

Full-scale numerical calculation of ballasted tracks with the Discrete Element Method

Joaquín Irazábal, Fernando Salazar and Eugenio Oñate

https://github.com/KratosMultiphysics/Kratos http://gid.cimne.upc.es/

Motivation and Outline

Good results applying the Hertz-Mindlin contact model

Simple compression – Hertz

Paderno C. Simulation of ballast behaviour under traffic and tamping process. PhD Thesis 2009.

Hertzian contact model: contact stiffness depends on the contact volumen but does not take into account edge breakage

Real contact geometry

Numerical contact geometry

Conical damage contact model: accounts for edge breakage Two new material properties to define: Maximum stress and α

Harkness, J., Zervos, A., Le Pen, L., Aingaran, S., & Powrie, W. (2016). Discrete element simulation of railway ballast: modelling cell pressure effects in triaxial tests. Granular Matter, 18(3), 65.

Simple compression – Conical damage

Paderno C. Simulation of ballast behaviour under traffic and tamping process. PhD Thesis 2009.

Rigid bodies and simplified geometry **Sleepers contact parameters** Young modulus = 30 Gpa (prestressed concrete) Friction coefficient = 0.7247*

*Zand, J. van't, & Moraal, J. (1997) Roads and Railways Research Laboratory Technical University of Delft

Bonded DEM

Large deformations Non-linear problem

- Analytical solution unknown \Box FEM

Bonded DEM

Bonded DEM

Applied load Rail →Bearing plate \leq Sleeper $k_{\rm bp} = 30 - 50 \, \rm kN/mm$ (fixed)

Pita, A. L., Teixeira, P. F., & Robusté, F. (2004). High speed and track deterioration: the role of vertical stiffness of the track. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(1), 31-40.

Bearing plates

Δ	Δ	$E_{bp} = 2 \text{ GPa}$	 $k_{bp} = 33.51 \text{ kN/mm}$
		$E_{bp} = 3 \text{ GPa}$	 $k_{bp} = 43.18 \text{ kN/mm}$
0	0	$E_{bp} = 4 \text{ GPa}$	 $k_{bp} = 51.50 \text{ kN/mm}$
∇	V	$E_{bp} = 5 \text{ GPa}$	 $k_{bp} = 58.81 \text{ kN/mm}$

Full scale railway track tests | Summary and ongoing work

Contact between ballast and boundary walls

Young modulus = 200 Mpa* Friction coefficient = 0.0 ("mirrored particles")

*Paderno, C. Simulation of ballast behaviour under traffic and tamping process. 9th Swiss Transport Research Conference. 2009.

Subballast

$$k_{sub} = 70 - 110 \text{ kN/mm}$$

 Pita, A. L., Teixeira, P. F., & Robusté, F. (2004). High speed and track deterioration: the role of vertical stiffness of the track. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(1), 31-40.

- Scenario 1: Well compacted track
- Scenario 2: Poorly compacted track
- Scenario 3: Fouled track (less friction* and larger contact volume between particles)

*Huang, H. & Tutumluer, E. (2011). Discrete Element Modeling for fouledrailroad ballast. Construction and Building Materials, 25 (8) 3306–3312.

Q = 168732 N	Axle load
v = 250 km/h	Velocity of the train
R = 4000 m	Radius of the curve
$A = 77.45 \text{ cm}^2$	Rail cross section
$I_{xx} = 3217 \text{ cm}^4$	Moment of inertia horizontal axis
$I_{yy} = 524 \text{ cm}^4$	Moment of inertia vertical axis

Full scale tests – Ballast lateral velocity

Full scale tests – Sleepers displacement

- Well compacted track
- Poorly compacted track
- – Fouled track

Full scale tests – Sleepers displacement

Summary and ongoing work

- Spherical particles are useful for evaluating the macroscopic behaviour of the track (not valid, for example, to analyse the distribution of contacts)
- The DEM can accurately reproduce the behavior of rails and bearing plates making easy the coupling with railway ballast discrete particles
- The numerical tool presented allows the user to test different situations:
 - Ballast granulometry or properties
 - Sleepers design
 - Bearing plates and rails

RESILTRACK (Resilience of Railway Infrastructures Against Climate Change)

- Analysing how to measure track deflections in a real railway track section (high-speed if possible)
- Searching more data to validate conical damage parameters and ballast fouling conditions
- Testing other particle geometries (clusters of spheres) more similar to ballast particles

Thank you for your attention!

Questions?

jirazabal@cimne.upc.edu