0:4] and is �rst discretized using a coarse mesh of

10 � 10 � 4 elements. We take the force term so as to obtain as exact solution u(x; y; z) =

(h(z)f(x)g0(y);�h(z)f 0(x)g(y); 0), with f(x) and g(y) as before and h(z) = z(10 � 25z). In

order to test the numerical method, we have taken di�erent vectors !, all with the same

norm ! = 1000. In all the cases we have obtained good solutions using the ASGS method.

In Fig. 3 we have plotted the velocity vectors obtained for ! parallel to (1; 1; 1) and � = 0,

both for the standard Galerkin method and the ASGS method. The oscillations found using

the former are completely removed by the latter.
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Figure 4: Velocity �eld for the rotating Poiseuille 
ow problem (without centrifugal force).

Galerkin method with � = 1 using the Q2=Q1 element.
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nu = 0.0001, stabilized

Figure 5: x-velocity pro�les at the outlet for di�erent values of the viscosity using the Ga-

lerkin method (with the Q2=Q1 element). Results using the ASGS method (with the Q2=Q2

element) are only shown for � = 10�4. Abscissa in grid units.

5.2 Rotating Poiseuille 
ow

In this example (also presented in [23]) we consider a 2D Poiseuille rotating 
ow with � = 0.

The computational domain is the rectangle [�2; 2] � [�1; 1], which rotates about the origin

with a speed of rotation ! = 100. The Reynolds number is taken small enough so as to

neglect the convective term of the Navier-Stokes equations. The problem is therefore linear.

A parabolic velocity pro�le with maximum velocity (1; 0) is prescribed at the inlet x = �2,

whereas at the top and bottom walls (y = �1; 1) the no-slip condition is employed. If the
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Figure 6: Streamlines (top) and pressure contours (bottom) for � = 10�4 using the ASGS

method for the rotating Poiseuille 
ow problem (Q1=Q1 element).

velocity is also prescribed at the outlet x = 2, the velocity solution would not be a�ected

by the fact the domain rotates (both the Coriolis and centrifugal forces are curl-free, and

therefore they can be written as the gradient of a scalar function that can be included in

the pressure). Instead of prescribing the velocity, we have used the homogeneous Neumann

boundary condition associated to the Stokes operator, that is,

�pn+ �
@u

@n
= 0 at x = 2: (86)

It turns out that for this very simple problem a velocity `boundary layer' is created at the

outlet when ! increases. To understand the phenomenon, suppose that the centrifugal force

is dropped. The Coriolis force can be replaced by a body force that acts as a traction t at

the outlet, pointing downwards at out
ow points. This directs the 
ow towards the bottom

of the outlet. This e�ect is more important the higher ! is. In order to capture it, we have

employed a mesh of 600 Q2=Q1 elements (with 2501 nodal points) re�ned near y = �1. The

velocity �eld obtained using this mesh and the Galerkin method with � = 1 is shown in Fig. 4.

The boundary layer created as ! increases is shown in Fig. 5. The abscissa is measured in
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grid spacing units, since otherwise the boundary layer is too thin to be observed. It is seen that

the Galerkin method presents global oscillations for � = 10�4 (that are present in the whole

computational domain), whereas the ASGS method only presents localized boundary layer

oscillations. In fact, for smaller values of � the Galerkin solution is completely oscillatory,

whereas the solution obtained with the ASGS method is perfectly smooth for all �.

The streamlines and pressure contours computed using the ASGS formulation (incorpo-

rating now the centrifugal force) are shown in Fig. 6. Now this result has been obtained

using a mesh of Q1 elements obtained by splitting each biquadratic element into four bilinear

ones and using equal velocity-pressure interpolation. It is observed that the centrifugal force

dominates the pressure and also that the condition p � 0 at the outlet to which (86) reduces

when � is very small is well approximated.

5.3 Flow in a porous cavity

1 2

3 4

Figure 7: Results for the 
ow in a cavity for � = 0 and using the Galerkin method (P2=P1

element). (1): Streamlines; (2): Pressure contours; (3): x-velocity contours; (4): y-velocity

contours.

This last example consist of the solution of the Stokes problem (problem (1)-(3) without the

nonlinear convective term) in the T-shaped cavity �
 = [�4; 4] � [0; 6] [ [�7; 7] � [6; 9]. A

parabolic velocity pro�le u = (ux(y); 0), with ux(y) = 1 � (y=3 � 3)2, is prescribed at the
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1 2

3 4

Figure 8: Results for the 
ow in a cavity for � = 104 and using the Galerkin method (P2=P1

element). (1): Streamlines; (2): Pressure contours; (3): x-velocity contours; (4): y-velocity

contours.

inlet x = �7, whereas the outlet x = 7 is left free (i.e., condition (86) at x = 7 is applied).

The no-slip condition is used for the rest of the boundary, except at y = 9, where u = (0; 1)

is prescribed.

The domain 
 is discretized in this case using quadratic triangles (P2 elements) and

equally distributed nodes, separated 0.25 in both the x and y directions. The total number

of nodes is 1533 and the total number of elements 720. Both for the Galerkin and for the

ASGS methods, the P2=P1 velocity-pressure interpolation has been employed, so that the

need for using a stabilization method does not come from the pressure interpolation. The

objective of this example is to see how does the ASGS method work when the coe�cient �

is large. The physical parameters employed in this example are � = 1, ! = 0 and di�erent

values of �, up to 104.

Numerical results are shown in �gs. 7, 8 and 9. The former corresponds to the case � = 0,

and the Galerkin results are smooth. However, from Fig. 8 it is seen that when � = 104 there

are numerical oscillations, higher near the boundaries and propagating towards the interior of

the domain. These oscillations are partly damped out when the ASGS method is employed

(see Fig. 9), even though some of them remain. The improvement can be better observed

32



1 2

3 4

Figure 9: Results for the 
ow in a cavity for � = 104 and using the ASGS method (P2=P1

element). (1): Streamlines; (2): Pressure contours; (3): x-velocity contours; (4): y-velocity

contours.

from Fig. 10, where the x-velocity component along the mid section x = 0 is plotted. This

behavior is exactly what should be expected from the discussion of the previous section.

6 Conclusions

In this paper we have described a �nite element method for solving the stationary Navier-

Stokes equations written in a rotating frame of reference, incorporating the permeability of

the medium and also a small penalty parameter in the continuity equation.

The stabilized formulation employed can be motivated from the sub-grid scale concept,

using in particular an algebraic approximation to the sub-scales. The method depends on

two algorithmic parameters the form of which has been proposed. For the �rst of them,

�1, its expression is motivated from the analysis of a simple one-dimensional case. However,

this expression is further justi�ed by the convergence analysis presented for the linearized

problem, which shows that it leads to optimal error estimates. It is also this analysis who

dictates how the second numerical parameter, �2, must behave. In contrast to other error

estimates for stabilized �nite element methods, the one presented here relies completely on

33



-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

x-
ve

lo
ci

ty

Distance

s = 0
s = 1

s = 10
s = 10000

s = 10000, stabilized

Figure 10: x-velocity pro�les at the vertical section x = 0 of the cavity for di�erent values of

the � coe�cient (denoted s in the �gure). Results using the ASGS method are only shown

for � = 104.

this parameter �2.

Limit cases discussed show that the error estimate is optimal and that the stabilized

formulation must be able to work equally well for all the possible values of the physical

parameters. Numerical experiments presented here show that this in fact true, provided the

algorithmic constants on which the formulation depends are properly chosen.
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