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a b s t r a c t

A damage constitutive model in conjunction with a 2-D finite element discretization is presented for pre-
dicting onset and evolution of matrix cracking and subsequent stiffness reduction of symmetric compos-
ite laminates with arbitrary stacking sequence subjected to membrane loads. The formulation uses
laminae crack densities as the only state variables, with crack growth driven by both mechanical stress
and residual stress due to thermal expansion. The formulation is based on fracture mechanics in terms of
basic materials properties, lamina moduli, and critical strain energy release rates GIC and GIIC, only. No
additional adjustable parameters are needed to predict the damage evolution. Spurious strain localization
and mesh size dependence are intrinsically absent in this formulation. Thus, there is no need to define a
characteristic length. Comparison of model results to experimental data is presented for various laminate
stacking sequences. Prediction of crack initiation, evolution, and stiffness degradation compare very well
to experimental data.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Laminate composite materials have many applications in differ-
ent fields like nautical and aeronautical structures, but are affected
by many damage modes like matrix cracking, fiber brakeage, fiber
matrix debonding, etc. [1]. Therefore, the prediction of damage ini-
tiation, damage growth and propagation up to fracture are impor-
tant for evaluating the load-carrying capacity, damage tolerance
and safety of composite structures.

Under in-plane load in the direction perpendicular to the fibers,
the first damage mode observed is transverse matrix cracking. Its
presence triggers the initiation of other damage modes such as
delamination, fiber-matrix debonding and fiber breakage. In addi-
tion, matrix cracks lead to stiffness reduction and stress redistribu-
tion to adjacent laminae. Furthermore matrix crack increase the
permeability of the material, which provides a path for liquids or
gas to reach the fibers and thus damage the composite.

Therefore, prediction of matrix cracking initiation and evolution
in laminate composites is a problem of great relevance. Usually
matrix cracking appears when a tensile stress perpendicular to
the fiber is applied, like in a cross-ply laminate, but this is not
the only case. For example Varna et al. [2] found using experimen-
tal tests that matrix cracks appear also for balanced laminate for
ll rights reserved.
angles as low as 40�. Additional experimental data can be found
from other authors for unbalanced laminates [3,4].

Damage modeling of laminate composites can be approached in
several ways. Strength-based failure criteria are commonly used
with the finite element method to predict failure events in com-
posites structures. The problem of these criteria is that they need
experimental lamina strength values (transverse tensile strength
F2T and shear strength F6), which are function of the lamina thick-
ness and the laminate stacking sequence (LSS). The thickness
dependency can be accounted by using in situ values [5–8], but
the dependency on LSS is not easily accounted for. Furthermore,
strength criteria are not able to provide information about crack
evolution, implying that the stiffness degradation scheme compat-
ible with strength criteria is the ply discount method. This manu-
script presents an alternative formulation that does not need
calculation of in-situ strengths. In fact, in-situ strengths could be
calculated from the results of this formulation, but there is no need
to do so because the present formulation provides excellent esti-
mates of crack initiation on any and all laminae, as wells as crack
evolution, stiffness reduction and stress redistribution. When this
stress redistribution is used along with fiber-dominated failure cri-
teria, the model is able to predict ultimate strength of the laminate.

Continuum Damage Mechanics (CDM) have been used by many
researchers in recent years. The method was originally develop by
Kachanov [9] and Rabotnov [10] and it can be used to predict dif-
ferent composite failure modes such as matrix cracking, fiber fail-
ure and delamination [11–18]. A plane stress continuum damage
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mechanics for composite materials [19] was implemented for shell
elements into an explicit finite element code but it does not take
into account the problem about mesh dependence on the solution.
A plane stress failure model was proposed in [20] and extended in
[21] for a three-dimensional failure model. The authors found good
correlation between numerical and experimental results. However,
mesh dependence and strain localization are not addressed. There-
fore, it must be noted that there are some disadvantages to using
continuum damage mechanics. One of these disadvantages is the
difficulty for obtaining the model parameters from experimental
data. Another is that when the model is developed in a finite ele-
ment code, it is affected by mesh dependence on the solution.

Another interesting approach is proposed in [22–24], consisting
of an analytical solution of strain and stress in a representative vol-
ume element (RVE). This approach is particularly interesting be-
cause the damage moduli of the laminate depend only on the
crack density. The limitation of [22,23] is that the laminate stack-
ing sequence (LSS) is restricted to particular cases. An analytical
solution is presented in [25] using oblique coordinate system, for
two sets of arbitrary oriented cracking laminae and extended for
arbitrary, yet symmetric LSS in [26].

Most applications of composites involve thin laminated plates
or shells under the action of predominantly membrane loads. Since
the thickness of the laminate is usually small compared with the
in-plane dimension of the plate, it can be assumed that every layer
is in a state of plane stress. Then, in this paper, a damage constitu-
tive model cast into a finite element discretization using plane
elements is proposed to evaluate stiffness reduction and matrix
cracking evolution for symmetric laminate with arbitrary LSS
under in-plane tension and in-plane shear.

Usually, a characteristic length needs to be specified or esti-
mated by the user when a continuum formulation is discretized.
In contrast, the constitutive model developed herein does not need
any additional parameters, such as characteristic length, in order to
evaluate the energy release rate. Furthermore, the model proposed
does not have problems of instability of the solution as function of
the mesh used, i.e., the constitutive model is mesh independent.
The only dependence of the quality of the solution is introduced
by the quality of the stress gradients that are computed by the
finite element method and thus they are mesh dependent, but
the constitutive model does not add additional mesh dependence.

Matrix cracking is predicted by a combination of an analytical
solution for the damage activation function g and a return mapping
algorithm (RMA) to restore equilibrium upon damage. The shear
lag analysis is inspired by the work in [23,25,26], developed for a
single lamina using a coordinate system aligned with the crack
direction [26], and taking into account the stiffness of the remain-
ing laminae by an homogenization method [27,28]. Thermal
expansion effects are included in the formulation.

The resulting constitutive model is implemented into a user
material subroutine in ANSYS. The simulations performed show
good comparison to experimental data.
Fig. 1. Representative volume element (RVE) in the coordinates of lamina k.
2. Matrix cracking under in-plane loading

It is well known that the initiation of the transverse cracks in
composite laminates is related to the residual stress, the stacking
sequence, the thicknesses of the laminae and the properties of
the laminae. For transverse cracks in a lamina that is embedded
in a laminate under inplane loading, the cracks are under a mixed
mode I (opening) and mode II (shear) loading condition. Mode III
(tearing) is absent due to the constraining effect of the adjacent
laminae [29,30]. There are enough pre-existing defects in a poly-
mer matrix composite to be able to assume that pre-existing, rep-
resentative cracks are always present and ready to propagate when
a Griffith’s-type the fracture criteria is met. Otherwise, the energy
release rate is zero for a crack of zero length, and it attains negligi-
ble values for very small cracks, as in the case of crack coalescence
phenomena [31]. Furthermore, experimental evidence indicates
that matrix cracks propagate suddenly and over long distances
[32–34]. Therefore, in this paper, ‘‘initiation” refers to the onset
of propagation of existing defects. Correspondingly, ‘‘propagation”
refers to further accumulation of fully propagated cracks, which is
accounted for as an increased crack density.

In this section, a formulation is proposed to evaluate the reduc-
tion in thermoelastic properties (stiffness and thermal expansion
coefficients) of the laminate as a function of the crack density k
in any lamina of the laminate. The formulation uses a representa-
tive volume element (RVE) enclosed by the mid-surface and the
top-surface of the laminate denoted with t (Fig. 1), the surface of
two consecutive cracks, and a unit length parallel to the cracks.
The length of the RVE is equal to 2l (distance between two adjacent
cracks), and is related to the crack density that is the inverse of this
distance (k = 1/2l). The ingredients for the proposed model are: the
damage variables DðnÞij ðknÞ;DaðnÞ

ij ðknÞ (i, j = 1, 2, 6; n = layer number)
that represent the reduction in stiffness and coefficient of thermal
expansion (CTE) of individual plies as a function of the ply crack
density kn (the state variable of the problem), and the damage acti-
vation function g, as a function of energy release rate GI and GII, that
delimit the damage and no-damage domain.

The proposed constitutive model, discretized by finite elements,
evaluates damage for in-plane loading case in five steps:

– Evaluation of undamaged moduli for the laminate (strain
applied is equal to zero).

– Laminate stiffness reduction.
– Lamina stiffness reduction.
– Evaluation of the damage activation function g.
– Lamina-iteration with a RMA (return mapping algorithm).
– Laminate iteration.

2.1. Overall thermoelastic properties of the undamaged laminate

In this first step, it is described how the routine evaluates the
overall elastic properties for the undamaged laminate. Three coor-
dinate systems are used (Figs. 1 and 2): the laminate coordinate
system (X, Y, Z; Fig. 2) where loads and boundary conditions are ap-
plied, the lamina coordinate system (1, 2, 3; Fig. 2) with the one-
axis along the fiber direction of each lamina, and the cracking lam-
ina coordinate system (x1, x2, x3; Fig. 1) coinciding with the lamina
coordinate system of the current cracking lamina k. The later coor-
dinate system is very important to the proposed formulation be-
cause it is used to solve for displacements around the crack,
strains, energy release rate, and crack density in the cracking
lamina.



Fig. 2. Lamina (1–2–3) and laminate (X, Y, Z) coordinate system.

1 which may be applied as a strain step.
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The following notation is used in this paper. An overline indi-
cates an undamaged (virgin) material property, stiffness, compli-
ance or CTE. Lack of decoration on these quantities indicates a
damaged quantity. On stiffness and compliances, it is not possible
to identify the coordinate system by the subscript or by the deco-
ration. Instead, the coordinate system is made evident by the sub-
scripts used on the stress and strain, or it will be explicitly stated
when needed as in Eq. (3). The stress–strain relationship for in-
plane stress in the lamina coordinate system (1, 2, 3) (Fig. 1) is
[35]:
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where Q11 ¼ E1=D; Q12 ¼ Q21 ¼ E1 � �m12=D; Q22 ¼ E2=D;
D ¼ 1� �m12 � �m21.

The Poisson’s coefficients �m12 and �m21 are related by the symme-
try property �m21=E2 ¼ �m12=E1. The coefficients of thermal expansion
(CTE) �a1 and �a2, represent the thermal expansion in the direction of
the fibers and perpendicular to the fibers, respectively, and DT is
the change in temperature.

A laminate is a set of lamina with various fiber orientations
which are bonded together. Then the stress–strain relationship in
the coordinate (x1, x2, x3) shown in Fig. 1 is:
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where the transformation equation, for the stiffness matrix, from
the lamina coordinate system (1, 2, 3) to the coordinate system of
the cracking lamina k (x1, x2, x3) is:

½Q ðx1 ;x2Þ� ¼ ½T�
�1½Q ð1;2Þ�½T��T ð3Þ

and [T] is the transformation matrix given by:

½T� ¼
m2 n2 2mn
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2
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where m = cos(h) and n = sin(h), and h is the rotation around z-
direction, which define the orientation of each lamina coordinate
system with respect to the coordinate system of cracking lamina
k.

The coefficients of thermal expansion in the coordinate system
of lamina k can be evaluated by a coordinate transformation as:
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The model is developed for plane elements, with no curvature,
so that the following plate stiffness are obtained in the laminate
coordinate system (X, Y, Z):
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where eX, eY and eXY are the laminate mid-surface strains,
NT

X ; NT
Y ; NT

XY are the thermal F forces per unit length of classical
lamination theory (CLT). The coefficients of the matrix A

h i
represent

the laminate in-plane stiffnesses in the undamaged state and are gi-
ven by:

Aij ¼
XN
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where it is understood that the coefficient matrices Q ðnÞij

� �
of each

ply ‘‘n” are rotated to the proper coordinate system, in this case
to the coordinate laminate system (Xi, i = 1, 2, 3). In Eq. (7) t(n) rep-
resents the thickness of nth layer. The compliance matrix of the
plate is obtained inverting Eq. (6):
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Finally from Eq. (8) the routine can evaluate the overall elastic prop-
erties of the undamaged laminate as:
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1

t�a11
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where t represents the laminate thickness.

2.2. Laminate reduced thermoelastic properties

In this second step, for each load step1, the routine is able to
evaluate the damaged moduli. Damage in the form of cracks is ana-
lyzed as being discrete (not homogenized) with crack density kk = 1/
2l. Since the material between cracks is considered undamaged, then
stiffness for the cracking layer k is calculated in terms of undamaged
moduli. The constitutive equations of the cracked lamina k, with ref-
erence to the local coordinate system (1, 2, 3) of the same lamina,
can be written in term of thickness averaged in-plane displacements
and undamaged stiffness as follows:

r̂ðkÞ1 ¼ Q ðkÞ11 ûðkÞ;1 � �aðkÞ1 DT
� �

þ Q ðkÞ12 v̂ ðkÞ;2 � �aðkÞ2 DT
� �

r̂ðkÞ2 ¼ Q ðkÞ21 ûðkÞ;1 � �aðkÞ1 DT
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ŝðkÞ12 ¼ Q ðkÞ66 ûðkÞ;2 þ v̂ ðkÞ;1
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where the overline denotes undamaged quantities, hat denote a
thickness averaged quantity, and (),1 and (),2 represent partial deri-
vates respect to the x1 and x2 directions respectively (x1 and x2 are
the in-plane coordinates aligned and perpendicular to the fiber of
lamina k. The constitutive Eq. (10) are written according to the mod-
el for cracked laminates [3,26], considering the perturbation in the
displacement field induced by the presence of cracks, and taking
into account that the displacements ûðkÞ1 ; ûðkÞ2 are functions of the
(x1 � x2) position inside of RVE in Fig. 1). During the laminate loop,
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the remaining laminae have reduced properties that can be calcu-
lated in terms of the damage variables DðmÞ22 ðkmÞ; DðmÞ12 ðkmÞ; DðmÞ66 ðkmÞ
(for stiffness reduction) and DaðmÞ

11 ðkmÞ; DaðmÞ
22 ðkmÞ (for CTE reduction),

with m – k. Therefore, the constitutive equations of any homoge-
nized lamina m – k can be written in the coordinate system of lam-
ina k as:
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Note that stiffnesses, compliances and CTE without an overline
denote damaged quantities. Also note that in Eq. (10)
r1 ¼ rx1 ; r2 ¼ rx2 ; s12 ¼ sx1x2 because Eqs. (10) and (11) are both
set up in the lamina coordinate system of lamina k. The damaged
thermoelastic properties of ply (m), Q(m) and a(m), can be written
in the coordinate system of lamina m as:
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where k and m are the labels for the cracking lamina and the
remaining homogenized laminae respectively, DðmÞij ðkmÞ ði; j ¼ 1;2;
6Þ and DaðmÞ

i ðkmÞ ði ¼ 1;2Þ are variables which represent the in-
plane stiffness and CTE reduction of the laminae. The constitutive
equations for out-of-plane shear strains and stresses can be ex-
pressed in terms of interface shear stresses and averaged displace-
ments by taking a weighted average of these equations. These
equations are called shear lag equations [23]. The shear lag equation
used in this paper is developed in Barbero et al. [25,26].

To obtain the laminate compliance matrix [S] of the cracked
composite laminate, three unit-load cases, without thermal strains,
are considered:
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and the deformations obtained for each case are the components of
[S] in the material coordinate system of the cracking lamina, as
follow
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êx2
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The laminate compliance matrix [S] in the global coordinate sys-
tem is obtained using the coordinate transformation Eq. (3). Then,
the overall elastic properties for the laminate can be written as:
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Similarly, the coefficients of thermal expansion for the damaged
laminate can be obtained calculating the deformation for a unitary
change of the temperature (DT = 1) and external loading equal to
zero ðr̂x1 ¼ r̂x2 ¼ ŝx1x2 ¼ 0Þ:
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The coefficients of thermal expansion of the laminate in the
laminate coordinate system can be calculated by a coordinate
transformation as:
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It is very important to note that the proposed procedure is able to
evaluate the stiffness of the damaged laminate as a function of the
crack density of the damaged laminae (kk) and the virgin elastic
properties of the laminae. There is no need for defining damage evo-
lution functions in terms of additional parameters, and thus no need
to adjust such parameters using additional experimental data. It
only remains to calculate the values of kk, as described in Section 3.

2.3. Lamina reduced thermoelastic properties

The damage parameters DðkÞij ðkkÞ and DaðkÞ
i ðkkÞ for lamina k can be

calculated considering the reduction of the laminate thermoelastic
properties (stiffness and CTE) due to matrix cracking in the lamina
k only.

First, the undamaged stiffness matrix of the laminate Q in the
coordinate system of lamina k is calculated by the sum of contribu-
tion of the cracking lamina k plus the contribution of the remaining
n � 1 laminae as follows:

Q ¼ Q ðkÞ
tðkÞ

t
þ
Xn

m¼1

Q ðmÞ
tðmÞ

t
ð1� dmkÞ ð18Þ

where Q ðkÞ is the undamaged stiffness matrix the lamina k (in the
coordinate system of the lamina k), Q ðmÞ are the undamaged stiff-
ness matrices also (in the coordinate system of lamina k) of the lam-
inae m – k (all plies in their undamaged state), t is the laminate
thickness, t(k) is individual lamina thickness, and dmk is the Kroneck-
er symbol with dkk = 1, zero otherwise. When the crack density
grows in individual plies, the laminate thermoelastic properties
are accordingly reduced to:

Q ¼ Q ðkÞ
tðkÞ

t
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Xn

m¼1

Q ðmÞ
tðmÞ

t
ð1� dmkÞ ð19Þ

where the damaged laminate stiffness Q = S�1 can be computed
from Eq. (14), and the damaged laminae stiffness Q(m) are given
by Eq. (12).

Then, the reduced stiffness matrix of the k-lamina, due to dam-
age growth in lamina k, Q(k) can be evaluated from Eq. (19) as

Q ðkÞ ¼ 1
tðkÞ

Q � t �
Xn

m¼1

Q ðmÞ � tðmÞ � ð1� dmkÞ
" #

Finally, the damage variables for DðkÞij stiffness reduction of ply k
are calculated as

DðkÞij ðkkÞ ¼ 1� Q ðkÞij =Q ðkÞij ; i; j ¼ 1;2;6 ð20Þ

A similar procedure is followed to calculate the damage vari-
ables for reduction in CTE of lamina k;DaðkÞ

i . Thus, by applying
CLT, the reduced CTE of the k-lamina due to damage growth in
lamina k can be evaluated as
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where the damaged laminate CTE a is computed from (16), and the
damaged laminae CTEs a(m) are given by Eq. (12).

The coefficients DaðkÞ
i for the cracking lamina k are calculated as

DaðkÞ
i ¼ 1� aðkÞi =�aðkÞi ; i ¼ 1;2 ð22Þ

To evaluate the reduction in thermoelastic properties of the crack-
ing lamina k, the other laminae of the laminate are considered
undamaging during the course of lamina-iterations in lamina k,
but with damaged properties calculated according to the current
value of their damage variables DðmÞij ;DaðmÞ

i .

2.4. Damage activation function

Under displacement control, the energy release rate of new
crack formation for mode I and II are:

GI ¼ �
@UI

@A
; GII ¼ �

@UII

@A
ð23Þ

where UI and UII are the strain energy for mode I and mode II,
respectively, and A is the crack area. Eq. (23) describes Griffith’s en-
ergy balance for infinitesimal crack growth @A of brittle materials.
According with experimental observations on laminated compos-
ites based on brittle matrix (e.g. for most toughened epoxy matri-
ces), crack growth is not infinitesimal but cracks develop
suddenly over a finite length [32–34]. Even for laminates where
cracks do not grow to span the width of the specimen, cracks still
grow suddenly at first and occupying large areas of the specimen
and the concept of crack density, as used in this manuscript, can still
be applied [36]. Therefore, Griffith’s energy principle is applied on
its discrete (finite) form, in order to describe the discrete (finite)
behavior of crack propagation observed experimentally, i.e.,

GI ¼ �
DUI

DA
; GII ¼ �

DUII

DA
ð24Þ

where DUI, DUIIis the change in laminate strain energy during mode
I and II finite crack growth, and DA is the new finite crack area.

An important aspect in any analysis of laminated composites is
to consider the effect of residual thermal stresses, which are inher-
ent to these materials due to DT difference between the laminate
processing temperature and structure operating temperature, cou-
pled with the difference in CTE between in individual plies caused
by plies different orientation angles. Thus, starting from the defini-
tion of strain energy as U ¼ 1

2

R
Vfeg � frgdV for the RVE (Fig. 1), the

laminate strain energy can be derived considering the contribution
of ply residual thermal stresses and the self-balanced nature of ply
thermal stresses at laminate level. Therefore, the contribution of
mechanical loading and temperature change can be written as:

URVE ¼
VRVE

2
ðU1 � U2 þ U3Þ ð25Þ

with

U1 ¼ e � Q � e; U2 ¼ a � Q � a � DT2;

U3 ¼
1
t
�
XN

n¼1

tðnÞ � aðnÞ � Q ðnÞ � aðnÞ � DT2 ð26Þ

where VRVE is the volume of RVE in Fig. 1; e is the vector applied
(mechanical) in-plane laminate strain in the displacement control
case; Q and a are the overall laminate thermo-elastic properties gi-
ven by Eqs. (14) and (16) respectively; Q(n) and a(n) are thermoelas-
tic properties of individual plies given by Eq. (12). In Eqs. (25) and
(26), the term U1 represents the contribution of mechanical loading,
and the terms U2, U3 represent the contribution of thermal residual
stress, both contributing to the total laminate strain energy.

In order to calculate the strain energy release rate for separate I
and II modes, the deformation is partitioned in I and II modes, and
the resulting I and II modes strain energy in Eq. (25) can be written
in the coordinate system of ply k as:

UI ¼ ex1 Q11ex1 þQ 12ex2 þQ 16cx1x2

� �
þ ex2 Q 21ex1 þQ 22ex2 þQ26cx1x2

� �
�DT2 ax1 Q 11ax1 þQ12ax2 þQ 16ax1x2

� �
þax2 Q 21ax1 þQ 22ax2

��
þQ 26ax1x2

��
þDT2

t

XN

n¼1

tðnÞ aðnÞx1
Q ðnÞ11 aðnÞx1

þQ ðnÞ12 aðnÞx2
þQ ðnÞ16 aðnÞx1x2

� �h

þaðnÞx2
Q ðnÞ21 aðnÞx1

þQ ðnÞ22 aðnÞx2
þQ ðnÞ26 aðnÞx1x2

� �i
ð27Þ
UII ¼ cx1x2
Q 61ex1 þ Q 62ex2 þ Q 66cx1x2

� �
� DT2ax1x2 Q 61ax1 þ Q62ax2 þ Q66ax1x2

� �
þ DT2

t

XN

n¼1

tðnÞaðnÞx1x2
Q ðnÞ61 aðnÞx1

þ Q ðnÞ62 aðnÞx2
þ Q ðnÞ66 aðnÞx1x2

� �
ð28Þ

The failure criteria proposed by Hahn [37] is used in this study,
but written in the form of damage activation function (see Chapter
8 in [1]):

gkðkÞ ¼ ð1� rÞ

ffiffiffiffiffiffiffi
GI

GIC

s
þ r

GI

GIC
þ GII

GIIC
� 1 6 0 ð29Þ

where r = GIC/GIIC and GIC and GIIC are the critical values of the en-
ergy release rate (ERR) for mode I and II.

3. Numerical algorithm

The proposed algorithm is described in this section and imple-
mented into an user material subroutine in ANSYS. The only state
variables of the routine are the crack densities for all laminae. The
algorithm consists of the following steps:

– Strain steps.
– Laminate iterations.
– Lamina iterations (see Sections 2.2 and 2.3).

For each load (strain) step, the strain on the laminate is in-
creased and the laminae are checked for transverse tension and/
or shear damage mode by evaluating the damage activation func-
tion Eq. (29). Details about the numerical implementation steps
are listed in the following sections.
3.1. Lamina iteration

During the loop for a given lamina k, and for fixed a strain level,
when matrix cracking is detected, a return mapping algorithm
(RMA) is invoked to iterate and modify the crack density kk. The
RMA calculates the increment (decrement) of crack density as

Dkk ¼ �gk=
@gk

@kk
ð30Þ

until gk = 0 (Eq. (29)) is satisfied for a given tolerance. This proce-
dure, for each strain level, is repeated for all the laminae in the lam-
inate. The analysis starts with a negligible value for the crack
density (k = 0.02 cracks/mm).
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3.2. Laminate iteration

To evaluate the stiffness reduction of the cracked lamina (k-
lamina), all of the other laminae (m-laminae) in the laminate are
considered not damaging during the course of lamina-iteration,
but with damaged properties calculated according to the current
value of their damage variables DðkÞij . Given a trial value of kk for
the cracked lamina, the model provides g, DðkÞij , for lamina k assum-
ing all other laminae do not damage while performing lamina iter-
ations in lamina k. Since the solution in lamina k depends on the
stiffness of the remaining laminae, a converged iteration for lamina
k does not guarantee convergence for the same lamina once the
damage in the remaining laminae are updated, unless the remain-
ing laminae remain undamaged. This can be realized by laminate-
iterations; than is, to loop over all laminae repeatedly until all lam-
inae converge to gk = 0 for all k = 1 . . . n.

4. Strain-based algorithm objectivity

When a constitutive formulation is discretized, such as in a fi-
nite element code, errors may occur in the solution due to prob-
lems associated to strain localization and mesh dependence.
These problems limit the accuracy depending on the mesh
refinement.

The damage activation function must be written in terms of the
fracture energy per unit area G so that the later can be compared to
the critical energy release rate Gc. In the proposed formulation, the
fracture energy per unit area GI and GII are evaluated analytically
(Eq. (24)) with no need to introduce a characteristic length. This
is because the present formulation analyzes a discrete crack inside
the RVE of dimension 2l = 1/k, not a crack smeared over the volume
of the element. This is in contrast to other formulations that first
evaluate the energy per unit volume gv, then need to define a char-
acteristic length lc to calculate the fracture energy per unit area
G = gv�lc. Calculation of the characteristic length is problematic be-
cause it depends on mesh size and the particular formulation used
[38–40].

Numerical tests have been carried out to evaluate the objectiv-
ity of the model using a 100 � 100 mm2 plate with a [0/908/0]s LSS
and material properties given in Table 1. The model is subjected to
an imposed displacement D in the X-direction equal to 10/L, where
L is the dimension of the plate. The plate was discretized with three
different meshes shown in Fig. 3.

The stress–strain responses for each of the three mesh size used
are shown in Fig. 4a. Algorithms that are mesh sensitive may and
usually show no discrepancy among the stress–strain curves. In-
stead, mesh sensitivity is noticed in the structural force–displace-
ment response. The structural response obtained using the three
different meshes are compared in Fig. 4b. According to Fig. 4b,
the global response of the structure is insensitive to the mesh used.
Table 1
Material properties.

Material properties

E1 (GPa) 44.7 [2]
E2 (GPa) 12.7 [2]
v12 0.297 [2]
G12 (GPa) 5.8 [2]
G23 (GPa) 4.5a

Ply thickness (mm) 0.144 [2]
GIc (kJ/m2) 0.36
GIIc (kJ/m2) 1.4
a1 (1/�C) 8.42E�06 [25]
a2 (1/�C) 1.84E�05 [25]
DT (�C) �99 [2]

a Assumed value.
This means that the energy dissipated in the formation of the crack
is mesh insensitive.

5. Numerical results

In this section, results obtained by the Discrete Damage
Mechanics (DDM) model developed are presented and the results
are compared with experimental data reported in literature
[2,41]. The properties of the material used for these tests are pre-
sented in Table 1. Several laminate stacking sequence (LSS) are
used to validate the code.

The first test presented is a cross-ply laminate [0/908/01/2]S. This
is a classical example of transverse matrix cracking where the
cracks open in pure mode I. Since the experimental data was ob-
tained at room temperature, using a stress free temperature
(SFT) equal to 120 �C. Therefore, the numerical test is performed
with DT = �99 �C. The stress–strain response for the 90� layer is
shown in Fig. 5. It can be seen in Fig. 6 that the DDM model pre-
dicts very well the strain required for crack initiation, as well as
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the evolution of crack density (for the 90� layer) when compared
with experimental data.

The degradation of the laminate modulus and degradation of
Poisson’s ratio are compared to experimental data in Figs. 7 and
8. Note that Ex; �vxy are the undamaged laminate modulus and Pois-
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Fig. 7. Prediction of laminate modulus Ex=Ex vs. crack density for a [0/908/01/2]s

laminate.
son’s ratio, respectively. The results plotted as a function of the
crack density compare very well with experimental data.

Comparison between the strain required for crack initiation and
evolution with and without thermal expansion shows that the
presence of thermal expansion does not give a lot of influence in
4 4 1/2 s

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00

λ (cracks/mm)

[0/554/-554/01/2]s

Varna et al. [2]

DDM Model

/
x

x
E

E

Fig. 10. Prediction of laminate modulus Ex=Ex vs. crack density for a [0/+554/�554/
01/2]s laminate.



1.00

1.10
[02/904]s

1028 E. J. Barbero et al. / Composite Structures 93 (2011) 1021–1030
the strain required for crack initiation and evolution of crack den-
sity. The present formulation requires only the properties listed in
Table 1, without need for experimental parameters for damage
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thermal expansion.
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evolution equations and no need to set the characteristic length
of the problem.

The second test proposed is a [0/554/�554/01/2]s laminate when
the cracks are subjected to both mode I and mode II with more pre-
dominance of mode II. Also for this test results are presented with
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and without thermal expansion. The strain required for crack initi-
ation and evolution is shown in Fig. 9. The prediction is very good
compared with the two set of experimental data presented in [2].

The prediction of Young’s modulus Ex=Ex shown in Fig. 10 is
good compared with experimental data. The prediction of Poisson’s
Fig. 18. Contour plot of the crack density (first load step) in the 90-lamina for a [30/
�30/904]s laminate under uniaxial load.

Fig. 19. Contour plot of the crack density (second load step) in the 90-lamina for a
[30/�30/904]s laminate under uniaxial load.
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Fig. 17. Prediction of laminate modulus vxy=�vxy vs. crack density for a [30/�30/
904]s laminate.
ratio vxy=�vxy shown in Fig. 11 does not match the experimental
data, but also in [3] the authors reported an increase of Poisson’s
ratio for [±h]s laminates for values of h lower than 60�.

Damage evolution for a [02/904]s laminate without and with
thermal expansion is shown in Fig. 12. Prediction of Young’s mod-
ulus Ex=Ex and Poisson’s ratio vxy=�vxyare shown in Figs. 13 and 14.
The DDM results provide a good approximation to experimental
data presented in [41]. Another test carried out is [30/�30/904]s

laminate, with results shown in Figs. 15–17. It can be seen that
the model predicts experimental data [41] accurately.

To demonstrate the versatility of the proposed formulation,
contour plots of crack density around a hole in the 90� layer of a
[30/�30/904]s laminate are shown at two load steps in Figs. 18
and 19. The values of the state variable (crack density) are re-
trieved with standard ANSYS post processing and plotted within
ANSYS.
6. Conclusions

It has been shown that the constitutive model developed is not
afflicted by problems of mesh dependence on the solution. It is not
necessary to introduce fictitious parameters such as characteristic
length when the continuum formulation is discretized in a finite
element code. The tests presented for various symmetric laminates
with arbitrary LSS show good predictions in comparison with
experimental data. Implementation as a user material subroutine
in the commercial software ANSYS have been demonstrated.
Therefore, the model is able to gain widespread use and
applicability.
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