	,						
То	From				Pa	age 2 of 2	
Distribution	Tanks Preering	rocess		Date 05/15/45			
Project Title/Work Order				E	DT No. と合	5302	
Replacement of the Cross-Site T Transport Alternatives Evaluati							
Name		MSIN	Text With All Attach.	Text Onl	Ý	Attach./ Appendix Only	EDT/ECN Only
 R. Porter E. Raymond D. Riesenweber H. Rifaey P. Sloughter J. Smith J. Sutey A. Swenson R. Tardiff D. Thomson 	•	B4-52 R2-54 R2-76 T4-07 H5-27 G2-02 T4-07 H5-49 S5-05 R2-76	X X X X X X X X X X X				

-

.

	DISTR	IBUTIO	N SHEET					
То	From	-			Pa	age 1 of 2		
Distribution	Waste Engine	Tanks Pr eering	rocess		D	ate 5/1	5:195	
Project Title/Work Order					EI	DT No. 6	6393	
Replacement of the Cross-Site Tra Transport Alternatives Evaluation	ansfer 1, Proj	System L ect W-05	iquid Was 8	te	ECN No. N/A			
Name		MSIN	Text With All Attach.	Text Onl	у	Attach./ Appendix Only	EDT/ECN Only	
Washington State Department of Ecc P.O. Box 47600 Olympia, Washington 98504-7600	<u>logy</u>							
Geoff Tallent	•		•		•			
<u>U.S. Department of Energy.</u> <u>Richland Operations Office</u>						•		
C. C. Haass G. M. Neath G. H. Sanders		S7-51 S7-52 S7-52	X X X					
ICF Kaiser Hanford Company								
J. F. Thompson J. A. Mahan (KH DOC. Mgmt) MACTEC	I	H5-68 E6-44	X X					
D. S. Rewinkel		S7-72	х					
<u>Westinghouse Hanford Company</u>								
 W. B. Barton L. T. Blackford W. M. Brantley M. A. Cahill R. A. Dodd D. B. Engelman E. M. Epperson R. L. Fritz L. D. Goodwin M. L. Grygiel R. D. Gustavson J. L. Henderson J. L. Homan G. F. Howden J. Kalia J. J. Klos J. M. Light G. A. Meyer S. R. Nelson R. J. Nicklas G. L. Parsons 		$\begin{array}{c} H5-27\\ T3-28\\ B4-52\\ R3-25\\ S5-05\\ R1-49\\ B4-08\\ B4-08\\ T6-12\\ B1-59\\ R1-51\\ E6-22\\ H5-09\\ G3-20\\ B4-08\\ T4-08\\ B4-08\\ S4-54\\ G6-14\\ R1-43\\ B4-52\\ \end{array}$	X					

A-6000-135 (01/93) WEF067

YAM	15 ľ	195	ENGINE	ERING	DATA TR	RANSI	MITTAL			1. EDT	* Page 1 606		
	o: (Rec tribut		anization)	,	3. From: Waste Ta Enginee	anks F		nization)	4. Related	Nelated EDT No.: N/A			
		g./Dept./D S 713		CO4-	6. Cog. En D. V. V(• • • • • • • • • • • • • • • • • • •	7. Purchas	7. Purchase Order No.: N/A			
8. Or	iginato	r Remarks:			een incom		ted. ·			. Equip./Component No.: . N/A D. System/Bldg./Facility:			
11. R	leceiver	Remarks:		· · · · · · · · · · · · · · · · · · ·				•		N/A · jor Assm. Dwg. No.: N/A rmit/Permit Application No.:			
			•							N/A 4. Required Response Date: 05/12/95			
15.				DATA	TRANSMITTE)		· · · · · · ·	(F)	(G)	(H)	(I)	
(A) Item No.	(B)	Document/Dra	awing No.	(C) Sheet No.	(D) Rev. No.		Title or Desc Transr	cription of Data mitted	Approval Desig- nator	Reason for Trans- mittal	Origi- nator Dispo- sition	Receiv- er Dispo- sition	
1	WHC-SD-W058-TA-001 N/A 0 Replacement of the Cross-Site Transfer System Liquid Waste Transport Alternatives Evaluation, Project W-058							n Liquid Waste matives	N/A	1,2			
16,				l	<u> </u>		EY		ll				
	roval Desi	gnator (F)		Reason	for Transmittal				Disposition	o (H) & (I)			
E, S, Q, D or N/A (see WHC-CM-3-5, Sec.12.7) 1. Approval 4. Review 1. Approval 4. Review 1. Approved 4. Reviewed no/common 2. Approved w/comment Sec.12.7) 3. Information 6. Dist. (Receipt Acknow. Required) 3. Disapproved w/comment 6. Receipt acknowled						w/comment							
(G)	(H)	17.	<u>,</u>		SiGi (See Approval						(G)	(н)	
Rea- son	Disp.	(J) Narr		ignature (L	.) Date (M) N	ISIN	(J) Nai		ıre (L) Date	(M) MSIN	Rea- son	Disp.	
1	1		D. V. Vo		D.1.10	⁶ 84-52	G. L. Pa		mons	B4-	^	1	
			J. M. Lig	nt 0/1)	M 5/6/9	\$4-08	R. J. Sn			G2-	_		
		QA Safety	<u> </u>	0			G. F. Ho			63-	<u> </u>		
		Env.						M. Neath D. S. Rewinkel		\$7- \$7-	<u>_</u>		
1	1	E. M. Epp	erson ra	C	5/5/95	B4-08		esenweber					
1	i	R. L. Fri		Grace com		B4-08	J. F. Th			H5-			
	ure of ED1		Author	The second secon	ntative Date	20 5/95	b. Mgnizage Man	<u>5/8/55</u> ager Date	21. DOE AP Ctrl. [] Approve [] Approve [] Disappr	No. d d w/comme	if require	d)	

•

•

BD-7400-172-2 (04/94) GEF097

·

4

• .

RELEASE AUTHORIZATION

Document Number:WHC-SD-W058-TA-001, Rev. 0• Document Title:Replacement of the Cross-Site Transfer System Liquid
Waste Transport Alternatives Evaluation, Project
W-058Release Date:May 12, 1995

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

May 12, 1995

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy and microfiche. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from:

> U.S. Department of Energy Office of Scientific and Technical Information (OSTI) P.O. Box 62 Oak Ridge, TN 37831 Telephone: (615) 576-8401

Available to the public from:

U.S. Department of Commerce National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, VA 22161 Telephone: (703) 487-4650

A-6001-400.2 (09/94) WEF256

SUPPORTING DOCUMENT		1. Total Pages 68
Replacement of the Cross-Site Transfer System iquid Waste Transport Alternatives Evaluation, Project W-058	3. Number WHC-SD-W058-	4. Rev No. TA-001 0
. Key Words Cross-site, cross-country, aboveground, Inderground, rail, French LR-56, trailer, tanker, Cask, buried pipe, process pipe, slurry transport Cransfer, liquid waste, tank waste, 204-AR, GY Tank Farm, high level, low level, CSTS, W-058, W Tank Farm Complex	signature	10 10 10 10 10 10 10 10 10 10
his document examines high-/low-level radioactive liternatives. Radioactive liquid waste will be t to the 200 East Area and within the 200 East Area the radioactive waste transport alternatives are French LR-56 Cask System [3,800 L {1,000 gal}], system, 75,700-L (20,000-gal) rail tanker system) buried pipe [unlimited transfer volume capabilit following areas: initial project cost, operation generation, radiation exposure, and final decommi eneration, radiation exposure, and final decommi solve and solve and solve and solve and solve solve and solve and solve and solve and solve and solve and long term, the trailer container resulted in and solve and the French truck was operationally and solve and the French truck was operationally	ransported from is for safe stor the Aboveground 19,000-L (5,000 and Underground y]). The evalue al cost, second ssioning. The of 49.509 millie estimated volue on showed that the west overall to the highest tot	the 200 West Area age and disposal. Transport System -gal) trailer tanke d Transport System ation focused on th ary waste evaluation was base on L ne of ne buried pipe tal cost for near ar
	8. RELE	ASE STAMP
•		

• • • •

+-

MAY 15 1995	;
-------------	---

A-6400-073 (08/94) WEF124 .

.

REPLACEMENT OF THE CROSS-SITE TRANSFER SYSTEM LIQUID WASTE TRANSPORT ALTERNATIVE EVALUATION, PROJECT W-058

D. V. Vo E. M. Epperson

May 1995

Westinghouse Hanford Company Richland, Washington

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

i

.

-:

1.11

This page intentionally left blank.

t

EXECUTIVE SUMMARY

This report is an evaluation of high-/low-level radioactive liquid waste transport alternatives. The high-/low-level radioactive liquid waste will be transported from the 200 West Area to the 200 East Area and within the 200 East Areas for safe storage and disposal. This evaluation is required to document the results in response to a question raised during the comment period of the Environmental Impact Statement for Safe Interim Storage of Hanford Tank Waste.¹

A previous study² provided the foundation for this evaluation. The study investigated the technical feasibility and likelihood of approval for shipping large (19,000 L [5,000 gal]) samples of actual tank waste from the 200 Areas to hot cell facilities in other areas on the Hanford Site. The study provided the estimated cost of the load/unloading facility and the risk assessment that were used in this evaluation.

The high-/low-level radioactive waste transport alternatives are the Aboveground Transport System (AGTS) and Underground Transport System (UGTS). The AGTS methods considered were an "off-the-shelf" shielded French LR-56 Cask System (3,800 L [1,000 gal]), a conceptual 19,000-L (5,000-gal) shielded trailer tanker system (truck), and a conceptual 37,850-L (10,000-gal) shielded rail tanker system. The UGTS method considered is a 60% design buried pipe system with unlimited transfer volume capability.

¹DOE, 1994, Environmental Impact Statement for Safe Interim Storage of Hanford Tank Waste, DOE/EIS-0212, Washington State Department of Ecology and U.S. Department of Energy, Richland Operations Office, Olympia, Washington.

²Howden, G. F., 1993, *Pilot Plant Hot Test Facility Siting Study*, WHC-SD-WM-TA-143, Rev. O, Westinghouse Hanford Company, Richland, Washington.

The evaluation investigated the estimated high-/low-level radioactive waste transport volume requirement for near term (1995 to 2005) of 49.509 million L (13.063 million gal) and long term (1995 to 2028) of 757.1 million L (200 million gal). The evaluation focused on the following areas: initial project cost, operational cost, secondary waste generation due to flushing, radiation exposure to personnel, and final decontamination and decommissioning (D&D). The operational cost, secondary waste generation, radiation exposure, and D&D bases were developed to estimate a cost basis for comparison with the initial project cost.

The detailed comparison of the three main candidate methods (buried pipe, trailer tanker car, and rail tanker car) are provided in Sections 2.0 and 3.0 of this report. The French LR-56 cask (truck) was not included in the detailed comparison because the large number of trips required made it impractical and uneconomical.

The buried pipe (UGTS) resulted in the lowest overall total cost for near term (1995 to 2005) and long term (1995 to 2028) as shown in Table 2-10. The higher initial project cost and final D&D costs for the UGTS are offset by the lower operational, evaporation, and radiation exposure costs which result in a lowest overall total cost. The rail tanker car method (AGTS) appeared to have the next lowest overall total cost. However, the high radiation exposure to tank farm workers for routine operation is a concern for the long-term, accident administrative control during transport of high-level liquid radioactive waste, and a fully loaded shielded 37,850-L (10,000-gal) rail tanker car nearly exceeding the railroad loading requirement. The trailer tanker car (AGTS) resulted in the highest total cost for near term (1995 to

iv

2005) and long term (1995 to 2028) as shown in Table 2-10. Even without taking credit for radiation exposure cost, the UGTS buried pipe system for the total Hanford Site cleanup (1995 to 2028) total estimated cost is 65% less expensive than the lowest AGTS (rail tanker system). During the lowest demanded year (2003) for transport of liquid waste, rail tanker car and trailer tanker car roundtrips required travel distances exceeding the estimated yearly allowable AGTS mileage limit of 400 km (250 miles) for transport of high-level radioactive waste that was set as a limit for an incredible accident scenario without imposing administrative controls. Note that the AGTS mileage was based on the Howden document preliminary risk assessment. Therefore, actual mileage limits may be different than those presented here.

The buried pipe (UGTS) design is approximately 60% complete. The Preliminary Safety Analysis Report for Replacement of the Cross-Site Transfer System, Project W-058 revision¹ and a system engineering design requirements document are being prepared. Also, the environmental documentation for the UGTS is well underway. The integrated Project W-058 is supporting Tri-Party Agreement Operational Milestone M-43-07C of February 1998. Thus, there is no technical uncertainty associated with UGTS. In contrast, there are several uncertainties associated with the AGTS. The first one is related to the preparation of the project documents as required by DOE Order 4700.1.² These documents have not been prepared for the AGTS, which may impact the estimated

۷.

¹Kidder, R. J., 1993, Preliminary Safety Analysis Report for Replacement of the Cross-Site Transfer System, Project W-058, WHC-SD-W058-PSAR-001, Rev. 0, Westinghouse Hanford Company, Richland, Washington.

²DOE, 1987, *Project Management System*, DOE Order 4700.1, U.S. Department of Energy, Washington, D.C.

ويولك الأستادي المسارحين والمجرز ومكالا فيترقص كالما منابأ أشفتهم متكناه والتشكات وستاكر المكاله خلافه

-16 -17 - 37 - 38 - 38

n - 3 - 1

cost and/or schedule. The second uncertainty is the estimated project cost for AGTS, which was based on preconceptual ideas. The third uncertainty is related to meeting the Tri-Party Agreement Operational milestone by February 1998. This is the biggest uncertainty because the Conceptual Design, Title I (Preliminary Design), Title II (Definitive Design), and construction activities have not been started. The fourth uncertainty is related to resolution of technical issues such as radiation exposure, additional accident administrative control during transport, a shielded 37,850-L (10,000-gal) rail tanker car exceeding the railroad loading requirements, remote operations (connect/disconnect), and seismically qualified equipment.

•

•

CONTENTS .

1.0	0 INTRODUCTION 1- 1.1 SCOPE 1- 1.1.1 Waste, Volume, and Source 1- . 1.1.2 Schedule 1- 1.2 ASSUMPTIONS 1- 1-	1 1
2.0	0DISCUSSION22.1SYSTEM DESCRIPTIONS22.1.1French LR-56 Cask22.1.2Trailer Tanker Car22.1.3Rail Tanker Car22.1.4Buried Pipe22.2COSTS AND COMPARISONS2-12.2.1Project Cost Comparison2-12.2.2Operational Cost Comparison2-12.2.3Evaporation Cost Comparison2-12.2.4Personnel Exposure Cost Comparison2-22.2.5Decommissioning Cost Comparison2-22.2.6Summary Cost Comparison2-22.2.6Summary Cost Comparison2-2	11444333300
3.0	3.1 SPECIFIC CONCLUSIONS 3-1 3.2 OVERALL CONCLUSIONS 3-2	1
4.0	0 TECHNICAL UNCERTAINTIES 4-1 4.1 UGTS 4-1 4.2 AGTS 4-1	1
5.0	D REFERENCES	L
APP	PENDIXES	
A	OPERATIONAL COST COMPARISON BASES	l
В	EVAPORATION COST COMPARISON BASES	ι.
С	RADIATION EXPOSURE COST COMPARISON BASES	L
D	DECOMMISSIONING COST COMPARISON BASES	L

.

- ---- *

١

•

LIST OF FIGURES

2-1	Proposed Aboveground Transportation System Transporter Load/Unload Facility
2-2	High-Level Liquid Waste Transporter
2-3	Illustration of the 20,000-L Tank Mounted on a Heavy-Duty Trailer
2-4	Road Layout
2-5	Low-Level Liquid Transporter
2-6	Rail Layout
2-7	Buried Pipe Route
2-8	Replacement of Cross-Site Transfer System
2-9	Underground Transportation System Diversion Box
2-10	Aboveground Transportation SystemRadiological Surface Dose versus Distance Away from the Cask

LIST OF TABLES

1-1	Projected Volume and Source of Radioactive Liquid Waste1995 to 2005
2-1	Number of Transfers/Trips1995 to 2005
2-2	Capital Cost Comparison1995 to 2005
2-3	Operational Cost Comparison1995 to 2005
2-4	Operational Cost Comparison1995 to 2028
2-5	Evaporation Cost Comparison1995 to 2005
2-6	Evaporation Cost Comparison1995 to 2028
2-7	Radiation Exposure Cost Comparison1995 to 2005
2-8	Radiation Exposure Cost Comparison1995 to 2028
2-9	Decommissioning Cost Comparison1995 to 2005
2-10	Summary Cost Comparison

REPLACEMENT OF THE CROSS-SITE TRANSFER SYSTEM LIQUID WASTE TRANSPORT ALTERNATIVES EVALUATION, PROJECT W-058

1.0 INTRODUCTION

1.1 SCOPE

This study was initiated in response to a question on the Environmental Impact Statement for Safe Interim Storage of Hanford Tank Waste (DOE 1994) (regarding the technical basis for preferring pipeline transport of Watch List waste to rail tanker car or trailer tanker car transport). This study includes information on volume projections, system descriptions, personnel exposure, technical uncertainties and costs associated with transportation of radioactive liquid waste from the 200 West Area to the 200 East Area and within the 200 East Area by the Aboveground Transport System (AGTS) versus the Underground Transport System (UGTS). The AGTS considered in this study was the French LR-56 cask, trailer tanker car, and rail tanker car with the required load/unload facilities. The UGTS used in this study was buried pipes with associated diversion boxes that connect from the SY Tank Farm to the 244-A Lift Station.

1.1.1 Waste, Volume, and Source

A near-term (1995 to 2005) liquid waste transfer estimated volume (Toth 1995, Hanlon 1994, Strode 1994) was developed and the details are shown in Table 1-1. During this period, the estimated total waste volume of 49.509 million L (13.063 million gal) is scheduled for transporting from the 200 West Area to the 200 East Area and within the 200 East Area. The total estimated volume includes mostly facility-generated waste, decommissioning cleanout, SY Tank Farm retrieval, and facility flushes. Table 1-1 identifies the facilities from which the waste originates and the quantity of waste associated with the respective facility.

A long-term (1995 to 2028) liquid waste transfer estimated volume of 757.1 million L (200 million gal) (Brantley 1994) was also considered in the evaluation. The long-term estimated volume includes the estimated near-term transfers, single-shell tank retrieval, and transfer from safe storage to disposal facilities.

1.1.2 Schedule

The schedule driver is the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) Milestone M-43-07C, "Replacement of Cross-Site Transfer System Operational by February 1998." As described in WHC-SD-WM-EV-094, Tank Waste Remediation System Transfer Facility Compliance Plan (Hansen 1994), replacement of the existing cross-site transfer

SOURCE						Y	EARLY VOLU	JME (gallon:	r)	•		TOTAL
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	VOLUME (gal.)
Facility Generation							1					
S-Plant	216000	216000	216000	216000	216000	216000	216000	216000	216000	216000	216000	2376000
T-Plant	180000	180000	180000	180000	180000	180000	180000	180000	180000	180000	180000	1980000
PFP Laboratory w/solid	36000	36000	36000	36000	36000	36000	36000	36000	· 36000	36000	36000	396000
PFP Stabilization w/flush	0	0	31000	278000	210000	42000	0	0	0	0	0	561000
SY Tank Farm												
TK 101-SY Diln/Retrieval		o	o	6	0	0	0	ol	0	o	0	0
TK 101-SY *	ő	ő	o	ő	ő	ŏ	ŏ	õ	õ	ŏ	Ō	ō
TK 102-SY •	450000	ő	ŏ	312000	ő	ō	ō	ō	ō	0	· 0	762000
TK 102-ST TK 103-SY Diln/Retrieval	00000	ő	ő	0	ō	ō	ō	o	. Ō	Ó	0	0
TK 103-SY *	ŏ	ō	Ō	0	0	0	0	0	0	0	0	0
Flushes								•				
SWL Pump. w/o flush (200W)**	111000	736000	534000	809000	258000	26000	o	0	ol	o	0	2474000
SST Solids Retrv(200W from TX)**		0	0	0	0	0	ō	Ō	ō	800000	1200000	2000000
Fac.Gen.+SWL+TCO(200W)	37000	100000	79000	107000	52000	29000	26000	26000	26000	26000	26000	534000
TF lines, cross-site, ALC(200W)***	180000	180000	180000	180000	180000	180000	180000	180000	180000	180000	180000	1960000
TOTAL VOLUME (galions)	1210000	1448000	1256000	2118000	1132000	709000	638000	638000	638000	1438000	1838000	13063000

1-2

Unless otherwise flagged, data reported here is from the "Double Shell Tank Inventory and Available Space" report, by A.D. Toth, 12/28/1994 *Waste Tank Summary Report for Month Ending, by B.M. Hanlon, WHC-EP-0182-81, 12/31/1994 **Operational Waste Volume Projection, by J.N. Strode, WHC-SD-WM-ER-029, Rev. 20, Table 3, 09/12/1994 *** Tank Farm lines, cross-site, Air Lift Circulator water flust/injection is equally divided between 200W and 200E

TERMS/ACRONYMS

ALC = Air Lift Circulator PFP = Plutonium Finishing Plant

SST = Single-Shell Tank SWL = Salt-Well Liquid

TCO = Terminal Clean Out TF = Tank Farm

TK = tank

WHC-SD-W058-TA-001 Revision 0

ı.

٥f

Radioactive

lines is required because the existing system does not comply with current environmental regulations and portions of the line are nearing the end of their design life.

1.2 ASSUMPTIONS

The following assumptions were made in preparing this study.

- Identical quantities of liquid waste are used for the AGTS and the UGTS.
- Personnel exposure was based on a surface dose of 200 mrem/h for the LR-56 Cask System (Smith 1994) and the same surface dose for rail tanker car and trailer tanker car systems. Personnel exposure was based on a surface dose of <0.05 mrem/h for the outside of the UGTS diversion boxes (Brantley 1994).
- The AGTS options include an "off-the-shelf" 3,800-L (1,000-gal) shielded French truck, a conceptual 19,000-L (5,000-gal) shielded trailer tanker car, and a conceptual 37,850-L (10,000-gal) shielded rail tanker car.
- The AGTS consists of two load/unload facilities located at the SY Tank Farm, and the A Tank Farm Complex.
- The UGTS consists of four diversion boxes located near the SY Tank Farm, existing vent station, B Plant, and the A Tank Farm Complex.
- Decontamination and decommissioning (D&D) of two of the load/unload facilities (AGTS) is equivalent to four of the diversion boxes (UGTS).
- The design and fabrication cost of the trailer tanker car and rail tanker car is the same as the French truck (LR-56), which is approximately \$2.5 million.
- Before release of the trailer tanker car or rail tanker car from the load/unload facility, radiological surveys to monitor for contamination and surface decontamination during upset conditions are required by HSRCM-1, *Hanford Site Radiological Control Manual* (WHC 1994). The radiological surveys and any surface decontamination will be contact handled.

.

- ----

This page intentionally left blank.

2.0 DISCUSSION

2.1 SYSTEM DESCRIPTIONS

Brief descriptions of the AGTS and the UGTS are given below. Additional details on each system may be found in the reference listed with each system. The modes of potential transport systems include the following:

- Shielded French LR-56 cask (modified off-the-shelf)
- Shielded trailer tanker car (conceptual) Shielded rail tanker car truck (conceptual) Shielded buried pipe (60% design).

Two load/unload facilities are required to support the AGTS. The conceptual design of the facility is shown in Figure 2-1. Because the AGTS is required to operate daily, the facility will be designed to minimize radiation exposure as required by DOE Order 6430.1A, General Design Criteria (DOE 1989). These facilities would be located at the SY Tank Farm, and at the 204-AR near the A Tank Farm Complex. Additional details can be obtained from pages 5-21, 5-24, and 5-25 and Appendix B, Sections 3.1 and 3.2.2, of WHC-SD-WM-TA-143 (Howden 1993). Some major design features of the load/unload facilities include the following:

- Remotely connect and disconnect the pump, and maintain transfer pumps and valves using master/slave manipulators
- Drive-through load/unload shielded cells •
- Remotely operated equipment (bridge-mounted electromechanical . manipulator, crane) in load/unload cells for recovery from upset conditions
- Shielded doors at each end of load/unload cells and a second set of ٠ outer doors to provide a double air barrier in the event of a spill
- Zoning ventilation for trailer/rail cell, pump/valve cell, and solid • waste handing cell to provide secondary confinement
- Sample storage capability (94,600 L [25,000 gal]).

The existing low-level waste unloading facility 204-AR will require modification to incorporate the above features for high-level waste activities.

2.1.1 French LR-56 Cask

The French truck is a 3,800-L (1,000-gal) capacity, shielded (5.1 cm [2 in.] of lead equivalent) container mounted on a trailer tanker car. The truck comes equipped with pumps, sampling devices, valves, etc. The truck is an "off-the-shelf" item and would require no design efforts (Figure 2-2), Detailed descriptions and cost can be obtained from WHC-SD-WM-TA-143, Pilot Plant Hot Test Facility Siting Report, Appendix M (Howden 1993). The French truck will use the existing road connected between the 200 West and 200 East Areas.

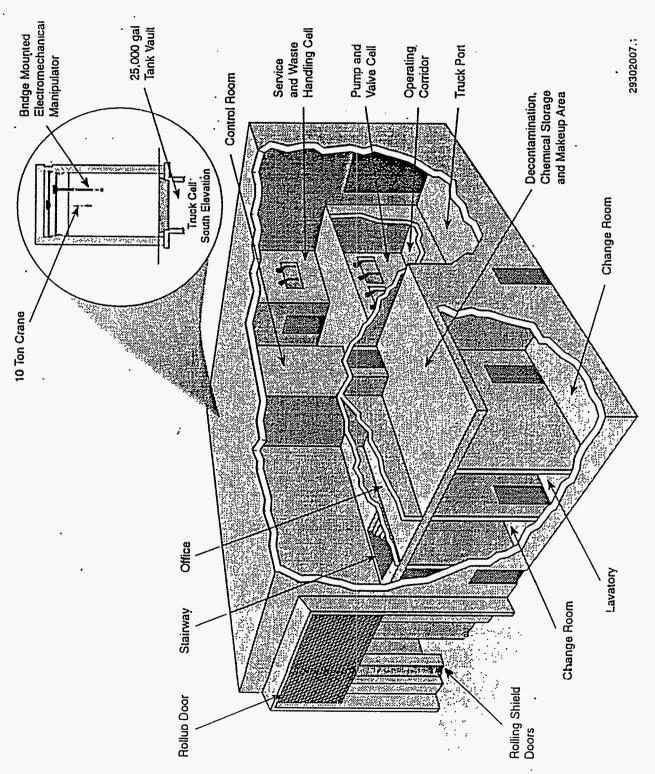
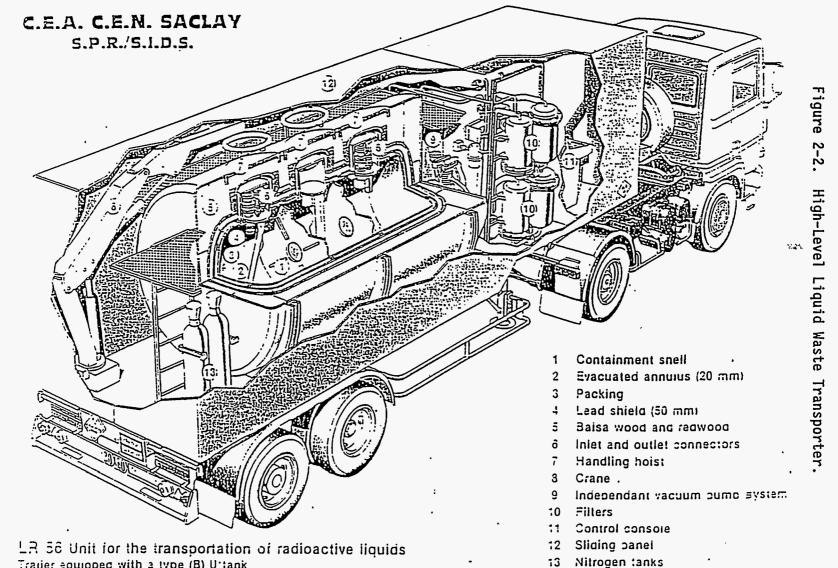



Figure 2-1. Proposed Aboveground Transportation System Transporter Load/Unload Facility.

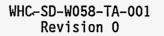
Trailer souroped with a type (B) Uttank

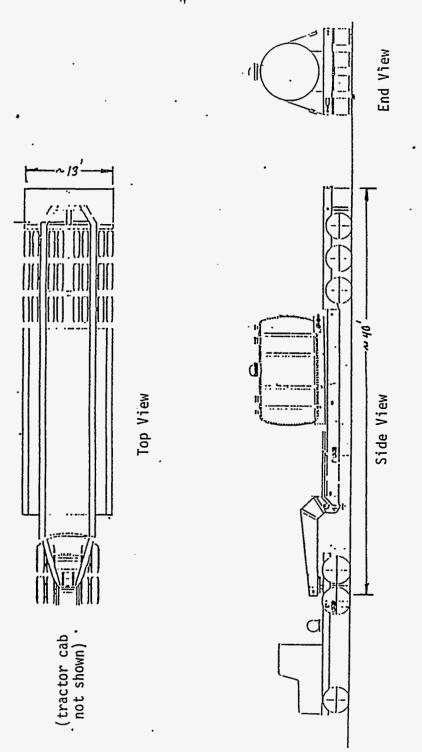
2-3

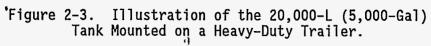
MHC-SD-W058-TA-001 Revision 0

11 15 43 The Cold St.

2.1.2 Trailer Tanker Car - Truck


This is a 19,000-L (5,000-gal) capacity, shielded (5.1 cm [2 in.] of lead) double-shell steel tank (about 2.4 m [8 ft] in diameter by 4.9 m [16 ft] long) mounted on a special low-boy heavy-duty trailer (Figure 2-3). Design and procurement activities would be required for this system. Detailed information can be obtained from WHC-SD-WM-TA-143, Appendix B, Section 3.2.3, pages B-14 through B-23 (Howden 1993). The trailer tanker car will use the existing road connected between the 200 West and 200 East Areas with approximately 1.5 km (4,800 ft) of potential additional new road in the 200 East Area to avoid sharp road curves and proximity to existing office trailers (Trost 1995). The road distance from the SY Tank Farm facility to the A Tank Farm complex is 10.7 km (6.7 miles) and from the B Plant facility to the A Tank Farm complex is 1.9 km (1.2 miles). The actual road layout is shown in Figure 2-4.


2.1.3 Rail Tanker Car


The rail tanker car is a 37,850-L (10,000-gal) capacity, shielded (5.1 cm [2 in.] of lead equivalent) double-shell tank mounted on a special rail flat-car. This is a special shielded trailer tanker car and would require design modification and procurement activities. The non-shielded 75,700-L (20,000-gal) rail tanker is shown in Figure 2-5. The rail tanker car will use the existing railroad connected between the 200 West Area and the 200 East Area with approximately 0.7 km (2,200 ft) of additional new railroad to provide rail spurs to the SY Tank Farm, B Plant, and A Tank Farm Complex (Trost 1995). The rail distance from the SY Tank Farm facility to the A Tank Farm Complex is 15.5 km (9.7 miles), and 5.0 km (3.1 miles) from the B Plant facility to the A Tank Farm Complex. The actual rail layout is shown in Figure 2-6.

2.1.4 Buried Pipe

The UGTS pipe-in-pipe has two parallel buried pipes connecting the SY Tank Farm at 241-SY-A and -B valve boxes in the 200 West Area with the 244-A Lift Station and 241-AR-151 diversion box in the 200 East Area. A third pipe connects B Plant with the cross-site transfer system in the 200 East Area. The route is approximately 10.4 km (6.5 miles) long. The actual buried pipe route is shown in Figure 2-7. The system consists of 7.6-cm (3-in.) diameter 304L stainless steel pipes encased in 15.2-cm (6-in.) diameter carbon steel buried pipes with leak detection, three diversion boxes with booster pumps in two of the diversion boxes, and a vent station. The diversion boxes would be located near the SY Tank Farm, near B Plant, and at the A Tank Farm Complex, whereas the vent station is located at the highest point in the 600 Area. The replacement of the cross-site transfer system block diagram is shown in Figure 2-8 and additional details can be obtained from WHC-SD-W058-FDC-001, Functional Design Criteria for Project W-058, Replacement of Cross-Site Transfer System (Brantley 1994). The design of the facility is shown in Figure 2-9. Some major design features of the diversion boxes include the following:

÷

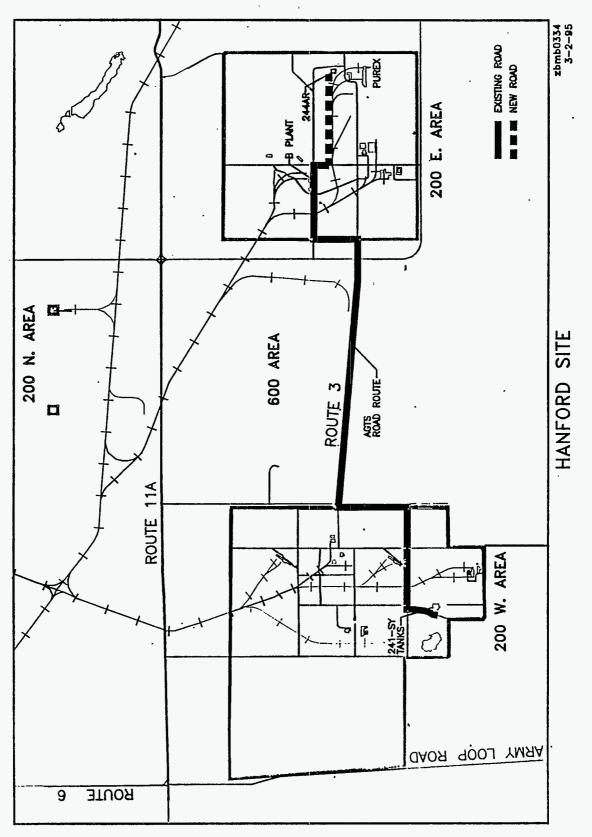
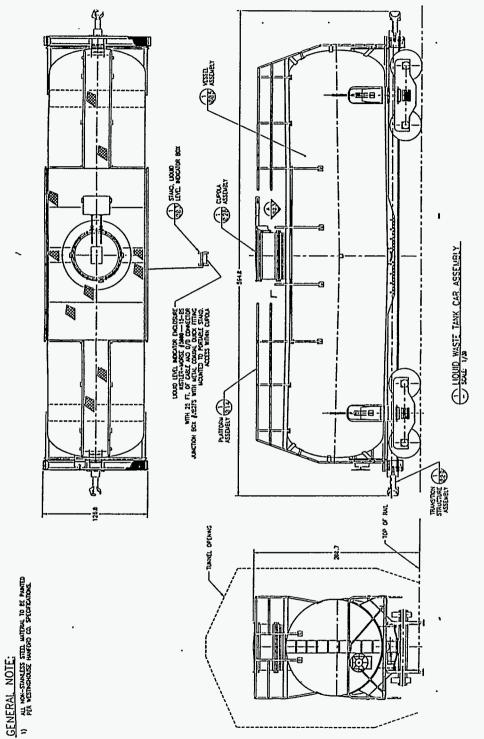
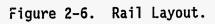
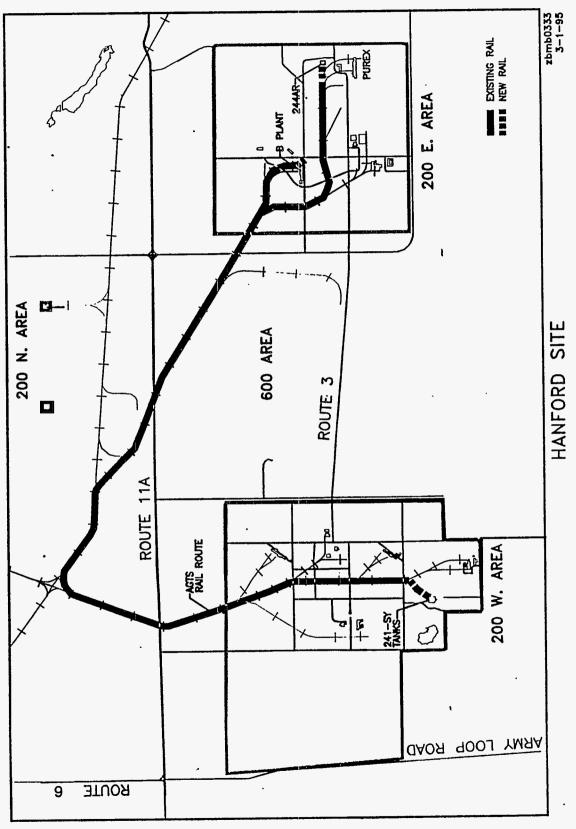
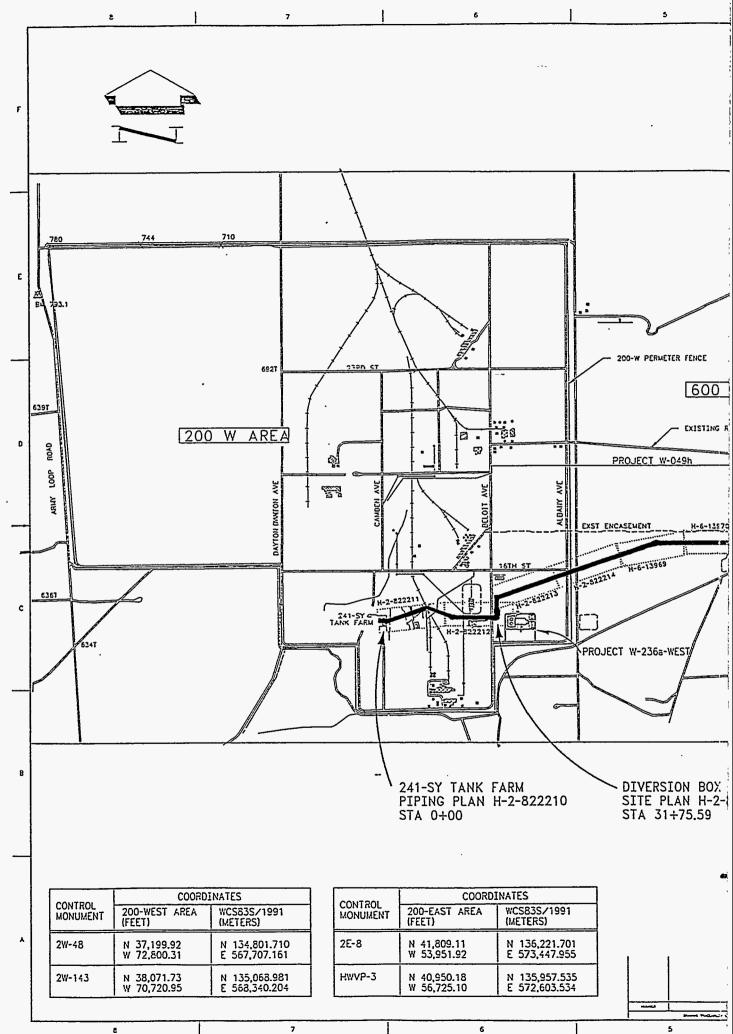
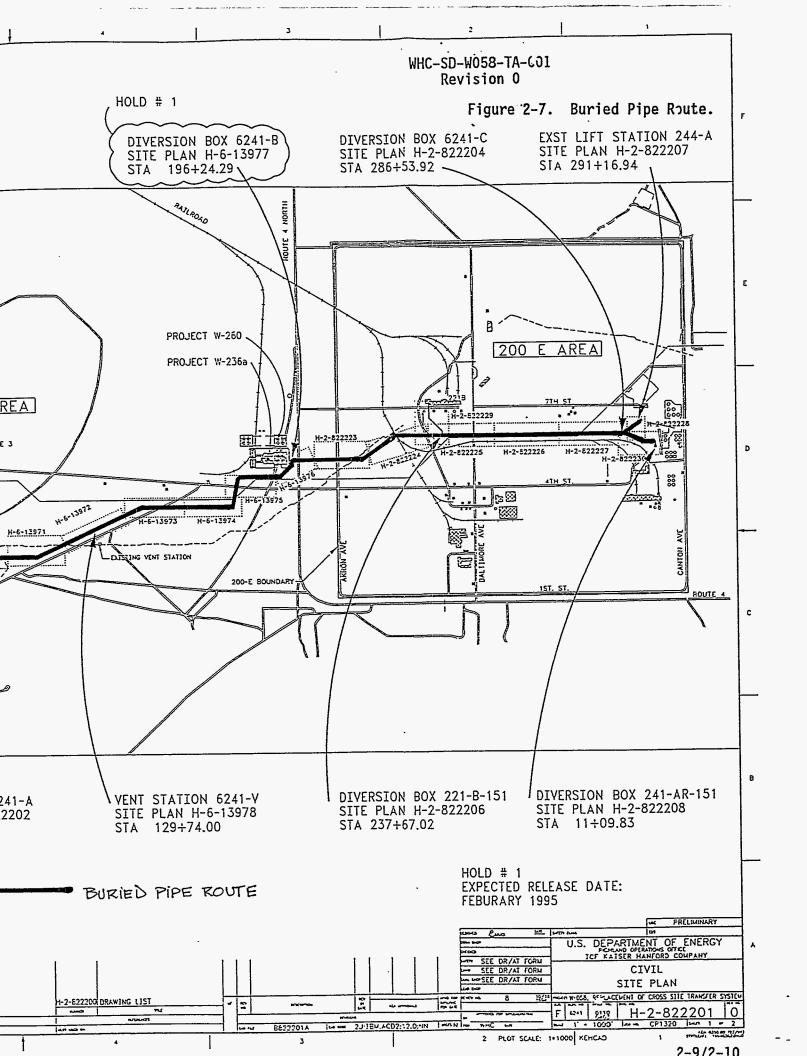


Figure 2-4. Road Layout.

*


Figure 2-5. Low-Level Liquid Transporter (Requires Shielding for High-Level).



4.7

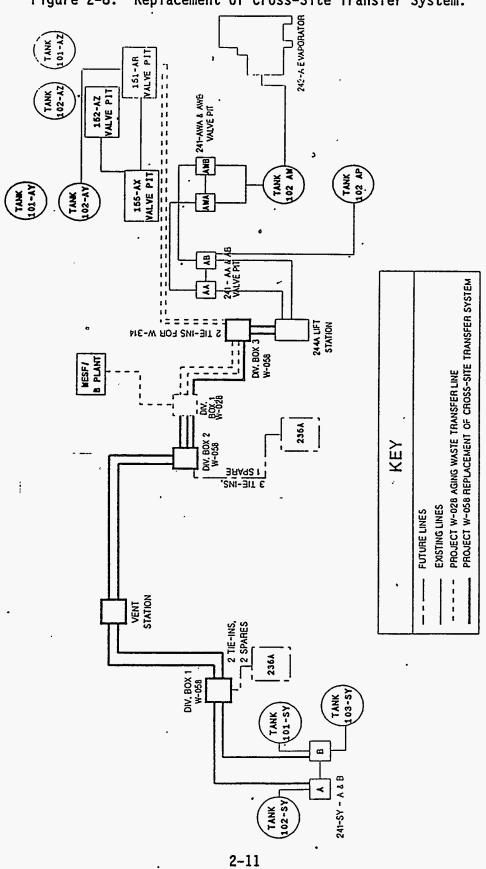


Figure 2-8. Replacement of Cross-Site Transfer System.

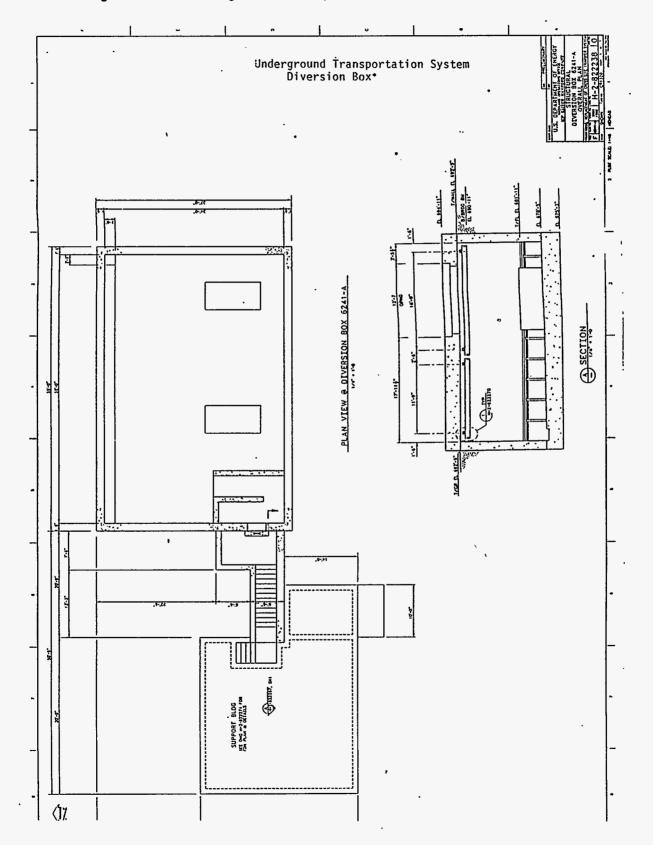


Figure 2-9. Underground Transportation System Diversion Box.

- Operation of the system is automated by using a monitor control system
- Shielded floor and flush capability for contact-handled maintenance of transfer pumps, valves, and instruments
- Portable ventilation system for maintenance
- Permanent greenhouse and instrument building.

2.2 COSTS AND COMPARISONS

The data used to develop the various costs associated with each mode of waste transport are shown later in this section. The French truck was eliminated from further analysis because its limited capacity resulted in an excessive number of trips (see Table 2-1) making it noncompetitive relative to the other modes of transport. The types of costs involved include the following:

- Project
- Operational
- Evaporation (disposal of flush water)
- Personnel exposure
- Decommissioning
- Summary.

2.2.1 Project Cost Comparison

The project cost for each transport mode is shown in Table 2-2. The project cost to go ranges from \$49.2 million for the UGTS, \$31.9 million for the rail tanker system, and \$34.9 million for the trailer tanker system. The UGTS costs include the pipeline, diversion boxes, vent station, pumps, and leak detectors. The AGTS costs include the vehicles, load/unload stations, portion of new road, and a rail spur.

2.2.2 Operational Cost Comparison

The expenses as the result of supporting personnel to transfer liquid waste (regardless of mode) are considered as operational costs. The support personnel are typically operations, engineering, health physics, maintenance, quality assurance, safety, and others.

As shown in Tables 2-3 and 2-4, the cost of transporting radioactive liquid waste via the UGTS is 0.17/L (0.63/gal). This compares favorably to the least expensive AGTS mode (rail tanker) of 0.30/L (1.15/gal).

2.2.3 Evaporation Cost Comparison

After each transfer of radioactive liquid waste the transferring vehicle (regardless of mode) will require flushing. Tables 2-5 and 2-6 show the

Table 2-1. Number of Transfers/Trips--1995 to 2005.

CAPACITY (gal/transfor) Buried Pipe French Truck Trailer Container Rail Container	50000 1000 5000 1000								œ œ œ ⊭ œ	ROUTE DISTAN Buried Pipe French Truck Trailer Container Rail Container	stance- k ainer er	ROUTE DISTANCEONE WAY(mle) ^e Buried Pipe French Truck Trailer Container Bail Container	SY to A Farm Comp 6.50 6.70 6.70 9.70
мегнор	1995	1996	1997	1998	YEAR 1999	5000	2001	2002	2003	2004	2005	TOTAL TRANSFER/TRIP (1995-2005)	AVERAGE TRANSFER/TRIP PER YEAR
YEA 200W To 200E Transfer (gal) 1210000 1448000	1210000	_	ILY TRANS 1256000	LY TRANSFERS/TRIPS(SY TANK FARM TO A FARM COMPLEX) 1256000 2118000 1132000 709000 638000 638000 63	PS(SY TA 1132000	NK FARM 1 709000	TO A FARM 638000	M COMPLI 638000	EQ 638000 1438000		1838000		
BURIED PIPE FRENCH TRUCK TRAILER CONTAINER RAIL CONTAINER	2 1210 242 121	3 1448 290 145	3 1256 251 126	4 2118 424 212	2 1132 226 113	1 709 142 71	1 638 128 64	1 638 126 64	1 638 128 64	3 1438 288 144	4 1838 368 184	. 26 13063 2613 1306	2 1188 238 119
метнор				Ċ,	T-dNUO	ROUND-TRIP TOTAL YEARLY TRANSFER MILEAGE (mile)	YEARLY	TRANSFEI	R MILEAG	E (mile) .		TOTAL MILEAGE (mile) (1995–2005)	AVERAGE MILEAGE PER YEAR (mile)
BURIED PIPE FRENCH TRUCK TRAILER CONTAINER RAIL CONTAINER	N/A 16214 3243 2347	N/A 19403 3881 2809	N/A 16830 3366 2437	N/A 28381 5676 4109	N/A 15169 3034 2196	N/A 9501 1900 1375	N/A 8549 1710 1238	N/A 8549 1710 1238	N/A 8549 1710 1238	N/A 19269 3854 2790	N/A 24629 4926 3566	N/A 175044 35009 25342	N/A 15913 3183 2304

Estimate Road and Rail Distances, by E. T. Trost, 01/26/95

GIVEN

COST PER UNIT

3

GIVEN				1	COST PER UN	UT		Tal
Pipe/Route Length Addition (mile) Buried Pipe: Truck: Rail:	6.5 (0.92 (SY Tank Farm To 244–4 Use 200 Area Existing Ro Rail Spurs to SY and A T	pad)	Pipe/Route Const Buried Pipe: Truck:* Rail:*	ruction Cost Per	Length (\$/mile)	1478000 1000000 1000000	able 2-2.
Minimum Required New Facility Buried Pipe (Diversion Box): Truck (Load/Unload): Rail(Load/Unload): Minimum Modified Facility	1 (1 (DB#1, Vent Station, MV SY Tank Farm) SY Tank Farm)	/TF-East, DB#3)	Facility Cost (\$/fa Buried Pipe (Divers Truck (Load/Unload Rail(Load/Unload):	ion Box): d):**	Upgrade Existing N/A 9000000 9000000	New Facility 5000000 17500000 17500000	Capital
Buried Pipe (Diversion Box): Truck (Load/Unload): Rail(Load/Unload):	•	204-AR) 204-AR)						Cost
Pipe/Required Transportation Veh Buried Pipe (Pumps, Leak Det., etc.) Truck: Rail:): 1 (i 3 (includespare capability) l spare) l spare)		Pipe/Transportatik Buried Pipe (Pump Truck:*** Rail:***		\$/each)	10014000 2500000 2500000	Compari
	Method Buried Pipe **** Truck Rail	P Route 19214000 920000 420000	roject Cost (\$) Facility 20000000 26500000 26500000	7500000	Total Project Cost (\$) 49228000 34920000 31920000	(Escalated 1993)		son1995
		<u></u>				J 、	•	to
** Pilot Plant Hot	and Rail Construction Test Facility Siting St provides the French	udy, by G. F. Howd	n, WHC-SD-\			B/1993		2005.

Method	P	roject Cost (\$)		Total Project	
·	Route	Facility	Vehicle/Other	Cost (\$)	
Buried Pipe ****	19214000	20000000	10014000	49228000	(Escalated 1995)
Truck	920000	26500000	7500000	34920000	(Escalated 1993)
Rail	420000	26500000	5000000	31920000	(Escalated 1993)

.

Estimate Road and Rail Construction, by E. T. Trost, 01/26/95
 ** Pilot Plant Hot Test Facility Siting Study, by G. F. Howden, WHC-SD-WM-TA-143 Rev. 0, Table 5-2, 11/18/1993
 *** W. A. Brooks provides the French truck transporter LR-56 (1000 gallons capacity) estimated cost, 02/14/95
 *** Total Estimated W-058 Project Costs is \$52700000. However, the Project had spent \$3472000

WHC-SD-W058-TA-001 Revision 0

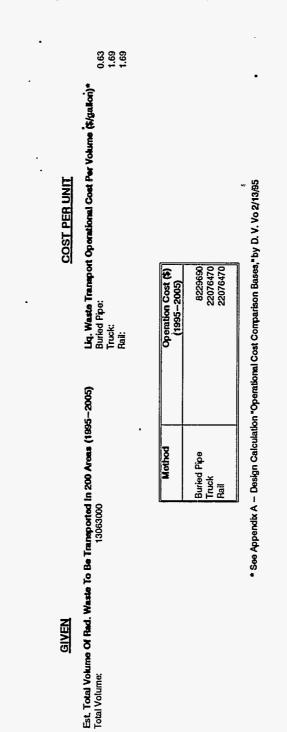


Table 2-3. Operational Cost Comparison--1995 to 2005.

WHC-SD-W058-TA-001 Revision 0

•

	8-FDC-001, Rev. 2, 08/26/94
Operation Cost (\$) (1995-2028) 12600000 338000000 338000000	V. Vo 2/13/95 er System, by W. M. Brantley, WHC-SD-WG
Method Buried Pipe Truck Rail	* See Appendix A - Design Calculation "Operational Cost Comparison Bases," by D. V. Vo 2/13/95 ** Functional Design Criteria For Project W-058, Replacement Of Cross-Site Transfer System, by W. M. Brantley, WHC-SD-W058-FDC-001, Rev. 2, 08/26/94
	Pipe

Table 2-4. Operational Cost Comparison--1995 to 2028.

26 (SY to A Farm Complex) 2613 (SY to A Farm Complex) 1306 (SY to A Farm Complex)	Buried Pipe: Truck: Rail: Flush Water Evaporation Cost (\$/transfer)
	Rail:
1306 (SY to A Farm Complex)	
	Flush Water Evanceation Cost (Stransfor)
32000	Buried Pipe (1 Volume Fill and 1 Volume Flush);
4300	Truck (1 Volume Flush):
4900	Rail (1 Volume Flush):
	,
	4300

Evaporation Cost (\$) (flush water)
2106801 28310134
16130192

* See Appendix B - Design Calculation "Evaporation Cost Comparison Bases," by D. V. Vo 2/10/95

WHC-SD-W058-TA-001 Revision 0

2.52 2.52 2.52

80640 10836 12348

.

.

<u>GIVEN</u> Total Number Of Trips or Transfers		COST PER UNIT Waste Water Evaporation Coat (\$/gallon)*
Buried Pipe:	400 (SY to A Farm Complex)	Buried Pipe:
Truck:	40000 (SY to A Farm Complex)	Truck:
Rail:	20000 (SY to A Farm Complex)	Rail:
Flush Water Volume (galion)/Transfer*		Flush Water Evaporation Cost (\$/transfer)
Buried Pipe:	32000	Buried Pipe (1 Volume Fill and 1 Volume Flush):
Truck:	4300	Truck (1 Volume Flush):
Rail:	4900	Rail (1 Volume Flush):

Method	Evaporation Cost (\$) (flush water)
Buried Pipe	32256000
Truck	433440000
Rail	246960000

* See Appendix B - Design Calculation *Evaporation Cost Comparison Bases, * by D. V. Vo 2/10/95

WHC-SD-W058-TA-001 Revision 0

2.52 2.52 2.52

80640 10836 12348

quantity of flush water required for each mode of transport and the cost to dispose of (evaporate) the flush water. The unit cost of evaporation is the same regardless of the transport mode. The total cost for evaporation is less for the UGTS because less flush water is required in transporting 49.509 million L (13.063 million gal) of waste via UGTS than AGTS.

2.2.4 Personnel Exposure Cost Comparison

The detriment associated with radiation exposure to personnel is expressed in dollar value. The cost related to radiation exposure due to radiological survey is shown in Tables 2-7 and 2-8. The tables show that the buried pipe mode of waste transport is more cost efficient than the AGTS, because the UGTS is operated remotely via a monitor control system and it has been designed to have a very small radiation surface dose. Dollar costs are the principal factor, although the acceptability of a policy of "burning out" workers is debatable and is an issue under as low as reasonably achievable (ALARA) principles. If those costs are not included, the rail mode has a small economic advantage during the 1995 to 2005 time frame. However, when the time frame is extended to 2028 the UGTS has a large dollar advantage over the AGTS with or without the personnel replacement costs.

The UGTS and the AGTS will address ALARA considerations to minimize personnel radiation exposure. The UGTS will be designed to have a maximum surface dosage of 0.05 mrem/h and the AGTS will have sufficient shielding to limit surface dosage to 200 mrem/h. For the AGTS, a radiological smear survey is required to be performed on the cupola (inside), cupola (outside), platform (deck), underplatform, walk platform, handrails, ladder, tanker sides, tanker ends, belly/drain, coupling/knuckle, assembly and lever, hand braker, wheel truck assemblies, and wheels. Because several of the survey areas do not directly contact the tanker car surface, a radiation exposure dose versus distance calculation was done (Figure 2-10). Therefore, the selected average radiation exposure dose of 100 mrem/h at approximately 75 cm (2.5 ft) from the cask is used in this evaluation. Westinghouse Hanford Company guidelines assign a cost of \$2,500/man-rem for health effects and \$22,500/man-rem for replacement personnel (the cost of replacing the individual worker in the specific work force who has approached a preset limit). The replacement personnel cost is based on the average weekly wages and benefits and assumes 12 person-weeks to train each affected worker. These numbers were used in computing the costs for personnel exposure. Thus, the personnel health (\$2,500/man-rem) associated cost is designated as the lower cost and the replacement personnel (\$22,500/man-rem) associated cost is designated as the upper cost in the evaluation. However, it is assumed that the upper cost can be reduced to \$11,250/man-rem by proper planning and managing of proposed personnel.

2.2.5 Decommissioning Cost Comparison

Regardless of the transport mode employed, decommissioning will be required. Decommissioning costs for each mode of transport are shown in Table 2-9. The costs for decommissioning of the buried pipe (UGTS) are about \$17.7 million compared to \$1.3 million and \$2.1 million for trailer tanker

GIVEN		<u>COST PER UN</u>	ШТ	(P	roper mgm
	Technician Require To Survey The Transporter *	Rad. Exposure Cost(\$/Person-Rem) ⁴	Lower	Upper	Upper
Buried Pipe:	0	Buried Pipe:	2500	22500	11250
Truck:	2	Truck:	2500	22500	11250
Rail:	2	Rail:	2500	22500	11250
Estimated Radiological Survey	Time (hour)/Person*	Radiation Surface Dose (mRem/hr)*			
Buried Pipe:	0	Buried Pipe:	• •	0.05	
Truck:	8 (survey before leaving and before unloading)	Truck:	-	100	
Rail:	8 (survey before leaving and before unloading)	Rail: .		100	
Total Number Of Trips or Trans	sfers (Table 2)				
Buried Pipe:	26 (SY to A Farm Complex)			•	
Truck:	2613 (SY to A Farm Complex)			•	
Rail:	1306 (SY to A Farm Complex)				

Method	Radiation Exposure Cost (\$)								
	Lower	Upper	Upper						
,		(with p	roper management)						
Buried Pipe	0	0	0						
Truck	10450400	94053600	47026800						
Rail	5225200	47026800	23513400						

Note: Survey time does not inlude the remaining 8 hours when the transporter is not full (i.e. after unloading and before loading of liquid waste)

See Appendix C – Design Calculation "Radiation Exposure Cost Comparison Bases," by D. V. Vo 2/10/95
 ** Cost Benefit Analysis at Westinghouse Hanford Company, by R. L. Brown and C. J. Stephan, WHC-SA-1533-FP, April 1992.

WHC-SD-W058-TA-001 Revision 0

.

<u>GIVEN</u>		<u>COST PER UN</u>	IT	(P	roper mgm
Total Number Of Health Ph	ysis Technician Require To Survey The Transporter *	Rad. Exposure Cost(\$/Person-Rem)*	Lower	Upper	Upper
Buried Pipe:	0	Buried Pipe:	2500	22500	11250
Truck:	2	Truck:	2500	22500	11250
Rail:	2	Rail:	2500	22500	11250
Estimated Radiological Sur	vey Time (hour)/Person*	Radiation Surface Dose (mRem/hr)*			•
Buried Pipe:	0	Buried Pipe:		0.05	
Truck:	8 (survey before leaving and before unloading)	Truck:		100	
Rail:	8 (survey before leaving and before unloading)			100	
Total Number Of Trips or T	ransfers (Table 2)				
Buried Pipe:	400 (SY to A Farm Complex)		•		
Truck:	40000 (SY to A Farm Complex)				
Rail:	20000 (SY to A Farm Complex)			•	

Method	Radiation Exposure Cost (\$)								
1 1	Lower	Upper	Upper						
		(with	woper management)						
Buried Pipe	0	0	0						
Truck	160000000	1440000000	72000000						
Rail	80000000	72000000	36000000						

Note: Survey time does not inlude the remaining 8 hours when the transporter is not full (i.e. after unloading and before loading of liquid waste)

See Appendix C - Design Calculation "Radiation Exposure Cost Comparison Bases," by D. V. Vo 2/10/95
 ** Cost Benefit Analysis at Westinghouse Hanford Company, by R. L. Brown and C. J. Stephan, WHC-SA-1533-FP, April 1992.

Radiation Exposure Cost Comparison--1995 to 2028.

Table

2-8.

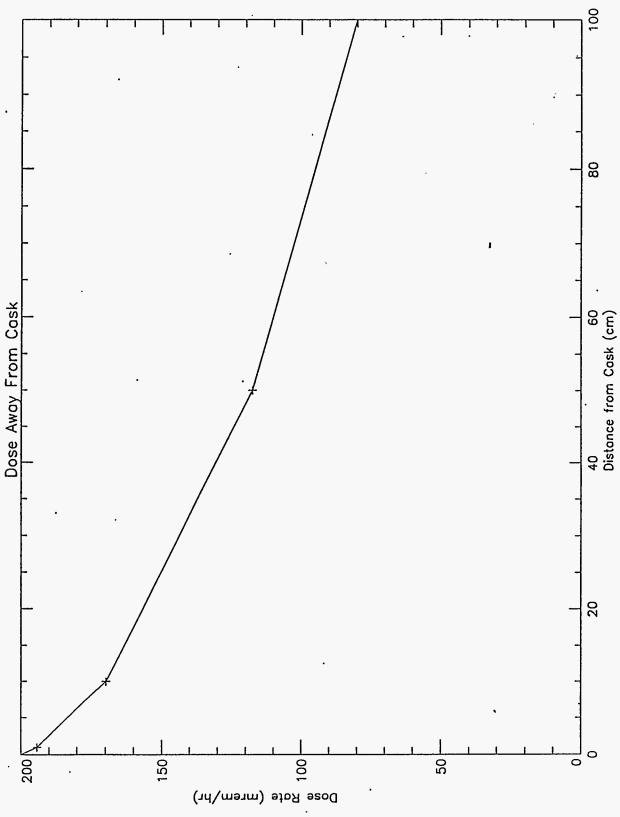


Figure 2-10. Aboveground Transportation System--Radiological Surface Dose versus Distance Away from the Cask.

2-23

بمعجهوه بهيرت بالعمال بالباد الدرونجاج الدان

الأرهاصانية والمواصلين المعار تنهج والمرارع المناسبة والمعلم

cars and rail tanker cars, respectively. As stated in Section 1.2, the D&D cost of the load/unload facilities (AGTS) as compared to the diversion boxes (UGTS) was assumed to be equal.

2.2.6 Summary Cost Comparison

The UGTS (buried pipe) has the lowest overall total cost for near term (1995 to 2005) and long term (1995 to 2028) as shown in Table 2-10. The UGTS higher initial project cost and final D&D costs have been offset by the lower operational, evaporation, and radiation exposure costs which resulted in the lowest overall total cost.

For the near-term (1995 to 2005) waste transfer, the total lower estimated cost for buried pipe (UGTS) is 8% less than the rail tanker (AGTS) method. However, the percentage cost differential increases to 40% for nearterm and upper radiation exposure, 69% for long-term and lower radiation exposure, and 84% for long-term and upper radiation exposure as shown in Table 2-10. NOTE: The rail tanker system (AGTS) upper radiation exposure percentage is a higher cost than the buried pipe (UGTS) and is reduced from 40% to 25% for near term and from 84% to 78% for long term because of anticipated proper planning and managing of exposed personnel. Even though the rail tanker car method appeared to have the next lowest overall total cost for near term (i.e., approximately 49.509 million L [13.063 million gal] or less), the high radiation exposure to tank farm workers for routine operation is a concern for the long term.

The AGTS (trailer tanker car) has the highest total cost for near term (1995 to 2005) and long term (1995 to 2028) as shown in Table 2-10.

For the total Hanford Site cleanup (1995 to 2028), the UGTS is considerably less expensive (65%) than any AGTS even without taking credit for radiation exposure cost as shown in Table 2-10.

		•						
GIVEN		COST PER UNIT						
Total Estimated Lenght Of Process	Pipe (ft)*	Solid Waste Disposal Rate (FY 95) for Rediatio	n Mix Wasta — (\$/(t3)*					
Buried Pipe:	64500 (Alispare)	Buried Pipe:	173					
Truck:	3973 (1 spare)	Truck:	173					
Rail: -	3972 (1 spare)	Rail:	173					
Required Transportation Vehical		Buried Pipe Remove and Package Cost (\$/it)*						
Buried Pipe:	· 0	Buried Pipe:	154					
Truck:	3 (7 x 18')	Truck:	154					
Rail:	2 (12' x 44')	Rail:	154					

Method	Facility D & D	Pipe Remove	Pipe Disposal	Vehical Disposal	Summary D & D
	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)	Cost (\$)
Buried Pipe Truck Rail	Same ** Same ** Same **	9933000 611842 611688	134957	359522	

* See Appendix D – Design Calculation "Decommissioning Cost Comparison Bases," by D. V. Vo 2/10/95 ** The facility disposal cost is ASSUMED to be equal

2-25

Table

2-9.

Decommissioning Cost Comparison--1995 to 2005.

154 154 154

SUMMARY COST COMPARISON (1995 - 2005)

Method	Project	Operation	Evaporation Cost (\$)	Rac	liation Exposure (\$)	Summary D&D	TOTAL	ESTIMATED C	OST (\$)	
	Cost (\$)	Cost (\$)	(flush water)	Lower	Upper	Upper	Cost (\$)*	Lower	Upper	Upper	-
					(wit	th proper mgmt)				(with proper mgmt)	4
Buried Pipe *	49228000	8229690	2106801	0	0	0	12123965	71688455	71688455		
Truck	34920000	22076470	28310134	10450400	94053600	47026800	1106321	96863324	180466524	133439724	Γ C
Rail	31920000	22076470	16130192	5225200	47026800	23513400	2468403	77820265	119621865	96108465	
											1 N
Method	<u> </u>							TOTAL COST		RCENTAGE (%)	1 -
								Lower	Upper	. Upper	<u>-</u>
	1					8				(with proper mgmt)	
Buried Pipe								0	-	0	
Truck								35			
Rail								9	67	34	
	. :	SUMMA	ARY COST (COMPA	RISON (1	995 —	2028)				y rust
Method	Project	Operation	Evaporation Cost (\$)	Padiat	ion Exposure (\$)		Summary D&D	<u> </u>	ESTIMATED	COST (D	۲
Method	Cost (\$)	Cost (\$)	(flush water)	Lower	Upper	Upper	Cost (\$)*	Lower	Upper		2
	003t (¥)	003t (#)	(indian matery	Conci	••		COSt (#)	, CONCI	opper	Upper	5
Buried Pipe •	49228000	126000000	32256000	0	(wiu	h proper mgmt)	12123965	219607965	219607965	(with proper mgmt) 219607965	Compar
Truck	34920000	338000000		160000000	1440000000	720000000	1106321	967466321	219007903	1527466321	2
Rail	31920000	338000000		80000000	720000000	360000000	2468403	699348403	1339348403	979348403	
nau	01020000	000000000	24030000	0000000			2.00.00			5/5340403	
Method	01020000		24030000							RCENTAGE (%)	

SUMMARY COST COMPARISON (1995 - 2028)

Method	Project	Operation	Evaporation Cost (\$)	Radiation Exposure (\$)		\$)	Summary D&D	TOTAL	ESTIMATED C	OST (\$)
	Cost (\$)	Cost (\$)	(flush water)	Lower	Lower Upper		Cost (\$)*	Lower	Upper	Upper
						(with proper mgmt)		•	-	(with proper mgmt)
Buried Pipe •	49228000	126000000	32256000	0	0	0	12123965	219607965	219607965	219607965
Truck	34920000	338000000	433440000	160000000	1440000000	720000000	1106321	967466321	2247466321	1527466321
Rail	31920000	338000000	246960000	8000000	720000000	36000000	2468403	699348403	1339348403	979348403
Method								TOTAL COST	DEVIATION PE	RCENTAGE (%)
•								Lower	Upper	Upper
										(with proper mgmt)
Buried Pipe								0	0	0
Truck								341	923	596
Rail								218	510	346

.

· Decommision cost does not include the diversion box or loading/unloading facilities

WHC-SD-W058-TA-001 Revision 0

3.0 CONCLUSIONS

The AGTS versus UGTS evaluation has resulted in the following specific and overall conclusions.

3.1 SPECIFIC CONCLUSIONS

- 1. A total of 13,063 trips (Table 2-1) are required to transfer the 49.509 million L (13.063 million gal) of radioactive liquid waste in 11 years using the 3,800-L (1,000-gal) capacity French truck. Based on the number of required trips, it is impractical and uneconomical to use the French truck system to routinely transport radioactive liquid waste from the 200 West Area to the 200 East Area and within the 200 East Area. Thus, the buried pipe system, trailer tanker system, and rail tanker system were the three methods selected for further evaluation.
 - 2. The project (Table 2-2) and D&D costs (Table 2-9) for AGTS and UGTS are fixed (that is, independent from the estimated total transfer volume). The UGTS requires higher project cost to go than the AGTS rail tanker system and trailer tanker system costs by 35% and 29%, respectively. The final D&D costs for the UGTS are 79% and 91% greater than the AGTS rail and trailer, respectively. NOTE: The initial project costs and final D&D costs are the same to transfer either 3.8 L (1 gal) or 757.1 million L (200 million gal).
 - 3. The UGTS requires much less personnel support relative to the AGTS for the same capacities. Therefore, the UGTS buried pipe operational costs are 63% (for the near term) and 68% (for the long term) less than the AGTS rail tanker system and trailer tanker system, respectively. The operational cost details are shown in Tables 2-3 and 2-4.
 - 4. The UGTS generates the least amount of secondary waste (flush water) in transferring of radioactive liquid waste (near term 49.509 million L [13.063 million gal] and long term 757.1 million L [200 million gal]) from the 200 West Area to the 200 East Area and within the 200 East Area. Because of limited available double-shell tank space, generation of the radioactive liquid waste must be minimized. The evaporation cost comparison is shown in Tables 2-5 and 2-6. The UGTS buried pipe evaporation costs are approximately 8 times and 13 times less than the AGTS rail tanker system and trailer tank system for near and long term.
 - 5. During routine transfer, there is essentially no personnel radiation exposure (ALARA) associated with the UGTS (buried pipe), whereas the AGTS total estimated radiation exposure is 2,090 man-rem (rail tanker car) and 4,180 man-rem (trailer tanker car) for near term as shown in Table 2-7. Because the Westinghouse Hanford Company Radiological Administrative Control Level is set at 5 rem/year per radiological worker (i.e., whole body) (WHC 1994), the estimated

radiation exposure equates to a yearly average number of "burned out" personnel of 38 (rail tanker car) and 76 (trailer tanker car).

3.2 OVERALL CONCLUSIONS

- The UGTS (buried pipe) has the lowest overall total cost for near term (1995 to 2005) and long term (1995 to 2028) as shown in Table 2-10. The UGTS higher initial project cost and final D&D costs have been offset by the least operational, evaporation, and radiation exposure costs which resulted in the lowest overall total cost.
- 2. The rail trailer system method (AGTS) appeared to have the next lowest overall total cost. However, the high radiation exposure to tank farm workers for routine operation is a concern for the long term and accident administrative control during transport of highlevel radioactive waste.
- 3. The AGTS (trailer tanker car) has the highest total cost for near term (1995 to 2005) and long term (1995 to 2028) as shown in Table 2-10.
- 4. For the total Hanford Site cleanup (1995 to 2028), the UGTS is considerably less expensive (65%) than any AGTS even without taking credit for radiation exposure cost as shown in Table 2-10.
- 5. The risk assessment for the cross-site AGTS (Howden 1993) limited annual mileage for transporting radioactive sludge (without dilution) to <400 km (250 miles)." The annual mileage limitation was set so that the accidental release frequency is considered incredible (i.e., <10⁻⁶/yr) without imposing administrative controls. The lowest demanded year for transport of liquid waste is 2003. The estimated total yearly (2003) transfer distance (roundtrip) is 1,019 km (637 miles) for rail tanker car and 2,782 km (1,739 miles) for trailer tanker car (Table 2-1). Rail tanker car and trailer tanker car roundtrips required travel distances that will have exceeded the yearly allowable AGTS limit of 400 km (250 miles). Therefore, other stringent administrative controls (fire trailer escort, barricade road crossing, etc.) are required to increase the allowable mileage which will increase the operational cost.

^{*}Note that the criteria for the Howden document were preliminary, and have since been formally documented in WHC-SD-TP-RPT-001 (Mercado 1994). A new risk assessment would be needed as part of any formal safety documentation (i.e., safety analysis report for packaging) for a selected AGTS. Therefore, actual mileage limits may be different than those presented here.

WHC-SD-W058-TA-001 -Revision 0 •

4.0 TECHNICAL UNCERTAINTIES

4.1 UGTS

The buried pipe (UGTS) design is approximately 60% complete. The Preliminary Safety Analysis Report (Kidder 1993) revision and a system engineer design requirement document are being prepared. Also, the environmental documentation for the UGTS is underway. The integrated Project W-058 is supporting the Tri-Party Agreement Operational Milestone M-43-07C of February 1998 as well as other programmatic milestones. Thus, there is no technical uncertainty associated with the UGTS.

4.2 AGTS

The following technical uncertainties are associated with the AGTS. The preparation of the documents as described in Section 4.1 are required by DOE Order 4700.1, *Project Management System* (DOE 1987). However, these documents have not been prepared for the AGTS. The estimated cost associated with the AGTS Conceptual Design Report would be \$200,000 to \$500,000 and it would take about a year to complete. The estimated project cost for AGTS was based on preconceptual ideas. Conceptual Design, Title I (Preliminary Design), Title II (Definitive Design), and construction activities have not been started to meet the Tri-Party Agreement Operational milestone. This is the major uncertainty. Other technical issues, such as radiation exposure, additional accident administrative control during transport, a shielded 37,850-L (10,000-gal) rail tanker car exceeding the rail truck loading requirements, remote operations (connect/disconnect), seismically qualified equipment, etc., all require resolution.

.This page intentionally left blank.

5.0 REFERENCES

- Brantley, W. M., 1994, Functional Design Criteria for Project W-058, Replacement of Cross-Site Transfer System, WHC-SD-W058-FDC-001, Rev. 2, Westinghouse Hanford Company, Richland, Washington.
- Brown, R. L., and C. J. Stephan, 1992, *Cost Benefit Analysis at Westinghouse Hanford Company*, WHC-SA-1533-FP, Westinghouse Hanford Company, Richland, Washington.
- DOE, 1987, Project Management System, DOE Order 4700.1, U.S. Department of Energy, Washington, D.C.
- DOE, 1989, General Design Criteria, DOE Order 6430.1A, U.S. Department of Energy, Washington, D.C.
- Ecology, EPA, and DOE, 1994, Hanford Federal Facility Agreement and Consent Order, as amended, Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy, Olympia, Washington.
- Hanlon, B. M., 1994, Waste Tank Summary Report for Month Ending December 31, 1994, WHC-EP-0182-81, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
- Hansen, A. G., 1994, Tank Waste Remediation System Transfer Facility Compliance Plan, WHC-SD-WM-EV-094, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
- Howden, G. F., 1993, Pilot Plant Hot Test Facility Siting Study, WHC-SD-WM-TA-143, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
- Kidder, R. J., 1993, Preliminary Safety Analysis Report for Replacement of the Cross-Site Transfer System, Project W-058, WHC-SD-W058-PSAR-001, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
- Mercado, J. E., 1994, Report on Equivalent Safety for Transportation and Packaging of Radioactive Material, WHC-SD-TP-RPT-001, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
- Meng Analysis Group, 1994, Above Ground Transfer of Radioactive Liquids, Value Engineering Study, March 11, Meng Analysis Group, Seattle, Washington.
- Smith, R. J., 1994, Packaging Design Criteria for the LR-56 Cask System, WHC-SD-TP-PDC-021, Rev. 0, Westinghouse Hanford Company, Richland, Washington.
- Strode, J. N., 1994, Operational Waste Volume Projections, WHC-SD-WM-ER-029, Rev. 20, Westinghouse Hanford Company, Richland, Washington.

·

- Toth, A. G., 1994, *Double Shell Tank Inventory and Available Space* (Memorandum to T. R. Sheridan, U.S. Department of Energy-Headquarters, December 28), U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- Trost, E. T., 1995, Personal Communication, Westinghouse Hanford Company, Richland, Washington.
- WHC, 1994, Hanford Site Radiological Control Manual, HSRCM-1, Rev. 2, December 9, Westinghouse Hanford Company, Richland, Washington.

APPENDIX A

OPERATIONAL COST COMPARISON BASES

A-1

This page intentionally left blank.

(1) Drawing	(2) Doc. No	(3) Page _ (of
(4) Building	(5) Rev	(6) Job No
(7) Subject OPERATION + L (ICT	COMPARISON	
(8) Originator Vo		Date <u>califie</u>
(9) Checker FORPED IL FPFE		Date

(10) ESTIMITED LIGUID WASTE TRANSPORT OPERATIONAL (OST DER VOLUME .

ASSUMPTIONS: 1) HIE COST IS BASED ON ORGANIZATION SUPPORTS FOR EACH PHOSICE

ESTIMIATED OPERATIONAL COST PER VOLUME = + SUPPORT CUST / TRANSFER CARACITY

A) FOP BUDIED PIPING

BACED ON THE PROVIDED FAX (REPORT) FROM MIKE SUTET, CROSS-SITE THAT NOFER COG: ENGL.

<i>.</i> .	Eng/Eluner:	C por	HFT S	Rigger	Crane	Dillyans	200	HPT	PICS	Elec	E po 🖓	lifeti 🗧	<u>Totals</u>
WTF Transfer Procedure Development	105												105
WTF Prepartory Transfers	80	80											160
WFT Prep Repairs/Upgrades		4	3							12	2		21
WTF Prep Pressure Test		120	50	60	20	40	20	20	20	20	20	30	420
Cross-Site Transfer RR	20												20
Sampling	30	12	3					3	3		6		57
Cross-Site Transfer	15	180	75	90	30	60	30	30	30	30	30	30	630
													0
Totals	250	396	131	150	50	100	50	53	53	62	58	60	1413
10% Contingency	25	40	13	15	5	10	5	5	5	6	6	6	141.3
Augmented Total	275	436	144	165	55	110	55	58	58	68	64	66	1554

Craft (Man-Days)

HA'D I MHA' BAY EAUWALENT TO & MAN-ARORS. THE EVENANT PATE IS \$15011.

ESTIMPTED OFERHINGATL (BET FOR DIPOSE, OFFICE- [670 Manday × 10% cont. + 2/15 × 35] /400000 pat day is = \$0.49 /gallons -

LICWEVER, THE ABOVE (1ROUND) TRANSFER OF RAD, Lic. VALUE ENGIE. STUDT (Pg4) by HENGY AMALTSIS (AROUP ON 03/11/1994 WAS REFERENCED AN ESTIMATED COST OF FO.63/ guillans.

A-3

(1) Drawing	(2) Doc.	No	(3) Page of
(4) Building		•	(6) Job No
(7) Subject OPER	ATIONAL COST COMPARIS	LAOS	
(8) Originator	WY LAS V.VO		Date <u>32/13/95</u>
(9) Checker	RA M. EPPERSON		Date
(10)			
B/ TCR - RUCK	TRANSPORT		
BITED OI	N THE PROVIDED CC:MA	AIL BELOW.	
To: Larry D Good Subject: SHIPPI	NG COSTS FOR 219-S TO 20	04-AR SHIPMENTS	PM (1332 bytes: 40 ln)
Text item 1: Te	ext_1		
Enserch En	vironmental - Please for	rward to Mike Ho	xie Thanks.
include los o Lab Anai o Calculat o Operato: o Pipefiti o Teamste: o 204-Ar 1 o 204-Ar 1 o 204-Ar 1 o 204-Ar 1 o Millwrig o Cog Eng: o HPT o Haz Mate o Packagin Subtotal 10% Contin Total These costs	tions 24E rs at 219-S 24B ters 4B rs 33 Personnel 643 Personnel 32E ght 43 ineer 24E erial Control 33 ng & Transport 4E 236k3 245 ang erial 226k3 245 control 33 ng are approximations. In hipment goes up signific	<pre>cmant costs: srg(t=cempt) S750 S125 Bongenty= 0. S250 S2000 S125 S2000 S125 S125 S347 S500 S250 S141 S7715 S 770 S2485 f the road has a set of the road</pre>	5 5 5 5 5 5 5 5 5 5 5 5 5 5
Michel	lle.		
Let us and si underg assume	s assume that the Wye an nipments cost \$11,500 ea ground line to tank farm a ten shipments a year (r). The line will pay f	ch. The labs po is is 9 \$2,000,00 more than likely	ortion of the DO. Let's also y a high
₽₽ ₽₽			
		1.4.4.4	
ES71M	HPED OFERATIONAL COST FOR T	•	
		= \$1.69/ga	Illon j
Hart the shall	as transfert in large & ithere		# 110 10 -1 20 \$ 7 M loval as listed 1

NOTE: The above estimated volume is within the range of \$1.40/gal to \$2.00/gal as listed in the MENG value Engr. suport (Page 4).

÷

.

(1) Drawing	(2) Doc. No	(3) Page <u>5</u> of
(4) Building	(5) Rev	(6) Job No
(7) Subject <u>OPERATIONAL</u>	COST COMPARISON	
(8) Originator Duguta V	.10	Date 02/13/9-
(9) Checker <u>EDWARD</u>	E EDOFRIMA	Date

(10)

C | FOR RAIL TRANSPORT

BASED ON THE PROVIDED CC. MAIL BELOW.

[65] From: Leonard T (TY) Blackford at ~WHC229 2/13/95 3:33PM (1118 bytes: 23 ln
)
To: Douglas V (Doug) Vo at ~KEH16
cc: Paul J Crane
Subject: RAILCAR COSTS FOR TURNARAOUND
______ Message Contents ______
Doug;
Sorry for the delay but had trouble relocating data.

The following is a cost estimate for railcar turnaround at 221-T. This estimate was developed last year as part of a ECCEL item submitted when we received our TSD permit.

Cost are for one time turnaround of one railcar:

Bargaining unit labor: \$3879 (192hrs) Health Physics Labor: \$1607 (84 hrs) Exempt Labor/Support: \$2604 (108 hrs) Laboratory Analysis : \$15,000 (based on past costs)

Total costs per transfer: \$23,090

Approximately 2 transfers per year at this time.

Let me know if I can be of any further assistance:

L. Ty Blackford Manager/ T Plant Engineering

ESTIMATED OPERATIONAL COST FOR RAIL = \$23,010 / 1.0000 galions = \$2.30 / gallon'

NOTE: THE ESTIMATED OPERATIONAL OST RANGE AS SHOWN IN THE MENG VALUE ENGR. REFORT (P,4) is \$0.74/gai TO \$1.11 /gal. SINCE THE CALCULATED COST ALOVE IS MORE ACCURATE BUT OUTSIDE OF THE MENG VALUE ENGRE ESTIMATED RANGE, THE ESTIMATED RALL CHERATIONAL (OST is ASSUMED TO BE THE SAME AS TRUCK (\$1.69/gallon)

(1) Drawing	(2) Doc. No	(3) Page <u></u> of
(4) Building	(5) Rev	(6) Job No
(7) Subject <u>OPERATION</u>	IPL FOST CAN PARISON	
(8) Originator <u>) wija</u>	122 1. Vo	Date
(9) Checker	up d. Ecceptod	Date

(10) FOR COMPARISON, BELOW IS THE LISTED IPERATIONAL COST PER VOLUME.

WESTINGHOUSE HANFORD COMPANY ABOVE GROUND TRANSFER OF RADIOACTIVE LIQUIDS VALUE ENGINEERING STUDY

TRANSPORT LIQUIDS COST SUMMARY ATTACHMENT II

TRANSPO	ort liqui	DS COST	SUMMAR	Y					
OPERATIO	NAL COSTS	5				LOW LEV	I		PSRS
			25 mi	10 mi	TANK	TANK			PILOT
			RAIL	RAIL	TRUCK	TRUCK	CASK	PIPE	CASK
FUNCTION		GAL:	19000	19000	500	o [.] 5000	1000		
LOAD						•			
PACKAGE	LIQUID		\$ 2000	2000	300); 1500	1500	200000	
				·		l.			
MOUNT C.	ARRIAGE		NA .	NA	NA	NA	500	incl abv	incl abv
MOVE				-		1		•	•
MOVE CA	RRIAGE	(SECURITY	3000	3000	300			incl abv	3000
		(\$ per hr)	· 1000	1000	- 25	0! 100	250		250
		HRS	14	10		4i 4	4		4
		TOT HRLY	14000	10000	100	0: 400	1000	NA	1000
UNLOAD						•	1	<u> </u>	
UNLOAD (CARRIAGE	·	NA	NA	NA	'NA	200	incl abv	inci abv
EMPTY CC			2000	2000	i 1 300	0 1500	<u> </u> 2000	lincl abv	2000
EIVIFIT CC			2			:	1		
CLEAN CO			incl abv	incl abv	lincl	incl aby	incl aby	incl abv	1200
RETURN	Star and Cold					•	1		
MOUNT C	APPIAGE		NA	NA	NA	NA	neg	NA	neg
							1		
MOVE CA	RRIAGE		NA	NA	NA	NA	1 1000	NA	1000
							1		
UNLOAD (CARRIAGE		NA	NA	NA	-NA	neg	NA	neg
					I	•	1		
MAINT. CO	ONTAINER		incl abv	incl abv	incl abv	incl abv	5000	750000	7000
					<u> </u>	<u> </u>	ļ	ļ	
101-11		and the of 1	21000	17000	1000	: 0: 3400	14200	950000	21200
TOT per sh	ipment	south of V							
A		north of w						\$0.63	\$3,028.57
<u>\$ per gal</u>		south of w	· · · · · · · · · · · · · · · · · · ·	\$0.89			\$14.20	· \$0.63	\$2,600.00
		north of w	the second s	\$0.74	<u> \$1.40</u>	<u>) \$0.68</u>	311.20	30.05	32.00.00
	l	at 3000ga	\$7.00	\$5.67	1		<u> </u>		

BD-6400-060.1 (12/87)

(1) Drawing	(2) Doc. No	(3) Page <u>5</u> of
(4) .Building	(5) Rev	(6) Job No
(7) Subject OPERATIONAL	COST COMPARISON	
(8) Originator DouriLAS V.	No	Date
(9) Checker ELINHER M.	EPREPION	Date

(10)

CHLCULHTION DI OPERATIONAL COST EXAMPLE

OPERATIONAL COST (\$) = (TOTHL VOLUME) (OPERATIONAL UNIT LOST PER VOLUME) (gollons) (\$/gallon`)

.

This page intentionally left blank.

.

APPENDIX B

EVAPORATION COST COMPARISON BASES

This page intentionally left blank.

•

•

•	•		
(1) Drawing	(2) ·Doc. No)	(3) Page <u>I</u> of
	(5) Rev		
	FULPOPALIAL COST COLLARD		-
	LOUGLAS L' NO		1
	EDWIRD M. EPPERSON		
$\pm \pm $	MATED MACTE WATER EVAPO	RATION (0:7	PER VOLUNIE (1 AP 11 AN)
(10) fefe	rences: 1) conneil nussage fi	roin Bricin Ti	iclear to Inights Vo
<i>,</i>	2) FINANCIHL DATA SY	STEH, Report	FDS ZOZ M (p. p. 12/29/94
AL THE	EVAPORATION COST PER VOLUME	is PETINFEN	\$3 71/21 to \$ 6 71 /201
			· · · · · · · · · · · · · ·
as describ	ED in reference 1 below.		
			•
	_		
			3:09PM (1132 bytes: 23 ln
To: Dougla cc: Brian	s V (Doug) Vo at ~KEH16 J Tucker	5	
	vaporator Cost Analysis	; .	
	Doug,	lessage Cor	itents
	· · ·	•	
	As we discussed over th		is afternoon, I have process waste through the
			d projected budgets, and
	campaign waste volumes.	The FY 9	6 waste volume is a
	somewhat reliable estim Engineering, The FV 97		led by Tank Farms 99 waste volumes are pure
	estimates.	,,	
·	1N1A budget/Volume trea	ted = Cost	per gallon
	- · ·		
	FY 95: \$12.85M/2.035 M	gallons =	\$6.31
	FY 96: \$12.85M/3 M gall	ons = $$4.2$	8
	Cost per gallon in FY 9	7, 98. and	99 will be \$3.21 assuming
	4 M gallons processed p \$12.85M.		
	I hope this is helpful.		
		Bri	an Tucker

B-3

(1) Drawing	(2) Doc. No	(3) Page <u> </u>
(4) Building	(5) Rev	(6) Job No.
(7) Subject EVAFORATION COST	COMPARISON FACES	·
(8) Originator JAUALAS V. V	0	Date 12/1-17
(9) Checker EDIMAND M. E	ODEP: NN	Date

(10) B/ RE-ISTILLATE THE WASTE WATER EVAPARATION COST

THERE ARE TWO CANFARANS PLANNED IN FY 1995. THE FIRST CANPANON WAS DONE ON 11 / 94 WITH. THE TOTAL EVAPORATE VOLUMES OF 2.79 GALLONS AND THE NEXT CAMPAIGN IS SCHEDULED FOR 06 /15 WITH A TARAET EVAPORATION VOLUME OF 2.04 MALLONS. PAGE 3 is THE DETHIL CC: MAIL MESSAGE FROM THE 242-A EVAPORATOR PROCESS ENGINEER (ELVIS LE).

· EXPECTED FY MAST FUNIDING FOR THE 242-A EVAPORADIR 12 \$ 12,174,000

FDSP202M Data as o	00 of: 02/02/1995		Fina Activity /	ncial Data S	ystem /			02/02/	1995 23:43:09 Page: 46
		CM BUDGET	CM ACTUALS	CM VARIANCE	FYTD BUDGET	FYTD ACTUALS	FYTD VARIANCE	CURRENT FY BAC	EXPECTED FY FUNDS
1N1A	242-A/AP&AW TANK FAR HR St \$ GA/CSP	19,803 117.2 1,201.5 182.7	15,617 89.8 1,003.8 165.5	4,186 27.4 197.7 17.2	73,428 122.5 4,479.9 744.4	56,051 91.0 3,277.4 569.4	17,377 31.5 1,202.6 175.0	224,728 119.9 13,433.9 2,115.5	
	TOT \$	1,384.2	1,169.3	214.9	5,224.3	3,846.7	1,377.6	15,549.4	12,174.0

: 12E-ESTIMATED EVAPORATION COST (1)= #12, 174,000 / 4,830,000 gallons

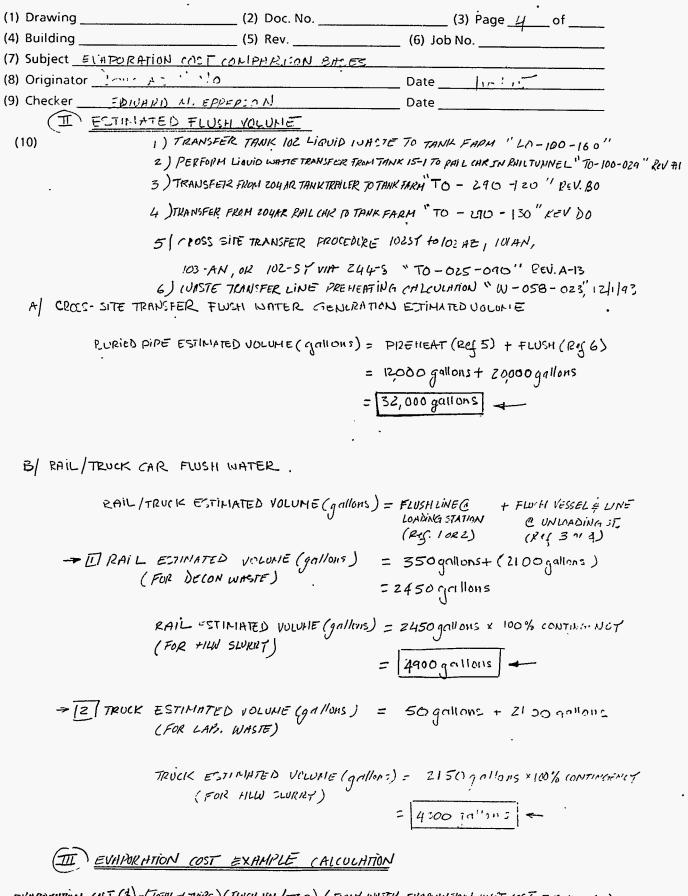
ESTIMATED EVADORATION (OST (7) = +2.52/gallons

	•	
(1) Drawing	(2) Doc. No	(3) Page <u></u> of
(4) Building	(5) Rev	_ (6) Job No
(7) Subject <u>EVINIANIANIA</u>	COST CONPARISONS BASES	
(8) Originator DOMLAS V. 1	In	_ Date/10/9
(9) Checker <u>ELUALIN M.</u>	EDDERCO N	_ Date

(10) BELON IS THE ACTUAL WASTE VOLUME REDUCTION INFORMATION FOR FY 94 , 95.

Per your request, I am writting to summarize our ealier conversation regarding to Evaporator Campaigns 94-95.

Campaign 94-1 took place between April 15 and June 14, 1994. From an available 2.87 million gallons of dilute waste contained in 102-AW, 106-AW and 103-AP, an overall Waste Volume Reduction (WVR) of 2.39 million gallons (83% WVR factor) was achieved. The post-run document (WHC-SD-WM-PE-053, Rev.0) was issued on September 30, 1994 to summarize the results of 242-A Evaporator Campaign 94-1 as required per WHC-IP-0842 Section 8.12, subsection 6.2 "Process Evaluation Report".


Campaign 94-2 was started on September 22, 1994 and completed on November 19, 1994. Approximately 3.21 million gallons of dilute waste from 101-AP, 107-AP, 108-AP and tank heels from 102-AW and 106-AW were processed, achieving the WVRF goal of 87% (2.79 million gallons). A post-run document is currently being prepared to fulfill WHC-IP-0842 requiremement of "Process Evaluation Report".

Campaign 95-1 start-up date is presently scheduled on June 1, 1995. Approximately 2.43 million gallons of dilute waste from 106-AP, 107-AP, and 106-AW will be processed. Based on a preliminary projection, a WVF of 2.04 million gallons can be achieved.

Campaign 96-1 is tentatively scheduled on October 1, 1995. About 830,000 gallons of dilute complexed waste from 101-AY will be processed. Based on its unique characteristic in nature, it is projected that a WVF of 620,000 gallons can be achieved.

Please let me know if I can be futher of assistance.

Elvis Le 242-A Evaporator

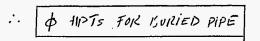
EVIPPORITION (OST (4)=(TOTAL # TRIPS)(FLUSH VOL/TRIP) (FLUSH WHITER EVARORH THON I UNIT (OST PER VOLUME) (Tip) (gallon) (‡/gallon) B-6

APPENDIX C

RADIATION EXPOSURE COST COMPARISON BASES

•

This page intentionally left blank.


(1)	Drawing	(2) Doc. No	(3) Page <u>1</u> of
(4)	Building	(5) Rev	(6) Job No
(7)	Subject PADATION EXPOSUE	E COST COMPARISON BASES	
(8)	Originator <u>Condect</u> , V. No		Date <u>column</u>
(9)	Checker <u>FDIUMPID M</u>	EPLERCON	Date

(10) REGENCICES: 1) FUNCTIONAL DESIGN CRITERIA FOR PROJECT W-058, REPLACEMENT OF CROSS-SITE TRANSFER SYSTEM, by W.M.Brantley, WHC-SD-W058-FDC-001, Rev. 2, 08/26/94.

- z) PALICHGING DESIGN CRITERIA FOR THE LR-56 CASK SYSTEM, by R.J.SHITH, WHC-SD-TP-POC-OZI, REV. 0, 03/15/94.
- 5 SHIPPING COSTS FOR 219-S TO 204 AR SHIPMENTS, COMMIN FROM M.D. ROLLISON TO L.D. GOODWIN, 12/07/94. (SEE OPERATIONAL COST COMPARISON CATSES CALCULATION FOR DETAIL).
- (A) NUMBER OF HIPT REQUIRED TO SURVEY
- 4) PER TELEPHIONE CONFERENCE BETWEEN D.V.VO HND T.K. RAVEN CRHFT, IT WAS INDUCATED THAT 2 HPTS HRE PERFORMED KADDOLOGICAL SURVET REFORE THE LIQUID WASTE GET UNLOAD AND ALLOW THE RAIL OR TIRUCK LEAVING THE FACILITIES.

. 2 HIPT'S FOR RHIL TRUCK

2) BURIED PIDE is BEING DECIGN FOR REMOTE OPERATION AND DOES NOT REQUIRED RADIOLOGICAL SURVEY.

(B) REFERENCE 3 SHOWS TOTAL 16 HOURS OF HIPT SUPPORT

: ESTIMATED RADIOLOGICAL SURVEY TIME = BHOURS / TRANSFER

DPACKAGING DETIGNO CRITTELE TOR THE LETS GAIN STOREN SPECIFIED -200 MIRCHA/IN SURFACE DOSE OF THE CONTAINER THIS GUEST STATES ON DEPARTNIENT OF TRANSPORTATION REGULATION 49 CFR PART 173.444.

:. FOR HIGH LEVE WASTE TRANSPORTER SURFACE DOSE = 200 MRCIII/Ir

BD-6400-060.1 (12/87)

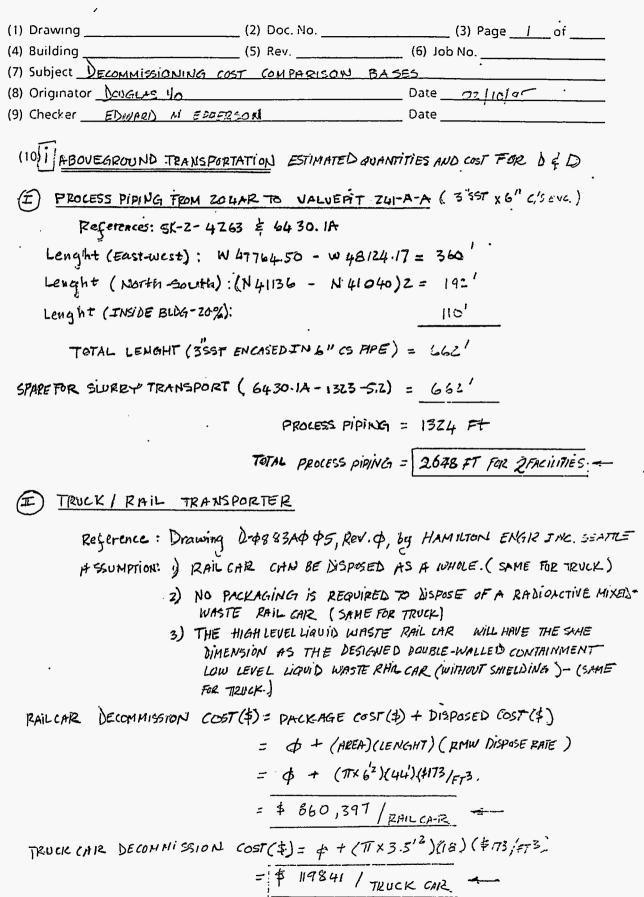
(1) Drawing	(2) Doc. No	(3) Page <u>2</u> of
(4) Building	(5) Rev	(6) Job No
(7) Subject	DIFTION EXPOSURE 100T COMPARISON	P.MSES
(8) Originator	DOUALAS V. VO	Date <u>22/10/15</u>
(9) Checker	EDWARD M. EPPENDON	Date

(10)

2) REFERENCE I SPECIFIED THE SURFACE DOSE FOR PURIED HIPE ; Y:TENI TO BE

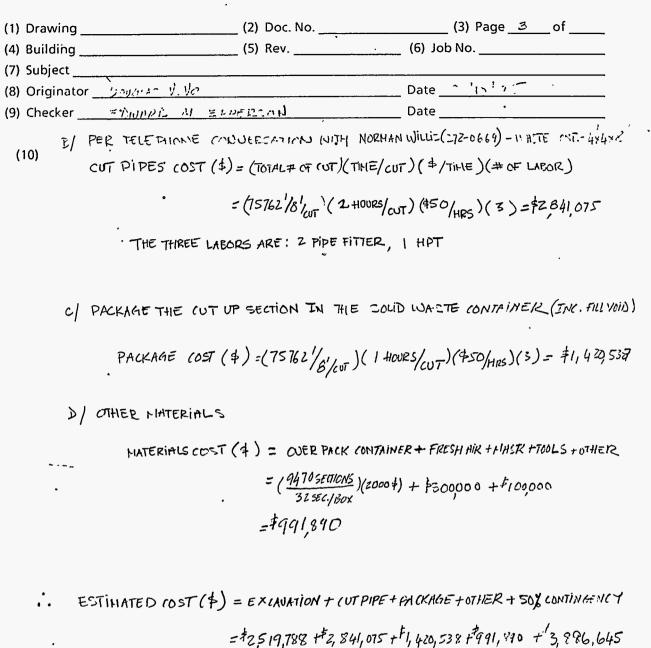
C.OSmRem/hr

() PADIATION EXPOSURE COST EXMAPLE CALCULATION


RH MATION FXPCSURE (OST (4) = (TOTAL # OF TRIP) (PERSONNEL/TRIP) (THE/PERSONNEL) (DOSE) (RAD (INIT (OST TER HIMI-K')) (TRIP) (PERSON/TRIP) (HOUR/PERON) (MRCHM/hr) (Rem) (\$/111000 MRCHM) (\$/111000 MRCHM)

APPENDIX D

DECOMMISSIONING COST COMPARISON BASES


.

This page intentionally left blank.

(1) Drawing	(2) Doc. No	(3) Page 2 of
(4) Building	(5) Rev	(6) Job No.
(7) Subject DECONNISSIONING	INT COMEARIZON PAT	E5
(8) Originator Views y. 10		Date 02/10/25
(9) Checker <u>Flammer M. H.</u>		Date
(10) III BURIED PIPINICY ESTIMI	ITED GUANTITIES AND COS	FOR DED.
D PROCESS PIPING FROM S	ot TANK FARAL TO 244A-L	FT & ISTAR (WOSO & WOLD)
	CHANGE PEQUES	TINIATE, 08/05/93, W058PAA5 TIN-058-036 Rev. φ, APP170VED 9/15/45 = 68390'+2000'+5642'=76032'
		,
VENT LINE REMOUE	PER CR-036	= 14100
	. TOTAL IVOSS ES;	TIMITED DIDING SPOOL = 61932 -
B/ FOR WORB - Rejo	CHULLS; CHANAE REQUEST	(CRWOLB-060, REV &) 11/14/44, 14028 RAB3
Piping GOOL (3"SST	x6"C/SENCIISEMENT) =	900 + 11000 + 1930 = 13830 -
c/ TOTAL PIPING SPOO	IL FOR BOTH WOSE AN	D WORG = 75762'
(I) ESTIMATED COST FOR	PIPING REMOVED AND	PACKAGE FOR BURIED GROUND
=> ESTINATED (OLT (+) - EXCAUATION COST + CU	TPIPES + PACKAGE + OTHER NATERIALS
A EXCHVATION COST (7) = MACH	HINE (First four feet)	+ HAND (Lost 2 Feet) + BACKFILL
EXCA VATION TRENCH	13 5	5'
• *	5'	

EXCAVATION COST (4) = $\left[\frac{1}{2}(13+5')\times 4'\times 75762'\right] \left[\frac{19d}{3'}\right]^{3} \left[\frac{465}{10}\right]^{2} + \left[\frac{1}{2}(5+5)\times 75762\right] \left[\frac{14d}{2'}\right]^{2} \left[\frac{1166}{10}\right]^{2} + \frac{1}{2}(5+5)\times 75762 \left[\frac{14d}{2'}\right]^{2} \left[\frac{1166}{10}\right]^{2} + \frac{1}{2}(5+5)\times 75762 \left[\frac{14d}{2'}\right]^{2} \left[\frac{1166}{10}\right]^{2} + \frac{1}{2}(5+5)\times 75762 \left[\frac{14d}{2'}\right]^{2} + \frac$

REMOVE & PHUKAGE EST. COST (\$) = \$ 11,659,936 FOR 75762' OF PIPE

REMOVE & PACKAGE EST. COST PER LINEAR FOOT = 454/FT

s	•	TION
1) Drawing	(2) Doc. No	(3) Page <u>4</u> of
4) Building	(5) Rev	(6) Job No
7) Subject <u>FCCHMI SSIO NI</u>	NG COST CONFARISON BA	SES
	V. VO	
) Checker <u>EDWARD</u>		

For five year planning purposes, Solid Waste Programs estimates the FY95 - FY99 Storage Disposal Rates as follows:

	FY95	FY96	FY97	FY98	E733
LLW (\$/ft3)	60 , 20	72 20	86 21	104 ۲ ن	124
RMW (\$/ft3)	173 ″	207	249 ·	299	358
TRU (\$/ft3)	125	15 <u>0</u>	180	216	260
HAZ (\$/containe:	c 469	563	676	811	973

SINCE THE ESTIMATED PROJECT CAPITAL LOSTS WERE ESCALATED TO MAS FOR BURNIED PIPE HAD 1993 FOR TRUCK/KAIL, HIC FY 95 DISPOSAL RATE WAS SELECTED FOR CONSISTENT, DOLLAR VALUE.

REMOVAL COST (4) - PIPE = (TOTAL LENGHT) (BURIED PIPE REMOVAL & PACKAGE UNIT COLT) (JCC+)
(*/ foot) DiPOSAL COST (\$)-PIPE = (TOTAL LENGHT) (AREA OF 6" DIANETER PINE) (DIADSAL UNIT (NOT PER VOLUME) (+t)
(+2)
(*/-43)

BAIDEAL TOIT (\$) TEAMLAL = (TOTAL LENGART) (-KEA OF THE CONTAINER (DEPOTAL UNIT IT FLORED)

ربی ب ندری ا