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SUMMARY 
We present a method to assess the stability of pairs of interpolation spaces for mixed formulations. The method is 
based on a straightforward calculation of the eigenvalues of the discrete matrices through Fourier decomposition in 
plane waves and is intended to give, via straightforward numerical computations, a sharper determination of 
stability than the well-known ‘patch test’ of Zienkiewicz et al. Special attention is devoted to the study of stability 
and accuracy of equal-order interpolations. 
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1. INTRODUCTION 

Mixed formulations arise commonly in the approximation of physical problems with ‘internal 
restrictions’ as in incompressible fluid mechanics or elasticity, plate theory and the Maxwell equations, 
as well as from the need to improve the convergence order for the derivatives of the independent 
variables as in the stressdisplacement formulation of elasticity. The numerical solution of such 
problems involves the particular difficulty of finding the correct pair of interpolation spaces for the 
‘primary variables’ and the ‘constraint variables’. A sufficient condition for a convergent 
approximation is the satisfaction of the so-called Brezzi-Babiiska or ‘inf-sup’ condition. However, 
the assessment of whether a given pair of spaces satisfies this condition or not has proved not to be an 
easy task. Zienkiewicz et al.‘ proposed a simple algebraic test, the ‘patch test’, based on a 
straightforward counting of degrees of freedom. This test discards from the outset a lot of a priori 
admissible interpolations. However, the extension to more complex problems, e.g. the stress-velocity- 
pressure formulation which is at the basis of viscoelastic flow is not evident, mainly with 
respect to what kind of boundary conditions have to be enforced at the boundary of the patch. 

Instability of a given interpolation is associated with the existence of ‘spurious checker-board 
modes’, which are high-frequency pressure modes (speaking of the velocity-pressure formulation of 
the Stokes equations) which are ‘not seen’ by all the admissible (approximately incompressible) 
velocity fields. These modes could be eliminated from the pressure space, but it happens that those 
modes which are very near (in frequency) to them have a small ‘stability quotient’ (the quotient in the 
inf-sup condition) and this quotient is not uniformly bounded from below with respect to the mesh 
parameter, as it should be to guarantee a convergent approximation. We follow here the discussion 
about the Q 1 /PO element (quadrangles with bilinear continuous velocities and constant discontinuous 
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pressures) in Chapter 1, s3.3. of Reference 4. In that reference the checker-board mode is identified 
and it is shown that even upon eliminating it from the pressure space, the inf-sup condition is not 
uniformly satisfied. It is shown there that the condition is not satisfied by an element of the pressure 
space which is basically the high-frequency checker-board mode modulated by a smooth envelope (a 
‘wave packet’). This reasoning led us to contemplate the possibility of assessing stability by Fourier 
analysis of the matrices involved. 

In this work we develop an algebraic criterion to assess stability by straightforward calculation of all 
the eigenvalues for periodic problems on (more or less) regular meshes. The criterion is then applied to 
all the family of discontinuous and continuous prssure interpolations. A detailed study of stability and 
precision is given for stabilized algorithms. 

2. THE BREZZI-BAB~SKA CONDITION FOR STOKES FLOW 
Consider the Stokes flow 

V - u = 0 (continuity), 
V p  - vAu = f (momentum), 

u = 0 in r, 
where u is the velocity vector,p is the pressure, v is the kinematic viscosity and f is a body force source 
term. For simplicity we assume homogeneous Dirichlet boundary conditions. The corresponding weak 
form is 

4 (V  * U) dQ = 0, 

( V . v ) p d Q +  J a v ( ~ v : ~ u ) ~ = / a f . v ~ + S  v - t - A d R ,  V V E  V ,  

V 4  E X ,  

J* r 

.b (2) 

where 4 and v are weight functions. The above system is discretized by the standard Galerkin method 
with (eventually) different interpolation spaces for velocity and pressure: 

(3) 
Phi 4 E xh = sPan{Npp(x), P = 1, . . . i  N}, 
ujh, V j  E v h  = span{Nup(x), p = 1, . . . , N}. 

Note that since 4 and p have no derivatives in (2), elementwise discontinuous interpolations are 
allowed. 

The discrete system obtained is 

0 QT 
[-Q vK] [L]  = [:I’ (4) 

where 
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To achieve a convergent approximation, the choice of the pair {& v h }  is crucial. It must satisfy the 
'Brezzi-Babiiska' condition, otherwise oscillations in pressure are obtained. This condition is written 
asM 

3. DISCRETE VERSION OF THE BREZZI-BABoSKA CONDITION 

In terms of FEM matrices (6) is written as 

where Mp is a 'mass matrix' for the pressure functions: 

This expression can be further simplified. First note that K and Mp are symmetric, positive definite 
matrices. Then, through the change of variables 

w = K 1 / 2 ~ ,  (9) 
the relevant quotient in the supremum in (7) is equivalent to 

qT. Q K - ' / ~ ~  qT - Q v  = sup 
SUP 

V E R 3 ~ - { 0 )  (VT - K V ) ' / ~  w E R 3 ~ - { 0 )  (WT - w ) ' / ~  ' 

The supremum is obtained for w being any scalar multiple of Ki1l2QTq and then 

Replacing in (7) and squaring gives 

qT - (QK-' QT) q B B 2 =  sup 
qERN-{O}  qT ' MPq 

Again this expression is simplified by the auxiliary transformation y = M1l2q, obtaining 

Y~ . ( M A / ~ Q K - ~ Q T M - ~ / ~  
BB2= sup p ) y .  (13) 

ycRN - { 0} 

However, this infimum is the minimum eigenvalue of the product matrix, i.e. 

P .  (14) BB' = minimum eigenvalue of M ; ~ / ~ Q K - ~ Q ~ M - ' / ~  

YT * Y 

1 { 
Finally we recall that eigenvalues are invariant under similarity transformations and we apply such a 
transformation with the matrix Mk/2: 

B B ~  = minimum eigenvalue of (15) 
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4. EQUIVALENCE TO THE PERIODIC PROBLEM 

Fourier analysis allows diagonal or block-diagonal decomposition of discrete periodic operators.’ Here 
we will use this technique to compute the complete set of eigenvalues of the matrix product involved in 
expression (1 5). As usual, the full power of Fourier analysis is attained in the case of linear operators 
with periodic boundary conditions. Here periodicity is assumed at both the continuum and discrete 
levels. For instance, consider the mesh in Figure 1. It is composed of 7 x 7 Q2/P1 elements. To have a 
periodic problem at the continuum level, the boundary conditions should be periodic on opposing sides 
of the domain. On the other hand, to have a periodic problem at the discrete level, the discretization at 
opposing sides should match perfectly as is the case for the mesh in the figure. In this way the discrete 
boundary conditions consist simply of identifying the corresponding degrees of freedom on the 
opposing sides. The same is true for the meshes in Figures 2 and 4. The first one is composed of 7 x 7 
‘macroelements’divided into six Ql/PO elements each (see Figure 3). The second one is composed of 
3 x 3 macroelements divided into 3 x 3 Ql/PO elements each (see Figure 5). 

Referring to Figure 1, the total number of degrees of freedom is, once the degrees of freedom on 
opposing nodes have been eliminated through the periodic boundary conditions, 
Ndof = m2ndof = 7* x 11 = 847, where m is the number of identical macroelements repeated in 
each direction and ndof is the number of degrees of freedom per macroelement. The matrix product 
involved in the Computation of the BB constant in (15) is of order Ndofp x Nd+, where 
Ndofp = m2ndofp iS the total number of pressure degrees of freedom and ndofp = 3 is the number of 
degrees of freedom per macroelement. The power of Fourier analysis allows the decomposition of the 
eigenvalue problem into m2 eigenvalue problems for matrices of order nd,f,p x ndofg. Each of the 
smaller problems corresponds to a ‘plane wave’ identified by a ‘wave number vector’ k = (kX, ky), so 
that expression (1 5) is equivalent to 

= min k BB(k) ,  (16) 

where BB(k) is a Brezzi-Babiiska constant for the eigenspace spanned by the particular plane wave: 

BB(k)2= minimum eigenvalue of { Q,K,’Q:M;;}. 

0 vetocily node 
X pressure node 

Figure 1 .  FEM mesh composed of 7 x 7 QIPO elements with periodic boundary conditions 
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0 velocity node 
X pressure node 

Figure 2. FEM mesh composed of Q1PO macroelements with periodic boundary conditions 

0 velocity node 
X pressure node 

Figure 3. Macroelement composed of two triangles consisting of three QlPO elements 

Figure 4. FEM mesh composed of 3 x 3 macroelements based on the QlPO element. The 
broken rectangle 

macroelement is shown enclosed in a 
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An equivalent criterion for stability is based on the determinant of the reduced system obtained for 
pressures when the momentum equation is solved for velocities and they are replaced in the continuity 
equation: 

det(Ak) = det{QIK,'Qk}. (18) 

We now review the most known pairs of interpolation spaces. 

5. DISCONTINUOUS PRESSURE ELEMENTS 

Ql/PO (Figure 6). In the figure we see the results of the previous analysis applied to the QlFO 
element, i.e. bilinear velocities and constant discontinuous pressures. In the upper part of the graph we 
see the BB number from (1 7) and the second criterion (1 8) as functions of k, for several ky Also shown 
is a 3D elevation view of each criterion on the (kx, k,) plane. As is usual in Fourier analysis, the 
analysis is restricted to a square of side 2n in each direction. The points marked with circles in the 
corners of the square are unstable modes where both criteria vanish. Apparently there also exists an 
unstable mode at the origin k = 0, but this is the constant rigid mode u, v, p = const. which has to be 
eliminated from the analysis when periodic boundary conditions are imposed. It could be thought at 
first sight that there are four unstable modes. In fact, owing to the periodicity of the transformed 
function, the nodes at the corner are all the same and must be counted as one-quarter each, while those 
modes at the sides must be counted as one-half each. In the lower part of the figure we see the aspect 
that the pressure takes for this unstable mode. Note that the two criteria coincide, i.e. they predict the 
same unstable mode. Figure 7 illustrates the fact that these transformed quantities are periodic as 
functions of both k, and ky with period 2n. For this reason it is always allowed to take one 
representative square only. 

0 velocity node 

A pressure node 

element sketch 

Figure 6. Stability analysis of the QlPO element 
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Figure 7. Periodicity of BB(k,, k,,) with respect to both K and i 

Q2/Pl (Figure 8). We see the plots corresponding to the Q2P  1 interpolation (biquadratic velocities 
and discontinuous elementwise linear pressures). Both criteria are strictly positive, since in all cases the 
apparently unstable mode at the origin is removed with the zero-mean-value restriction. 

Q2/Ql Figure 9). If bilinear pressures are taken instead, the interpolation becomes unstable. Note 
that, in contrast with the QUPO and Q2/P1 elements, the null eigenvalue at k = 0 is continuously 
reached from k # 0. The fact that the unstable mode is at the origin k = 0 does not imply that it is a 
smooth ‘low-frequency’ mode. The corresponding variations in pressure are sketched in the lower part 
of the figure. The high-frequency variation is due to variations in the pressure inside the ‘base 
molecule’ (i.e. the set of degrees of freedom associated with each period), which has four pressure 
nodes. This kind of mode form is called an ‘optical’ branch in crystal physics. 

Q2/Ql (Figure 10). If, in addition, the internal node of the Lagrangian biquadratic interpolation for 
velocities is eliminated (eight-velocity-node element, also called the ‘serendipity’ interpolation), then 
the instability becomes catastrophic, i.e. the system is no longer unstable at isolated modes but over a 
complete (nfinite in the limit) set of modes. In this case all the modes on the two axes k, = 0 and ky = 0 
are unstable. 

Q2/P1 (Figure I I ) .  Now, coming back to the discontinuous linear interpolation for pressures, 
keeping the serendipity interpolation for velocities, we improve the stability, but two spurious modes 
still remain: k = {kn, 0}, (0, +z}. 

Q2/PO (Figure 12). The interpolation is fully stabilized if the pressure space is reduced to constant 
pressures by element only. However, as is well known, this causes a loss of accuracy of one-half order. 

PI (disc)/PO (Figure 13). We pass to review the triangular elements. In this case linear discontinuous 
(non-conforming) velocities are taken. The velocity nodes are taken at the mid-side of the elements. 
This happens to be nicely stable. 

Is/n 
Figure 8. Stability analysis of the Q2P1 element 
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Figure 10. Stability analysis of the Q2-/Q1 element 

checkerboard modes 

Figure 11. Stability analysis of the Q2-Pl  element 

wn 
Figure 12. Stability analysis of the Q2-PO elemc :nt 
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P i  (non conf.pO 

Is/n 
Figure 13. Stability analysis of the Pl(non-conforming)/€'O element 

P2/PI (Figure 14). This is the triangular version of the Q2/P1 element, but in contrast with it, it is 
unstable with two spurious modes at k = (0, 0). 

P2/PO (Figure 15). The quadratic interpolation for velocities can be stabilized if the space of 
pressures is reduced to constant ones, but as for the Q2/PO element, this does not have optimal 
convergence rates. 

PZC/PI (Figure 16). The P2/P1 elements can be stabilized through the addition of a 'bubble 
function' to the velocity space. 

6. CONTINUOUS PRESSURE ELEMENTS 

The linear velocities, linear pressures element is unstable (Pl/Pl(cont), Figure 17), but with the 
addition of a single bubble function to the velocity space it is stabilized (Figure 18). For quadrangular 
elements (QI/Ql(cont), Figure 19) the element is unstable and the addition of a single bubble function 
does not suffice to stabilize it (Ql'/Ql(cont), Figure 20). The bubble function is, in master element co- 
ordinates, b(5, q)  = (1 - t2)(1 - q2) (see Figure 21). If three bubble functions b, bc = t b  and 
b, = qb (see Figures 22 and 23) are added instead (Q1'3/Q1(cont), Figure 24), then the interpolation is 
stable. 

On the other hand, second-order interpolation for velocities and first-order interpolation for 
pressures give combinations which are generally stable, as is the case for P2/Pl(cont) (Figure 25), Q2/ 
Ql(cont) (Figure 26) and Q2-/Ql(coni) (Figure 27). 

P2P1 

checkerboard modes 

t Is/;\ I 

Figure 14. Stability analysis of the P2Ip1 element 
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Figure 15. Stability analysis of the P2PO element 

OW 

0 .on  PS+IPl 
0.03 ; 0.015 

2 0.01 
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kJn 
Figure 16. Stability analysis of the P2'PI element 

PIP1 (cont.) 

Figure 17 Stability analysis of the PlPl(cont) element 
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Pl+/Pl (cont.) 

Is/n 
Figure 18. Stability analysis of the Pl+iPl(cont) element 

I 
Figure 19. Stability analysis of the Ql/Ql(cont) element 

\ \ 

checkerboard mode a 
\ 

Figure 20. Stability analysis of the QI+/Ql(cont) element 

Figure 21. Bubble function b(5, 4) for quadrangular elements 
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Figure 22. Bubble function &((, q) 

Figure 23. Bubble function qb(5, q) 

Ql+'/Ql (cont.) 

DIII 

w 
Figure 24. Stability analysis of the Ql'3/Ql(cont) element 

P2P1 (cont.) 

k h  
Figure 25. Stability analysis of the P2/Pl(cont) element 
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WQ1 (ant.) 

k h  
Figure 26. Stability analysis of the Q2/Ql(cont) element 

7. STABILIZED 

Pairs of interpolation spaces satisfying the BB condition are difficult to obtain. An alternative is the 
stabilization of a priori unstable approximations through addition of mesh-size-dependent stabilization 
terms. These terms are all very similar, but the arguments involved differ from one author to another. 
For instance, the ‘velocity correction methods’ of Schneider et al.” and Kawahara and Ohmiya” 
propose a stabilized algorithm based on operator splitting. The scheme of Zienkiewicz et al l2  is also 
based on operator splitting. Other schemes, e.g. those of Douglas and Wang,I3 Hughes et al.14 and 
Tezduyar et al.,15 are based on Petrov-Galerkin techniques such as SUPG (streamline upwind Petrov- 
Galerkin), PSPG (pressure-stabilizing Petrov-Galerkin) or GLS (Galerkin least squares). 

The main disadvantage of stabilized methods is the addition of ‘free parameters’ (the ‘amount’ of 
stabilization to be added), in contrast with the stable formulations which are parameter-free. In fact, the 
two approaches are not so different: it can be shown that (under certain restrictions) stabilization terms 
are equivalent to the enlargement of the velocity space by the addition of certain (not explicitly known) 
‘virtual’ bubble functions. l6  

8. A STABILIZED ALGORITHM BASED ON THE EXTENSION OF SUPG TO SYSTEMS 

We recall the stabilized method presented in Reference 8. It is based on a straightforward extension of 
the basic SUPG scheme to systems of equations in such a way as to keep the well-known phenomenon 
of ‘superconvergence’, i.e. exact modal values are obtained in some restricted class of problems (lD, 
uniform mesh, no source term). 

K 
Q2IQ1 (cont.) 

J i i  

kjrr 
Figure 27. Stability analysis of the Q2-/Ql(cont) element 
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For the 1D scalar advective-difksive equation with constant coefficients, 

superconvergence is obtained with the discrete system 
u;+1-2u1+ui-1 

Ax* 
= ( k  + k"'"') a 7 

U i + l  - U ; - l  

2Ax 

with 

where $ is called a 'magic function' (see Figure 28). The latter can be replaced by other alternatives 
which give the same convergence rates, but superconvergence is obtained only if the definition is taken 
as in (21). This discrete system can be cast in a weighted residual form if the following weighting 
functions w, are used: 

Pi are the perturbations to the standard Galerkin formulation to add the necessary numerical diffusion. 
The intrinsic time z can be rewritten as 

where 4 is a magic function. The latter is bounded and well-behaved, as can be seen from the plot in 
Figure 28. 

For advective-diffusive systems of equations 

AU,x = KU,, U E R", A, K E R m x m ,  (23) 
the expression for the scalar intrinsic time is extended to a matrix of intrinsic time scales 

@ 
2 

t = - ~ ( K - ~ A A x ) K - '  

As usual, 4 is evaluated on its matrix argument through an eigenvalue decomposition. Expression (24) 
trivially reduces to (22) for the scalar case. This extension of SUPG to systems preserves the 
phenomenon of superconvergence, i.e. exact nodal values are obtained for problems with 
homogeneously spaced grids and no source term. The extension to multidimensional systems 

Figure 28. 'Magic functions' 4 and II/ 
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amounts to computing an equivalent one-dimensional matrix of intrinsic times scales z, as in (24) but 
using the projected jacobians A, and K,, and similarly for they- and z-directions. The global matrix is 
computed as 

z-l = 7,’ + 7;’ + 7,’. 

The multidimensional version of the Stokes system (1) can be cast as an advective-difisive one 
(23) with the definitions 

Here k is an arbitrary wave number vector and E has been added to make the matrices K j ~  non-singular. 
This property is needed to compute their inverse in expression (24). However, this inconsistency is 
added only for the computation of the matrix of intrinsic time scales. Once this is calculated and then 
the weighting functions, they are applied to the unmodified (without the &-term) Stokes system. 
Applying expressions (24) and (25), the following matrix of intrinsic time scales is obtained: 

JEh2 5 
z = diag{a, a, a, p } ,  a =  

2hJv + 2 4 v J ~ 5 ’  

where 5 = +(h/J(Ev)) and diag{a, b, c . . . } stands for a diagonal matrix with diagonal entries 
a, b, c . . . . The numerical diffusion matrix is 

for an arbitrary k E R3 and the discretized system is 

[vK-;.”G 4 [:] = [ a 3  

where the standard finite element matrices and interpolations are assumed: 

P 

(29 )  

System (29) corresponds to the centred Galerkin discretization of the PDE system 

-VAU - pV(V * U )  + V p  = f ,  V * u - NAP = -a (V  * f )  (31) 

and can be obtained from the original Stokes system by adding -/3 times the gradient of the continuity 
equation to the momentum equation and -a times the divergence of the momentum equation to the 
continuity equation. Since the systems are equivalent, the resulting stabilized scheme has the same 
precision (in the sense of order of truncation error) independently of a and p. 

9 .  FOURIER ANALYSIS FOR STABILIZED SCHEMES 

Recently a great deal of research w~rk~*, ’~ , ’ ’  has been carried out to circumvent the Brezzi-Babiiska 
restriction with equal-order schemes. It has been shown’ that all these formulations are based on the 
introduction (with different justifications varying from one author to another) of a stabilizing term 
proportional to the discrete version of Ap in the continuity equation, like the term aH in our 
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formulation. Furthermore, the formulation of Frey et al l7  is the closest to ours, since it introduces a 
term equivalent to a discrete V(V - u) in the momentum equation, like the term flG in ours. This term 
represents physically a bulk viscosity term. This term can also be introduced by a straightforward 
application of the Taylor-Galerkin method.' 

Most of the stabilized methods are basically of the form (29). The case a = B = 0 corresponds to the 
Galerkin non-stabilized case. The case fl  = 0, a = a'h2/2v corresponds to the stabilized method of 
Hughes et aZ.I4 The scheme of Frey et al l7  (in the Stokes regime and for linear elements) is obtained 
with a = 2mh2iv and p = hu2h2l4v, where 1 and m are O(1) constants defined in that work. 

A stability analysis has been performed on the Pl/P1 and Ql/Q1 elements, but using the det(A) 
criterion (1 8). The usual criterion is no longer valid owing to the presence of the stabilizing term. The 
criteria for the Galerkin (a = fl = 0) and stabilized (B = 0, a = 0.1) cases are shown in Figures 29 and 
30. Both criteria become strictly positive for all wave numbers with the stabilized formulation, whereas 
the Galerkin formulation has three checker-board modes for both elements. 

A deeper analysis is needed to precisely determine the amount of stabilization needed to have a good 
compromise between stability and accuracy. We will concentrate on the mid-side spurious modes of the 
form { ?n, 0 0 } ,  since they are purely one-dimensional (all quantities are constant along the y- and z 
directions), and a one-dimensional analysis is performed. 

The 1D discrete system resulting from considering variations along the x-direction only is 

~ i + l  - 2 ~ i + ~ i - 1  ~ i + l  - U ~ - I  J ;+1  - A - I  
2h ' -ci - - 

h2 + 2h 
-ci 

where i is the node index running along the x-direction. Applying the Fourier discrete transform, the 
response function for pressure is obtained as 

i, -i sin(kh){(1/3)[2 + cos(kh)] + (y/4) sin2(kh/2)} 
y sin4(kh/2) + sin2(kh) > (33) 

Gp,f =.T = 

where k stands for k, and 

is a global stability parameter. 
In Figure 31 we can see the effect of y on the response function. For y > 0 the singularity is 

removed at k = n. However, for too small y (y << 1) an undesirable peak in the response function 
occurs near k = n. It is seen that for y x 1 the peak is completely removed and a monotone response 

Gabrldn - PIP1 (ma) --Sum SbbKQed (&.I) 

(u 

-al 
9 5 

1 I 

- 0 . 4  vn4 

lJlr 

Figure 29. Analysis of the stabilized P I P 1  (cont) element 
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Galerkin - 01/01 (mnt.) SUPG stabilized ( d . 1 )  

k/rr L w  
Figure 30. Analysis of the 

w \-I$* 

stabilized QI/QI (cont) element 

curve is obtained. Numerical results from Reference 14 show that for the lid-drive cavity flow 
benchmark with a global stability parameter y ranging from 0.8 to 8, oscillations are absent, whereas 
for y < 0.08, oscillations exist. These results are in perfect agreement with the previous discrete 
analysis. 

As regards the proposed method, the global stability parameter is 

4 5 + 6 &  y = - t  3 1 + 12Jz.5' (35) 

E being a non-dimensional version of E.  The relationship between y and E is depicted in Figure 32 
together with each of the terms in (34). We can see that irrespective of the choice of E the algorithm is 
stable (y > 0-4). Note that for very small E the first term yr in (34) is not enough to stabilize, but the 
second term yII is. Thus in this case the bulk viscosity stabilization term BV(V - u) is indispensable. 

With respect to accuracy, a careful analysis shows that a boundary condition on pressure has to be 
added, since the second-order term Ap has been added. For instance u, v = 0 ('solid wall') is an 
admissible boundary condition for the continuum problem, whereas for system (3 1) a boundary 
condition in pressure, e,g, dpldn = 0, has to be added. This last condition is artificial and distorts the 
numerical results near the boundaries. Consider, for instance, the 1D version of (3 1): 

-,p" + u' = -.f', p' - ( p  + v)u" =f. (37) 

Figure 

ld 

/G, ,I 

10' 

t 
lo" 

10 

3 1. Response curves for a stability parameter ranging from y = to I 



1020 S. IDELSOHN, M. STORTI AND N. NIGRO 

Figure 32. Stability parameter for the proposed method as function of ‘free parameter’ 2 

If we take the derivative of the first equation and substitute for u” from the second one, then a single 
equation for p is obtained: 

-.(P + v)p f p  = f - .(P + vy. (38) 

The roots of the characteristic equation are 0 and ?l/[cc(P + v)]. The last two roots represent a 
boundary layer of thickness J[@ f v)]. Then there is a compromise between stability (high a, f i )  
and precision (low cc, P). The choice c1 = O(h2/v), f i  = O(v) is optimal: stability is within safe limits and 
the width of the ‘pressure boundary layer’ is of the order of roughly one element.* This optimal choice 
is automatically captured in the present scheme for the whole range of E“. 

10. A NUMERICAL EXAMPLE 

The well-known test of lid-driven cavity flow (see Figure 33) at Re = 1000 is used to show the 
performance of the method. In Figure 34 we can see the velocity pattern on a mesh composed of 
20 x 20 Ql/Ql elements with continuous interpolation for pressure and the stabilized method 
described here with E“ = 1. 

1 1. CONCLUSIONS 

The criterion described here is based on Fourier analysis and allows an algebraic determination of the 
stability of a given pair of interpolation spaces. The test has been applied to the most known 
interpolations, giving the expected results. A deeper study is performed on stabilized algorithms to 

u=l. v=o 

-I X 
L=l 

Figure 33. Lid-driven cavity flow: problem description and geometry 
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- 
A 

u 
D 

Ic . - - - - -  ------_. . _ _  
Figure 34. Lid-driven cavity flow: velocity vectors at Re = 1000 

determine the amount of numerical additive that is needed to achieve a stable approximation without 
significant loss of accuracy. 
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