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Abstract—In recent years there has been a growing interest in using Godunov-type methods for

atmospheric flow problems. Godunov’s unique approach to numerical modeling of fluid flow is

characterized by introducing physical reasoning in the development of the numerical scheme (vAN LEER,

1999). The construction of the scheme itself is based upon the physical phenomenon described by the

equation sets. These finite volume discretizations are conservative and have the ability to resolve regions of

steep gradients accurately, thus avoiding dispersion errors in the solution. Positivity of scalars (an

important factor when considering the transport of microphysical quantities) is also guaranteed by

applying the total variation diminishing condition appropriately. This paper describes the implementation

of a Godunov-type finite volume scheme based on unstructured adaptive grids for simulating flows on the

meso-, micro- and urban-scales. The Harten-Lax-van Leer-Contact (HLLC) approximate Riemann solver

used to calculate the Godunov fluxes is described in detail. The higher-order spatial accuracy is achieved

via gradient reconstruction techniques after van Leer and the total variation diminishing condition is

enforced with the aid of slope-limiters. A multi-stage explicit Runge-Kutta time marching scheme is used

for maintaining higher-order accuracy in time. The scheme is conservative and exhibits minimal numerical

dispersion and diffusion. The subgrid scale diffusion in the model is parameterized via the Smagorinsky-

Lilly turbulence closure. The scheme uses a non-staggered mesh arrangement of variables (all quantities are

cell-centered) and requires no explicit filtering for stability. A comparison with exact solutions shows that

the scheme can resolve the different types of wave structures admitted by the atmospheric flow equation

set. A qualitative evaluation for an idealized test case of convection in a neutral atmosphere is also

presented. The scheme was able to simulate the onset of Kelvin-Helmholtz type instability and shows

promise in simulating atmospheric flows characterized by sharp gradients without using explicit filtering

for numerical stability.

Key words: Atmospheric flows, Godunov method, unstructured grids, Riemann solver.

1. Introduction

Traditionally, finite-difference discretizations of centered schemes such as the

Leapfrog scheme have been favored for discretizing the atmospheric flow equation

set. These types of schemes have large amounts of dispersion errors (non-physical
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spurious oscillations), which can contaminate the numerical results (CARPENTER et

al., 1990). At smaller spatial and temporal scales (non-hydrostatic meso-scale flows),

large gradients of velocities and other physical quantities can develop and the local

accuracy becomes important. The application of the Leapfrog scheme on smaller

scales requires explicit time filtering for stability. The Asselin time filter, which is

often used, degrades the accuracy of the scheme in time (DURRAN, 1991; MENDEZ-

NÚÑEZ and CARROLL, 1993). Furthermore, the scheme can introduce false negatives

in important scalar microphysical quantities. To avoid false negatives, either positive

definite schemes (SMOLARKIEWICZ, 1984; BOTT, 1989) or Flux Corrected Transport

(FCT)-type schemes (BORIS and BOOK, 1973; ZALESAK, 1979) are sometimes used to

advect scalar quantities.

A number of studies have been conducted on the design and implementation of

upwind schemes (SMOLARKIEWICZ, 1984; TREMBACK et al., 1987; BACON et al., 2000;

AHMAD et al., 2006). The use of upwind schemes in operational models however has

been limited. The upwind scheme is only first-order accurate and therefore highly

diffusive and its higher-order extensions can be computationally expensive compared

to, e.g., the Leapfrog scheme. In the past decades, there has been an immense

increase in both CPU speed and available memory and these advances in computer

hardware are projected to continue. It is therefore not only feasible but also essential

to explore the use of better numerical schemes including higher-order upwind

schemes for atmospheric modeling. In this study high-resolution Godunov-type

methods are explored for solving the nonlinear equations arising in atmospheric

flows. These finite volume discretizations are conservative and have the ability to

resolve regions of steep gradients accurately, thus avoiding dispersion errors in the

solution.

Over the past two decades, Godunov-type methods (GODUNOV, 1959) have

gained wide popularity in the scientific computing community for solving the systems

of hyperbolic conservation laws. Godunov’s unique approach to numerical modeling

of fluid flow is characterized by introducing physical reasoning in the development of

the numerical scheme (vAN LEER, 1999). The construction of the scheme itself is

based upon the physical phenomenon described by the equation sets. The scheme and

its higher-order extensions have been used mostly for aerospace-related simulations

(LUO et al., 2003). CARPENTER et al. (1990) have applied the method for atmospheric

flows using an exact Riemann solver in conjunction with the Piecewise Parabolic

Method (COLLELA and WOODWARD 1984). CARPENTER et al. show the inherent

strengths of Godunov-type methods by providing a comparison with the Multidi-

mensional Positive Definite Advection Transport Algorithm (SMOLARKIEWICZ, 1984)

and the Leapfrog schemes. The important role Godunov-type methods can play in

accurately resolving atmospheric phenomena characterized by steep gradients is also

pointed out.

Fronts, for example, are typically associated with large horizontal temperature

and wind gradients and vertical wind shear. Strong convection in supercell
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thunderstorms can produce tornadoes, large hail, strong winds (in excess of 50 ms)1),

lightning and flash floods (BROOKS and DOSWELL, 1993). Drylines are characterized

by a strong moisture gradient in the planetary boundary layer. In the Great Plains

this gradient can be up to several degrees Celsius, which is considerably larger than

the climatological average of 0.04�C km)1 in the dewpoint temperature (SHAW et al.,

1997). Drylines can trigger strong convective activity and winds in excess of 50 miles

per hour have been observed. In tornadoes (F5 category), winds between 125 and

140 ms)1 have been observed. Hurricanes are yet another example of an atmospheric

process which is characterized by extreme gradients of velocities and potential

temperature (EMANUEL, 1988; GOPALAKRISHNAN et al., 2002).

Different authors have explored the possible use of alternative finite volume

schemes for atmospheric modeling (e.g., BOTTA et al., 2004; HUBBARD and

NIKIFORAKIS, 2003; LIN et al., 1994; MüLLER, 1992). The application for atmospheric

modeling, however, has been limited mostly to solving the scalar transport equation.

In this study a high-resolution Godunov-type scheme for the Euler equations

governing atmospheric flows is developed and then extended to the Navier-Stokes

equations. This work differs from CARPENTER et al.’s (1990) work in the following

aspects:

� The equations and the solution methodology are in the Eulerian frame of reference

rather than Lagrangian.

� An approximate Riemann solver is employed instead of an exact solver to

calculate the Godunov fluxes. The computational cost of an exact Riemann solver

can become prohibitive for simulations in three dimensions. The solution obtained

by an approximate Riemann solver is comparable to the solution from an exact

solver — the computational overhead, however is greatly reduced.

� The scheme is extended to the Navier-Stokes equations (the subgrid scale diffusion

is treated as a source term).

� The solver is implemented on unstructured meshes.

In recent years there has been a growing interest in the use of unstructured

adaptive grids for modeling atmospheric transport and diffusion problems (BACON et

al., 2000; BOYBEYI et al., 2001; SMOLARKIEWICZ and SZMELTER, 2005). The

unstructured grids provide the ability to discretize complex computational domains

with relative ease. The capability to resolve the inherently multi-scale nature of

atmospheric flows in a computationally efficient manner (via static or dynamic grid

adaptation) can also be achieved. The unstructured grids have been widely used in the

aerodynamics/aerospace community and there is an immense amount of literature,

which has accumulated over two decades. This data however is focused on the details

and subtleties specific to those engineering problems. In atmospheric sciences, the use

of unstructured grids has been limited and considerable research is needed before the

technology can mature. The objective of this research was to develop an alternative

numerical scheme for modeling atmospheric flows on unstructured grids. The
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following sections describe the implementation of a Godunov-type flow solver on an

unstructured triangular mesh. The approximate Riemann solver used for calculating

the advective fluxes, and the methodology for calculating subgrid scale diffusion on

the unstructured mesh is described. Finally some benchmark analytic and idealized

test cases are simulated for validation purposes.

2. Governing Equations

The basic equations of fluid flow comprise a set of partial differential equations

for the conservation of mass, the conservation of momentum, the conservation of

energy and an equation of state to close the system. The 2-D Navier-Stokes equations

governing atmospheric flows (OOYAMA, 1990; MENDEZ-NÚÑEZ, 1993; KORAČIN,

et al., 1998), written in the conservative form are as follows:

@U
@t
þ @F
@x
þ @G
@y
¼ Qþ D ð1Þ

where,

U ¼

q
qu
qv
qh

2
664

3
775; F ¼

qu
qu2 þ p

quv
quh

2
664

3
775; G ¼

qv
quv

qv2 þ p
qvh

2
664

3
775 ð2Þ

q is the density of fluid, u is the velocity component in the x-direction, v is the velocity

component in the y-direction and p is the pressure. If a parcel of air at temperature T

and pressure p is subjected to an adiabatic compression or expansion to a final

pressure of 105 Pa, then its potential temperature, h, is given by:

h ¼ T
p0
p

� �Rd=cp

: ð3Þ

In Equation (1), Q is the source term and D is the diffusive flux term defined by:

D ¼ Kr2U : ð4Þ
In the momentum conservation equations, K is the subgrid scale eddy diffusivity

coefficient of momentum (= Km). In the conservation of energy equation, the

Laplacian of potential temperature is multiplied by the eddy diffusivity coefficient of

heat (= Kh).

The Smagorinsky-Lilly turbulence closure (LILLY, 1962; SMAGORINSKY, 1963) is

used to parameterize the sub-grid scale diffusion in terms of the deformation tensor.

The basic assumption is that the large (or resolved scales) lose energy by transferring

it to the sub-grid scales (GATSKI et al., 1996). This loss of energy from the large eddies

is never recovered (i.e., it is dissipated). The eddy viscosity coefficient, Km is related to

the total deformation in terms of the Richardson number, Ri:
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Km ¼
ðcDÞ2ffiffi

2
p Defj jð1� RiÞ0:5 if Ri < 0:25

0 otherwise

(
ð5Þ

Total deformation rate Def is defined as:

Def2 ¼ 1

2

X
i

X
j

D2
ij: ð6Þ

The value of the Smagorinsky constant c is taken as 0.28 and D is the edge length.

In two dimensions, Eq. (6) can be expanded as:

Def2 ¼ @u
@x
� @v
@y

� �2

þ @u
@y
þ @v
@x

� �2

ð7Þ

where,
@u
@x
� @v
@y

� �
is the stretching deformation and

@u
@y
þ @v
@x

� �
is the shearing

deformation. In this study, for the sake of simplicity, the turbulent Prandtl number,

Pr is set to unity:

Pr ¼ Km

Kh
¼ 1: ð8Þ

The source termQ, can be complex for atmospheric processes, and apart frombody

forces, may include terms for the heat sinks and sources produced due to the diurnal

cycle of Earth, as well as microphysical processes of cloud formations and dissipations.

For the purpose of this study, a simplified source term will be used. Atmosphere is

assumed to be dry and the only source term is the gravitational force acting in the

vertical direction. The system is closed by an equation of state for pressure,

p ¼ C0 qhð Þc; ð9Þ

where C0 is a constant given by:

C0 ¼
Rc

d

pRd=Cv
0

: ð10Þ

In the above relations, c is the ratio of specific heats (= Cp/Cv = 1.4), Rd is the

gas constant for dry air (= 287 J K)1 kg)1), p0 is the base state pressure (= 105 Pa).

Cp (= 1004 J K)1 kg)1) and Cv (= 717 J K)1 kg)1) are the specific heats of air at

constant pressure and volume respectively.

3. Numerical Scheme

In the absence of turbulent diffusion, the Coriolis effect, body forces and other

sink/source terms, the Navier-Stokes equations reduce to the well-known set of Euler

equations. The 1-D Euler equations in the conservative form for an adiabatic

atmosphere can be written as:
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@U
@t
þ @F
@x
¼ 0; ð11Þ

where U is the vector of conserved variables:

U ¼
u1

u2

u3

2
4

3
5 �

q
qu
qh

2
4

3
5; ð12Þ

and F is the flux vector,

F ¼
f1
f2
f3

2
4

3
5 �

qu
qu2 þ p

quh

2
4

3
5: ð13Þ

The system is closed by an equation of state for pressure, Eqs. (9)–(10). The

conservation laws in Eqs. (11)–(13) can be written in the discrete form as:

Unþ1
i ¼ Un

i þ
Dt
Dx

Fi�1=2 þ Fiþ1=2
� �

; ð14Þ

bounded within a finite domain, 0 � x � L, with appropriate initial and boundary

conditions. Then, the Godunov flux is defined as,

Fiþ1=2 ¼ F Uiþ1=2ð0Þ
� �

; ð15Þ

where, Uiþ1
2
ð0Þ is the exact or approximate solution of the Riemann problem.

Godunov’s method assumes piecewise constant data at cell centers. The Riemann

problem is solved at each cell interface and the numerical flux is constructed from it.

Thus, the global solution is a set of solutions of the local Riemann problems at each

cell boundary (Fig. 1), which is then evolved in time.

a. The Harten-Lax-van Leer-Contact (HLLC) Approximate Riemann Solver

The approximate Riemann solver Harten-Lax-van Leer-Contact (HLLC) is an

extension of the HLL (Harten, Lax, and van Leer) solver (HARTEN et al., 1983) by

TORO et al. (1994). In the original HLL Riemann approximation, the presence of

contact discontinuities is neglected, which can results in errors in the presence of

Figure 1

Piecewise constant data states within the computational cells. The discontinuities at cell boundaries form a

set of local Riemann problems. L and R denote the waves on the left and the right side of the discontinuity,

respectively.
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shears within the flow. In Toro’s extension (HLLC), the contact and shear waves are

restored in the solution of the Riemann problem and it has the following three

properties (LUO et al., 2003):

� Ability to resolve contact discontinuities and shear waves.

� Positivity preservation of scalar quantities.

� Enforcement of the entropy condition.

The solver has been successfully implemented with both explicit and implicit

time-marching schemes and used for calculations of Euler as well as the Navier-

Stokes equations (BATTEN et al., 1997; LUO et al., 2003) for aerodynamics-related

applications. The derivation of the HLLC flux is given in Appendix B. Here, the

adaptation of the solver for Euler equations governing an adiabatic atmosphere is

given. The flux at cell interface is defined as:

F HLLC ¼

FL; if SL > 0
F �L ; if SL � 0 < S�
F �R ; if S� � 0 � SR

FR; if SR<0

8>><
>>:

ð16Þ

where, SL, S*, and SR are the signal velocities associated with the three waves in the

solution of the Riemann problem (the wave configuration in the HLLC approximate

Riemann solver is shown in Fig. 2.). FL and FR flux vectors are given, respectively, by:

Figure 2

Wave configuration in the HLLC approximate Riemann solver. UL is the data state to the left of the

discontinuity, UR is data state to the right of the discontinuity and U* denotes the data state in the starred

region (See Appendix B for details). SL, S* and SR are the wave speeds associated with the three

eigenvalues of the hyperbolic system.

Vol. 164, 2007 A Godunov-Type Scheme for Atmospheric Flows 223



FL � F ðULÞ ¼
ðquÞL

ðqu2ÞL þ pL

ðqhÞL

0
@

1
A; FR � F ðURÞ ¼

ðquÞR
ðqu2ÞR þ pR

ðqhÞR

0
@

1
A: ð17Þ

The subscripts L and R denote the data states to the left and right of an interface (cell

edge). The fluxes in the starred region are defined by:

F �L � F ðU�L Þ ¼
S�q�L

S�ðquÞ�L þ p�L
S�ðqhÞ�L

0
B@

1
CA; ð18Þ

and,

F �R � F ðU �RÞ ¼
S�q�R

S�ðquÞ�R þ p�R
S�ðqhÞ�R

0
B@

1
CA: ð19Þ

where,

U �L ¼
q�L
ðquÞ�L
ðqhÞ�L

0
B@

1
CA ¼ 1

SL � S�

ðSL � uLÞqL

ðSL � uLÞðquÞL þ ðp�L � pLÞ
ðSL � uLÞðqhÞL

0
B@

1
CA; ð20Þ

and,

U �R ¼
q�R
ðquÞ�R
ðqhÞ�R

0
B@

1
CA ¼ 1

SR � S�

ðSR � uRÞqR

ðSR � uRÞðquÞR þ ðp�R � pRÞ
ðSR � uRÞðqhÞR

0
B@

1
CA: ð21Þ

p*L and p*R are given by:

p�L ¼ pL þ qLðSL � uLÞðS� � uLÞ; p�R ¼ pR þ qRðSR � uRÞðS� � uRÞ: ð22Þ

b. Calculation of Signal Velocities

The minimum and maximum signal velocities present in the solution of the

Riemann problem can be estimated directly from the wave speeds, SL and SR:

SL ¼ uL � aL; SR ¼ uR þ aR: ð23Þ

The middle wave speed, S*, is calculated using BATTEN’s formulation (1997), by

setting p*L = p*R:

S� ¼
qRuRðSR � uRÞ � qLuLðSL � uLÞ þ pL � pR

qRðSR � uRÞ � qLðSL � uLÞ
: ð24Þ
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c. Diffusion Term

The diffusion term is calculated on the unstructured grid by using the method

proposed by HOLMES and CONNELL (1989). Let,

LðUiÞ ¼
Xn

k¼1
wk;iðUk � UiÞ; ð25Þ

where, k represents the neighbors of cell i. The weights wk,i are chosen such that the

pesudo-Laplacian of a linear function will be zero (as would be in the case of a true

Laplacian).

wk;i ¼ 1þ Dwk;i: ð26Þ

Since, linear functions have zero Laplacians,

LðxÞi ¼
Xn

k¼1
wkðxk � xiÞ ¼ 0; ð27Þ

and,

LðyÞi ¼
Xn

k¼1
wkðyk � yiÞ ¼ 0: ð28Þ

Defining the cost function, C as follows:

C ¼
Xn

k¼1
ðDwk;iÞ2: ð29Þ

This now becomes an optimization problem of minimizing the cost function in

Eq. (29) given the constraints in Eqs. (27)–(28). Using Lagrange multipliers,

Dwk;i ¼ kxðxk � xiÞ þ kyðyk � yiÞ; ð30Þ

where,

kx ¼
ðIxyRy � IyyRxÞ
ðIxxIyy � I2xyÞ

; ky ¼
ðIxyRx � IxxRyÞ
ðIxxIyy � I2xyÞ

; ð31Þ

and,

Rx ¼
Xn

k¼1
ðxk � xiÞ; Ry ¼

Xn

k¼1
ðyk � yiÞ; ð32Þ

Ixx ¼
Xn

k¼1
ðxk � xiÞ2; Iyy ¼

Xn

k¼1
ðyk � yiÞ2; Ixy

Xn

k¼1
ðxk � xiÞðyk � yiÞ: ð33Þ
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The geometric weights are calculated once at the beginning of the model run and

stored in arrays. No special technique is needed for computing weights for the

boundary cells. HOLMES and CONNELL (1989) report that for severely distorted

meshes, these weights can deviate significantly from unity and suggest clipping the

values within the range of (0,2).

d. Time-Marching

The solution is marched in time using Eq. (14) within a multi-stage explicit

Runge-Kutta time marching scheme (JAMESON et al., 1981). The scheme has

relatively small memory requirements, is easy to implement and has been successfully

used for obtaining both steady and unsteady solutions of the Euler as well as Navier-

Stokes equations.

Let,

Ri �
@U
@t

: ð34Þ

Then the four-stage Runge-Kutta time-marching scheme can be written as:

U ð0Þi ¼ U n
i

U ð1Þi ¼ U ð0Þi � a1DtRð0Þi

U ð2Þi ¼ U ð0Þi � a2DtRð1Þi

U ð3Þi ¼ U ð0Þi � a3DtRð2Þi

U ð4Þi ¼ U ð0Þi � a4DtRð3Þi

Unþ1
i ¼ U ð4Þi

ð35Þ

where, a1 ¼ 1=4; a2 ¼ 1=3; a3 ¼ 1=2 and a4 ¼ 1, are the Runge-Kutta constants.

During the time integration, the local Riemann solution on one interface should not

be allowed to interfere with the Riemann solution on another interface. If the

interference of waves occurs, then the solution of the Riemann problem can no

longer be considered local. This forms the basis of the Courant restriction on the

Godunov method. The time step is calculated by finding the maximum wave speed in

each cell:

Dt ¼ CFL
Dx

absðuþ aÞ ; ð36Þ

where, u is the normal velocity at edge and Dx is the distance between the cell center

and the point of intersection of the edge with the line connecting the cell centers on

either side of the edge. The minimum of the time steps in each cell is used for

marching the solution forward in time.
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e. Implementation on Unstructured Grids

The implementation of the flow solver on an unstructured triangular grid for the

scalar transport equation was described in detail in the first part (AHMAD et al.,

2006). The methodology is briefly summarized in this section. The scheme uses cell-

centered control volumes. The advective fluxes are calculated by summing all the

incoming and outgoing fluxes through each face of the control volume. The flux

across each edge of the cell is calculated using the HLLC approximate Riemann

solver. The values on either side of a cell edge form the initial conditions for the

Riemann problem. The solution is marched in time within the multi-stage Runge-

Kutta explicit time marching scheme (JAMESON et al., 1981). In a loop over edges, the

values of cells on either side of the edge are used to calculate the fluxes. Once the

fluxes have been calculated they are added to the cell centered value in a loop over

cells (Fig. 3). For the second-order calculation, gradient-limited extrapolated values

are used in the Riemann solver instead of cell averages (VAN LEER, 1979). Both the

Green-Gauss and the Linear Least-Squares gradient reconstruction (BARTH and

JESPERSON, 1989) techniques have been implemented to extend the spatial accuracy

of the scheme to higher-order. The scheme is made total variation diminishing

(HARTEN, 1983) with the help of slope limiters (BARTH and JESPERSON, 1989; vAN

LEER, 1979). The limiting procedure is performed on conserved variables

(q; qu; qm; and qh). No explicit filtering is required for the stability of the numerical

scheme.

Figure 3

In a loop over edges the cell values on either side of the face/edge are used by the Riemann solver to

calculate fluxes. Then in a loop over cells the fluxes are added to update the cell centered values. U0

represents the data state in cell ‘ic’ and U1, U2, and U3 are the data states (conserved quantities) in the

neighboring cells.
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f. Boundary Conditions

Implementation of lateral boundary conditions (inflow/outflow) is straightfor-

ward. The boundary conditions are stored in ghost cells at model initialization. The

ghost cells are reflections of the boundary cells (Fig. 4). The Riemann solver then uses

these values for calculating fluxes across boundary edges. For an inflow boundary

condition, the values are prescribed in the ghost cells and for outflow the values from

the boundary cells are assigned to the ghost cells. LEVEQUE (2002) describes in detail

the implementation of boundary conditions for hyperbolic conservation laws.

g. Solver Steps

The solution algorithm for constructing Godunov-type schemes via the HLLC

Riemann solver can be summarized as follows:

1. Given the left and the right data states across each cell face/edge, calculate the

signal velocities, SL,, S*, and SR associated with the waves present in the solution

of the Reimann Problem by Eqs. (23) and (24).

2. Construct the Godunov flux obtained from the HLLC approximate Riemann

solver using Eqs. (16)–(22), depending on the magnitude of signal velocities.

3. Add gravity and subgrid scale diffusion as source terms at the cell centers.

Different methodologies to include source terms (LEVEQUE, 2002; BOTTA et al.,

2004) can be used.

4. Evolve the set of conservative variables explicitly in time using Eqs. (34)–(35).

4. Results

In this section, the results from two different test cases are presented — Sod shock

tube case, which is essentially a one-dimensional problem is simulated on a 2-D

Figure 4

Boundary (outer/ghost) cells are reflections of interior cells. In the Figure ‘‘i’’ represents the interior or

boundary cell and ‘‘o’’ represents an outer or ghost cell.
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unstructured triangular mesh and compared with the exact solution. The convection

of a warm bubble in a neutral atmosphere is simulated for the second test case by

solving the complete Navier-Stokes equations on an unstructured triangular mesh.

a. Euler Solution: Shock Tube

The HLLC solver for atmospheric flows was evaluated against benchmark cases

of the Riemann problem with exact solutions. The Sod shock tube (SOD, 1978) test

Table 1

Initial conditions for the shock tube test cases

Case Mach

Number

Density

(kg/m3)rleft

Density

(kg/m3)rright

Velocity

(m/s)uleft

Velocity

(m/s)uright

Pressure

(Pa)pleft

Pressure

(Pa)pright

1 0.21 1.0 0.4 0 0 1.0 0.6

2 0.90 1.0 0.125 0 0 1.0 0.1

The subscript ‘‘left’’ denotes the data state on the left side of discontinuity and the subscript ‘‘right’’

denotes the data state on the right side of the discontinuity.

Figure 5

Sod Shock Tube. From top to bottom: the computational mesh, density (kg/m3), pressure (Pa) and the

u-velocity (m/s) in the tube at time = 0.2 seconds.
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case is described in this section. The initial conditions (density, velocity, and

pressure) are given in Table 1. The mesh used for the simulation is shown in Figure 5

(top panel). The higher-order solution for Case 2 is also shown in Figure 5. The

different wave structures admitted by the equation set have been resolved and can be

seen in the plots of density, pressure and velocity. The expansion (left propagating

rarefaction wave), e.g., can be seen between point d1 and point d2 in the density plot

(Figure 5). The contact discontinuity lies between point d2 and point d3 and the

shock front is resolved at point d4. In the pressure plot, e.g., the sudden drop across

the shock wave (point p1) can be seen. The velocity plot shows the rarefaction wave

(the slope left of point u1) as the gas expands and the shock front propagates to the

right (point u2). MENDEZ-NÚÑEZ and CARROLL (1993) have also compared different

numerical schemes (Leapfrog, MacCormack and MPDATA) for simulating the

compressible atmospheric equation set with different shock tube cases (TAYLOR et al.,

1972). The results of MENDEZ-NÚÑEZ and CAROLL (1993) show that the Gibbs

oscillations contaminate the solution obtained by all three schemes. Unlike the

current schemes used in atmospheric modeling, there are minimal dispersion errors

introduced in the solution by the Godunov scheme and its higher-order extension.

Figures 6–8 show the comparison of the first-order Godunov scheme and its

higher-order extension via MUSCL with the exact solution for two different test

cases. The first case is a modified Sod shock tube case in which the initial data is

adjusted to give a low Mach number (�0.2), whereas the second test case gives a

Mach number of 0.9. The low Mach number solution is in good agreement with the

exact solution for all three quantities (density, pressure and velocity). The density for

the high Mach number case however is overestimated behind the shock front in both

the first-order Godunov solution and its higher-order extension via MUSCL (Fig. 6).

The velocity field is overestimated by the higher-order extension (Fig. 7). It should be

noted that Eqs. (11)–(13) are based on the assumption that the processes in the

atmosphere are adiabatic. Although the eigenspace of Eqs. (11)–(13) admits shock

waves in a mathematical sense (see Appendix A), physically it is known that

isentropic/adiabatic processes do not admit strong shocks. For simulating atmo-

spheric flows, however, this is not an issue. The development of a high-resolution

Godunov-type method is intended to resolve atmospheric flows characterized by

steep gradients (fronts, drylines, tornadoes, hurricanes, etc.) and not shock waves

(blasts, explosions, etc.). Furthermore, atmospheric flows in general are low Mach

number variable density flows.

b. Navier-Stokes Solution: Kelvin-Helmholtz Instability

The convection in neutral atmosphere is a popular test case for validating

numerical schemes for atmospheric flow simulations (e.g., REISNER et al., 2003;

KORAČIN et al., 1998). In the absence of an analytical solution, the test can evaluate

the scheme only in qualitative terms. This evaluation however, provides valuable
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information on the scheme’s ability to simulate the fundamentals of atmospheric

thermodynamics and dynamics. The set of Navier-Stokes equations in two

dimensions was solved for this problem. Model was initialized by introducing a

warm bubble with a diameter of 500 m and a constant potential temperature of 0.5

degrees higher than the surrounding environment (neutral atmosphere in hydrostatic

balance with a uniform potential temperature of 300 K). A 1 km · 1 km domain was

defined for the simulation. The pressure was re-adjusted for hydrostatic equilibrium

after the introduction of the thermal. The variables were first initialized on a

structured grid and then interpolated to the unstructured mesh using bilinear

Figure 6

Shock Tube. Density (kg/m3) for Test 1 (Ma = 0.21) is shown in the top panel and for Test 2 (Ma = 0.9)

in the bottom panel. Time = 0.2 seconds. The centerline data of the shock tube (Fig. 5) from x = 0 to

x = 1 m is plotted.
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interpolation. It should be noted that initializing a perfect hydrostatic balance on an

unstructured mesh is nontrivial and the interpolation from the structured grid to the

unstructured grid introduces errors in the initial conditions (i.e., hydrostatic

imbalances in the initial state of the atmosphere). All domain boundaries were

treated as solid walls. The unstructured triangular mesh consisted of 39386 triangular

elements with edge lengths varying from 3.5 m to 12.4 m.

Shear is generated due to gradients in the flow normal to its direction and often

results in instabilities. In stratified fluids (e.g., the atmosphere) the instabilities due to

shear are damped out by the stratification. The Miles theorem predicts the transition

Figure 7

Shock Tube. Pressure (Pa) for Test 1 (Ma = 0.21) is shown in the top panel and for Test 2 (Ma = 0.9) in

the bottom panel. Time = 0.2 seconds. The centerline data of the shock tube (Fig. 5) from x = 0 to

x = 1 m is plotted.
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from stable to unstable flow and the onset of the Kelvin-Helmholtz instability for low

Richardson numbers (Ri < 0.25). The Kelvin-Helmholtz type of instability is

common in the atmosphere and has been observed in billow clouds. The breaking of

waves in the Kelvin-Helmholtz instability can generate the clear air turbulence

(CAT) in the atmosphere.

The objective of this model validation run was to simulate the onset of the

Kelvin-Helmholtz type of instability in the atmosphere. Buoyant thermals are highly

nonlinear phenomena and therefore, the detailed structure of the evolving thermal is

dependent on the type of mathematical model used, i.e., the equation set used —

compressible, quasi-compressible, anelastic, etc. (CARPENTER et al., 1990; MENDEZ-

Figure 8

Shock Tube. Velocity (m/s) for Test 1 (Ma = 0.21) is shown in the top panel and for Test 2 (Ma = 0.9) in

the bottom panel. Time = 0.2 seconds. The centerline data of the shock tube (Fig. 5) from x = 0 to

x = 1 m is plotted.
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NÚÑEZ and CARROLL, 1994). Nonetheless, there are certain features which are

expected in the resulting flow field. The introduction of the thermal in the domain

generates acceleration in the center of the bubble accompanied by downdrafts on

either side of the bubble. As the buoyant thermal rises, a shear layer is developed at

the lateral edges of the thermal. Initially the atmosphere is strongly stratified which

damps out the onset of flow instabilities, but as the thermal rises, the weakening of

stratification at the edge of the thermal triggers the onset of the instability. Figures 9–11

show the time evolution of potential temperature gradient, shear, the Richardson

number (scaled from –0.26 to 0.26; the values greater than 0.26 are set to zero) and

potential temperature. The generation of a shear layer and weakening of stratifica-

tion resulting in the Kelvin-Helmholtz type of instability can be seen in the figures.

The vectors in the figures represent only the flow direction.

5. Discussion

In the case of complex computational domains, either the finite volume or

finite-element schemes are usually used, instead of finite-difference schemes. In the

context of atmospheric modeling, the accurate discretization of the underlying

terrain and shoreline features becomes important for meso- and micro-scale flows.

For urban-scale flows, in which individual buildings have to be explicitly resolved, a

finite-difference type scheme would be extremely cumbersome if not impossible to

implement. The Godunov-type scheme described in this paper is a finite volume

scheme; therefore, it can be used to discretize complex geometries. Although the basic

element for a control volume used in this study is a triangle, the scheme can easily be

extended to other types of polyhedral elements.

The scheme is conservative and shows minimal dispersion and diffusion errors.

No grid staggering is required for stability, which makes the implementation of the

scheme somewhat simpler. All variables are stored at cell centers. No explicit

diffusion/filtering is needed to maintain the stability of the scheme. The scheme also

ensures the positivity of scalar quantities. This property becomes important when the

simulation includes the transport of microphysical quantities. Some of these

advantages of Godunov-type schemes have been demonstrated in earlier works.

For the scalar transport equation, the reader can refer to the work of CARPENTER

et al. (1990). The results of the present study (Euler equations) can be compared with

the data reported by MENDEZ-NÚÑEZ and CAROLL (1993). The results of MENDEZ-

NÚÑEZ and CAROLL (1993) show that the Gibbs oscillations contaminate the solution

obtained by the Leapfrog, MacCormack and MPDATA schemes. Unlike the current

schemes used in atmospheric modeling, there are minimal dispersion errors

introduced in the solution by the Godunov scheme and its higher-order extension.

Although the scheme is able to simulate the basics of atmospheric dynamics and

thermodynamics as shown in the simulation of the buoyant thermal, its ability to
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simulate more complex atmospheric flows which include the diurnal variation and

microphysical processes has yet to be tested. This needs to be addressed in future

extensions of the numerical scheme.

Figure 9

Potential temperature gradient (K/m) (top left), shear (1/s) (top right), Richardson number (bottom left)

and potential temperature (K) (bottom right). Time = 14 s.
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Figure 10

Potential temperature gradient (K/m) (top left), shear (1/s) (top right), Richardson number (bottom left)

and potential temperature (K) (bottom right). Time = 145 s.
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Figure 11

Potential temperature gradient (K/m) (top left), shear (1/s) (top right), Richardson number (bottom left)

and potential temperature (K) (bottom right). Time = 217 s.
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6. Conclusions

This work has opened up the door for future use of high-resolution Godunov-

type methods for atmospheric flow simulations on unstructured meshes. The main

results of this study can be summarized as follows:

� The comparison with exact solutions showed that the scheme could resolve the

different types of wave structures admitted by the atmospheric flow equation set.

� The scheme is conservative and requires no special grid staggering or explicit

filtering for stability. There are minimal dispersion errors which are usually

associated with centered finite difference schemes.

� The proposed scheme was able to simulate the onset of Kelvin-Helmholtz type

instability and shows promise in simulating flows characterized by steep gradients

on the meso- micro- and urban-scales. Centered finite-difference schemes require

explicit filtering for stability in regions of steep gradients to damp out spurious

oscillations.

� The positivity of scalars is ensured by the flow solver (an important property when

considering the transport of microphysical quantities).

� The use of unstructured grids provides the ability to simulate the complex, multi-

scale atmospheric flows in a computationally efficient manner. The implentation of

solution-adaptive techniques is also relatively simpler.

The use of unstructured grids in the atmospheric modeling community is relatively

new and more research is needed for the technology to mature for atmospheric

applications. The future extensions of this work will focus on better CPU performance

provided by implementing an implicit time-marching scheme (LUO et al., 1998) that

can further increase the robustness of the flow solver. Although an edge-based data

structure is used for computational efficiency in the current study — issues related to

code optimization in terms of grid data structures, which minimize cache misses, also

need to be addressed. Inclusion of more physics (microphysics, radiation schemes and

surface layer physics) is needed for simulating realistic flows.
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Appendix A

Godunov’s method and its higher-order extensions have been designed for

hyperbolic conservation laws. It is shown that the set of one-dimensional Euler
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equations governing the atmospheric flow are hyperbolic and thus an attempt can be

made to apply the family of high-resolution numerical methods which have been

developed specifically for solving hyperbolic conservation laws. The Euler equations

are written in a quasi-linear form,

Ut þ AðUÞUx ¼ 0: ðA:1Þ
The subscripts t and x denote derivatives in time and space respectively, and A(U)

is the Jacobian matrix defined as,

AðUÞ ¼

@f1
@u1

@f1
@u2

@f1
@u3

@f2
@u1

@f2
@u2

@f2
@u3

@f3
@u1

@f3
@u2

@f3
@u3

2
6666664

3
7777775
: ðA:2Þ

The Jacobian matrix can be found by expressing the components of the flux

vector F in terms of the components of the U vector of conserved variables:

FðUÞ ¼

u2

u2
2

u1
þ Couc

3

u2u3

u1

2
6664

3
7775: ðA:3Þ

After some algebraic manipulations, the matrix in Eq. (A.2) simplifies to:

AðUÞ ¼
0 1 0
�u2 2u a2=h
�uh h u

2
4

3
5; ðA:4Þ

where, a is the speed of sound.

Proposition 1: The one-dimensional Euler equations governing the atmospheric flows

are hyperbolic.

Proof. The eigenvalues of the Jacobian matrix A(U) are found by setting,

AðUÞ � kIj j ¼ 0; ðA:5Þ

where, ki are the eigenvalues and I is the identity matrix. The solution of the resulting

polynomial gives the following eigenvalues:

k ¼
u� a

u
uþ a

2
4

3
5: ðA:6Þ

Since all eigenvalues are real, the system is hyperbolic.
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Proposition 2: The K2 characteristic field is linearly degenerate and the K1 and K3

characteristic fields are genuinely nonlinear.

The right eigenvectors of the system can be derived by solving for:

K ¼ k1 k2 k3½ �T ðA:7Þ
such that,

AK ¼ kK ðA:8Þ

The right eigenvectors of the system are:

K1 ¼
1

u� a
h

2
4

3
5; K2 ¼

1
u
0

2
4
3
5; K3 ¼

1
uþ a

h

2
4

3
5: ðA:9Þ

Proof. Since,

rk1ðUÞ 	 K1 6¼ 0; rk2ðUÞ 	 K2 ¼ 0; rk3ðUÞ 	 K3 6¼ 0: ðA:10Þ
It follows that the K2 characteristic field is linearly degenerate which implies that

the wave associated with it is a contact discontinuity, whereas the genuinely nonlinear

K1 and K3 fields will have waves, which can either be rarefactions (smooth waves) or

shocks (discontinuities).

Appendix B

In the HLLC Riemann solver the intercell fluxes are computed directly (TORO,

1999). It is assumed that the wave speeds separating the different constant states are

known, then a closed-form approximation for the flux can be derived by integrating

the conservation laws.

Given a system of hyperbolic conservation laws:

Ut þ F Uð Þx¼ 0 ðB:1Þ
and a discontinuous wave solution of speed Si associated with the ki-characteristic

field, the Rankine-Hugoniot Conditions state:

DF ¼ SiDU : ðB:2Þ
The wave configuration assumes the presence of the slowest (SL) and the fastest

(SR) signal speeds and includes a middle wave speed S*, corresponding to the

eigenvalue associated with the K2-characteristic field (k2 = u). Applying the

Rankine-Hugoniot Conditions across the three waves yields the following relations:

F �L ¼ FL þ SL U �L � UL
� �

F �R ¼ F �L þ S� U �R � U �L
� �

F �R ¼ FR þ SR U �R � UR
� � ðB:3Þ
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The subscripts L and R denote the data states on the left and right of a cell

interface respectively. There are four unknowns and three equations. The aim is to

find U*L and U*R so that F*L and F*R can be determined. The following conditions

are imposed on the Riemann solver:

u�L ¼ u�R ¼ u� ¼ S�
p�L ¼ p�R ¼ p�

ðB:4Þ

Equation (B.3) can now be solved for U*L and U*R:

U �L ¼
q�L
ðquÞ�L
ðqhÞ�L

0
@

1
A ¼ 1

SL � S�

ðSL � uLÞqL
ðSL � uLÞðquÞL þ ðp�L � pLÞ

ðSL � uLÞðqhÞL

0
@

1
A; ðB:5Þ

and,

U �R ¼
q�R
ðquÞ�R
ðqhÞ�R

0
@

1
A ¼ 1

SR � S�

ðSR � uRÞqR
ðSR � uRÞðquÞR þ ðp�R � pRÞ

ðSR � uRÞðqhÞR

0
@

1
A: ðB:6Þ

Using the values U*L and U*R of in Eq. (B.3) gives the relations for fluxes (F*L and

F*R) in the star region:

FL � F ðULÞ ¼
ðquÞL

ðqu2ÞL þ pL

ðqhÞL

0
@

1
A; FR � F ðURÞ ¼

ðquÞR
ðqu2ÞR þ pR

ðqhÞR

0
@

1
A: ðB:7Þ

The states to the left and the right of the starred region are already known. The FL

and FR flux vectors are given by:

FL � F ðULÞ ¼
ðquÞL

ðqu2ÞL þ pL

ðqhÞL

0
@

1
A; FR � F ðURÞ ¼

ðquÞR
ðqu2ÞR þ pR

ðqhÞR

0
@

1
A: ðB:8Þ

The subscripts L and R denote the data states to the left and right of an interface (cell

edge). The complete HLLC flux can now be written as:

F HLLC ¼

FL; if SL > 0
F �L ; if SL � 0<S�
F �R ; if S� � 0 � SR

FR; if SR<0

8>><
>>:

ðB:9Þ

where, SL, S*, and SR are the signal velocities associated with the three waves in the

solution of the Riemann problem. The minimum and maximum signal velocities

present in the solution of the Riemann problem can be estimated directly from the

wave speeds, SL and SR:

SL ¼ uL � aL SR ¼ uR þ aR: ðB:10Þ
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Once the minimum and maximum signal velocities are known, applying

conditions in Eq. (B.4) to the Rankine-Hugonoit relations in Equation (B.3) gives

the relations for pressures (p*L and p*R):

p�L ¼ pL þ qLðSL � uLÞðS� � uLÞ; p�R ¼ pR þ qRðSR � uRÞðS� � uRÞ: ðB:11Þ

The middle wave speed, S*, was calculated by using setting p*L = p*R:

S� ¼
qRuRðSR � uRÞ � qLuLðSL � uLÞ þ pL � pR

qRðSR � uRÞ � qLðSL � uLÞ
ðB:12Þ

Appendix C

The definitions and units of symbols used in the text are listed here for reference:

a speed of sound (m/s)

c Smagorinsky constant

CFL Courant-Friedrich-Lewis number

cp specific heat of dry air at constant pressure (JK)1kg)1)

cv specific heat of dry air at constant volume (JK)1kg)1)

Def total deformation

Dij deformation tensor

F flux vector of conserved quantities in x-direction

FL flux on the left of the interface (kg/m2s)

FR flux on the right of the interface (kg/m2s)

F*
L,R fluxes in the starred region (kg/m2s)

G flux vector of conserved quantities in y-direction

Kh eddy diffusivity coefficient of heat (m2/s)

Km eddy diffusivity coefficient of momentum (m2/s)

Ki Characteristic fields associated with kI eigenvalues

Ma Mach number

P pressure (Pa)

po base state (reference) pressure = 105 Pa

Pr Prandtl number

Rd gas constant for dry air (JK)1kg)1)

Ri Richardson number

SL signal velocity associated with the wave on the left of the interface (m/s)

SR signal velocity associated with the wave on the right of the interface (m/s)

S* signal velocity associated with the wave in the starred region (m/s)

U vector of conserved quantities

u velocity in x-direction (m/s)

m velocity in y-direction (m/s)

ai Runge-Kutta constants

Dt time step (s)

Dx mesh resolution (m)

c ratio of specific heats

q fluid density (kg/m3)

ki Eigenvalues of the hyperbolic system

h potential temperature (K)
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