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RESUMEN

Este articulo presenta un nuevo método de optimizacidén, perteneciente a la familia de
métodos basados en el criterio de optimalidad, aplicable a estructuras modelizadas por el
método de los elementos finitos. Los elementos considerados tienen superpuesto, en el caso
mas general, los efectos membrana y placa (tipo Mindlin). Se imponen al disefio restricciones
de comportamiento (desplazamiento y/o tensién) y frontera (limite inferior y/o superior al
valor de las variables de disefio) analizando el tratamiento de aquellas que son pasivas en el
éptimo. Las expresiones propias del método contienen derivadas de primero y segundo orden
cuyo calculo se detalla. Al final del articulo se incluyen ejemplos de aplicacién del método
desarrollado empleando estructuras de elementos con efecto membrana y/o placa (tipo Mindlin)
imponiendo, en todos ellos, restricciones de desplazamiento y tensién.

SUMMARY

In this work, a new optimization method, belonging to the family of methods based on
the optimality criteria, which can be applied to modelized structures by the finite elements
method is presented. The elements considered have, in the most general case, the membrane
and plate (Mindlin type) effects superimposed. Behaviour (displacement and/or tension) and
boundary (inferior and/or superior limit to the design variables value) constraints are imposed
analysing those which are passive in the optimum. The mathematical expressions of the method
containing first and second order derivatives calculation is detailed. At the end of the work,
application examples of the developped method, using structures with membrane and/or plate
(Mindlin type) elements, and imposing displacement and tension constraints are included.
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INTRODUCCION. PLANTEAMIENTO DEL PROBLEMA

Las técnicas de optimizacidén estructural persiguen la obtencién de soluciones
Sptimas al disefio de estructuras para cada aplicacién concreta. Las variables cuyos
valores, una vez fijados, determinan el disefio se denominan variables de disefio, X;, y
es la obtencién de sus valores éptimos, X, el fin dltimo perseguido®. En este trabajo,
al igual que en la mayor parte de los estudios de optimizacién estructural’, la funcién
objetivo, funcién a minimizar, es el peso de la estructura, W, siendo

W = > piAiX; (1)

=1

El disefio final debe cumplir una serie de condiciones, restricciones de
comportamiento, que determinan el subespacio de disefio. Estas restricciones abarcan,

en este estudio, tanto a las restricciones de desplazamiento, GDy (k = 1,2,...,md),
sobre cualquier grado de libertad como a las restricciones de tensién, GT} (k =
1,2,...,mt), sobre cualquier elemento. El conjunto de todas estas restricciones G Dy,
y GTi, se designard en adelante, para facilitar la nomenclatura, como G (k =
1,2,...,m siendo m = md + mt), es decir,

Gr = GDy k= 1,2,...,md,

(2)
Gr = GTr_ma k= md+1,md+2,...,m.

En la practica existen también limitaciones constructivas que impiden a las
variables de disefio tomar cualquier valor. Surgen asi las restricciones frontera, GFI y
G F' S}, consistentes en la imposicién de valores extremos, inferior X I, y superior X S,
que limitan los valores de las variables de disefio.

Por tanto, considerando todas las restricciones introducidas, el problema queda
planteado de la siguiente manera:

Minimizar W, (3)
imponiendo G, > 0 kE=1,2,...,m, (4)
GFL, >0 &k =1,2.. .n, (5)
GFSy >0 k=1,2..n (6)

Expresién de las restricclones

La restriccién sobre el desplazamiento segun el grado de libertad k, ug, viene dada
por '
Ug

GD, =1 - — k= 12,...md (1)
Uy,
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Esta formulacién permite el tratamiento unificado del limite superior del
desplazamiento (caso en que uj > 0) y del limite inferior (caso en que u} < 0).
La restriccién impuesta a la tensién sobre el elemento k, o}, viene dada por

GTy = o — o8k = 1,2,...,mt. (8)

En esta expresién, of y o son las tensiones equivalentes, maxima y calculada
respectivamente, correspondientes al elemento k.

Las restricciones frontera se construyen a partir de la relacién existente entre cada
variable de disefio, X;, y sus dos limites XI; y X §;. Esta relacién,

XI; < X; £ XS T = 4,2,...,n, (9
.da lugar a las expresiones

GFI, = X, — XI;
GFS; = X5, - X;

0 i =142..,n, (10)
0 1= 1,2,...,n, (11)

VARV

SOLUCION AL PROBLEMA

Un diserio solucién al problema planteado, expresiones (3) a (6), deberd satisfacer
las denominadas condiciones de Kuhn-Tucker o condiciones de 6ptimo®. Dichas
condiciones originan un sistema de ecuaciones cuya resolucién se aborda en este
apartado.

El método utilizado, al igual que otros métodos de la misma familia (método de
las ecuaciones lineales*®, etc.) es iterativo y su forma de proceder sigue las siguientes
etapas:

1) Se parte de un diseno inicial.

2) El actual disefio es modificado por el método dando lugar a otro que se ajuste mas
a la solucién del sistema de ecuaciones planteado, expresiones (3) a (6).

3) Se aplica un criterio de convergencia de forma que se detiene el proceso cuando
la mejora conseguida entre dos soluciones consecutivas (medida como la magnitud
de la disminucién relativa en peso) es menor que una dada y en caso contrario se
vuelve al paso 2).

Restricciones de comportamiento y frontera activas.

Todas aquellas restricciones, ya sean de comportamiento o frontera, que se
satisfacen en el 6ptimo exactamente (es decir, su valor se anula) son denominadas
restricciones activas en el éptimo. El resto de las restricciones, pasivas en el éptimo,
se cumplen en disefio final con cierta holgura. Estas dltimas restricciones no tienen
ninguna influencia, es decir, si son eliminadas en el planteamiento del problema,
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expresiones (3)-(6), la solucién obtenida no se ve afectada. Por tanto, es posible
replantear el problema considerando Gnicamente las restricciones activas, es decir

Minimizar W, (12)
imponiendo G, > 0 k= 1,2,...,ma, (13)
GFI, >0 k= 1,2,...,nia, (14)
GFS, > 0 k= 1,2,...,nsa. (15)

El conjunto de todas las restricciones de comportamiento activas en el éptimo, Gy
con k=1,2,...,ma (en donde ma = mda + mta) incluye a las restricciones activas de
desplazamiento y tensién en la misma forma dada en la expresién (2) para el conjunto
de todas las restricciones.

El planteamiento del problema segin las expresiones (12) a (15) requiere el
conocimiento previo de las restricciones activas en el éptimo. En la practica, dado que
dicho conocimiento no es posible, se aplican algoritmos que estimen estas restricciones.
La forma de proceder consiste en establecer, en cada etapa, los conjuntos que agrupan,
por un lado, a las restricciones de comportamiento activas y, por otro a las variables de
disefio involucradas en las restricciones frontera pasivas. Ambos conjuntos van siendo
continuamente actualizados hasta que, en las proximidades del disefio final, llegan
a coincidir con las restricciones de comportamiento activas en el 6ptimo y con las
variables de disefio correspondientes a las restricciones frontera pasivas en el éptimo,
respectivamente. En apartados posteriores se explican los algoritmos implementados
para la formacién y puesta al dia de estos dos conjuntos. '

Condiciones de éptimo para restricciones activas

Las condiciones de éptimo, condiciones de Kuhn-Tucker®, correspondientes al
problema planteado en las expresiones (12)-(15) se obtienen a partir de la funcién
Lagrangiana L,

L =W - Zz\j G; — E)Jj GFI; — Z)\Sj GFS; (16)
=1 =1 =1
y vienen dadas por las expresiones
pidi — > X G — SN GFIL; — > AS; GFS;; = 0
1 = 1,2,...,m, (17)
G, =0 M > 0 k= 1,2,...,ma, (18)
GFI,, = 0 A, > 0 k= 1,2,...,nia, (19)
GFS, =0 ASy > 0 k= 1,2,...,nsa. (20)
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Variables activas y pasivas

Aquellas variables de disefio cuya restriccién de seccién inferior (o superior), GFI,
(o GFSy), sea activa en el éptimo se denominan variables pasivas. Son variables activas
todas las demads. . :

Puesto que las restricciones activas en el dptimo se cumplen exactamente en
el disefio final, las variables pasivas estaran fijadas, en dicho disefio, en el limite
correspondiente a su restriccion . frontera activa. Dichas variables constituyen, por
tanto, constantes del problema. Parece posible, en consecuencia, plantear el problema
considerandd'cbmo variables de disefio inicamente las variables activas, estando fijadas
las demés en su valor 6ptimo. De este modo el problema quedaria simplificado al poder
prescindir en su planteamiento de las expresiones correspondientes a las restricciones
frontera, (19) y (20), y disminuir el rango de valores del indice ¢ de la expresién (17) al
valor na.

Como ya ha sido puesto de manifiesto anteriormente, no es posible conocer, a
priori, las variables activas en el éptimo. En la préictica se estima el conjunto de estas
variables en cada etapa, procediendo en la forma descrita anteriormente. El algoritmo
implementado con tal fin serd descrito en un apartado posterior.

Condiciones de 6ptimo unicamente para variables activas

La consideracién de las variables activas y pasivas se lleva a cabo eliminando del
problema todas aquellas variables que sean pasivas en el éptimo. Es razonable que sea
asi pues sclamente las variables activas son las auténticas variables de disefio. Esta
forma de proceder requiere un nuevo planteamiento de las condiciones de éptimo ya
que las expresiones (17) a (20) han sido planteadas para todas las variables.

A continuacién se analiza el comportamiento de las expresiones (17), (19) y (20)
dependiendo de que la variable de disefio X; sea pasiva o activa en el éptimo. Pueden
darse los siguientes casos:

1} SiXf=XS5:
a) GPFI; es restriccidn pasiva en el Sptimo y no figurard por tanto en las
expresiones (17) y (19) de las condiciones de éptimo.
b) GFS; es restriccidén activa en el Sptimo (X; es variable pasiva) y cumple,

expresién (11), que:

GFSt,i = - 5ti (21)

Por tanto, (17) y (20) se transforman, para la variable de disefio ¢, en

peAs — D X G + AS, = 0 (22)

=1

GFS, = 0 S, > 0 (23)
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2) SiX;=XI:

a) GFS; es restriccién pasiva en el éptimo y no figurard por tanto en las
expresiones {17) y (19) de las condiciones de éptimo.

b) GPFI; es restriccién activa en el Sptimo (X, es variable pasiva) y cumple,
expresién (10) que:

GFIt’i = 5“‘ (24)

De forma anéloga al caso anterior, (17) y (19) se transforman, para la variable
de disefio t, en '

ptAt - ZAJ Gj,t - AIt =0 (25)
j=1

3) SiXI <X} < XS;las dos restricciones frontera, GFI; y GFS;, son pasivas en el
éptimo (X es activa) y ninguna de ellas figurara en (17), (19) y (20). Por tanto
dichas expresiones quedan reducidas, para la variable de disefio ¢, a

prAe — D X Gje = 0 (27)

i=1

Los puntos 1) y 2) del anterior razonamiento permiten desarrollar una estrategia,
expuesta mas adelante, de seleccién de variables pasivas en el éptimo. Sin embargo en
el punto 3) se obtiene una relacién, deducida de las condiciones de éptimo, vélida solo
para las variables activas. Dicha relacién, junto con la expresidén (18), constituiré, por
tanto, las condiciones de éptimo buscadas,

piA; — Z)\j Gji = 0 i = 1,2,...,na, (28)
J=1

G, = 0 k = 1,2,...,ma, (29)

e > 0 k= 1,2,...,ma. (30)

Estas condiciones se derivan directamente de la expresién Lagrangiana, LC,
construida considerando tnicamente las restricciones de comportamiento activas en
el éptimo y tomando como variables de disefio Ginicamente aquellas que sean activas en
el 6ptimo. La expresién de LC, empleada en adelante para simplificar la nomenclatura,
viene dada por ‘



OPTIMIZACION DE DIMENSIONES DE ESTRUCTURAS 281

LC =W - Y X G; (31)

i=1

Comportamiento del parametro R;

Los valores del pardmetro R;, definido por la expresién

3

a

R; = A\ Gii  i=1,2,...,n (32)

1
A;p;

.
i
NN

tienen la propiedad de proporcionar informacién directa acerca del estado en que se
encuentra la variable de disefio 7, X;. Es decir, detectan si el valor actual de dicha
variable es menor (o mayor) que su valor en el disefio final o bien si se trata de una
variable activa o pasiva en el éptimo.

Esta informacién es posible gracias a las siguientes propiedades:

1)- El pardmetro R; cumple, para la variable de disefio X, las relaciones

R, <1 st X; > X! 1 = 1,2,...,n, (33)
R, > 1 s X; < X! 1= 1,2,...,n. (34)

Esta propiedad ha sido ampliamente explotada en las conocidas relaciones de
recurrencia para las variables de disefio empleadas en otros métodos Optimality
Criteria tales como el método de las ecuaciones lineales*®, método de Newton-
. Raphson*®, etc..
2) A partir del desarrollo del apartado anterior, se deduce de forma inmediata que,
dependiendo de que la variable de disefio X; sea pasiva o activa en el éptimo, R
toma los siguientes valores:

a) R!>1siX;espasivaenel éptimoy X = XS;.
b) Rf < 1siX;espasivaen el éptimoy X = X I,
¢) R;=1siX; es activa en el éptimo.

Todas estas propiedades del pardmetro R; no son directamente necesarias para el
desarrollo del método NWRAG pero serdn empleadas en la elaboracién del algoritmo
de obtencién de las variables de disefio activas detallado luego.

Método Newton-Raphson-global (NWRAG).

El fin perseguido es la resolucién del sistema de ecuaciones, dado en las
expresiones (28)—(29), correspondiente a las condiciones de éptimo. La mayoria de los
métodos Optimality Criteria (método de las ecuaciones lineales**, método de Newton-
Raphson®®, etc.) resuelven el sistema de ecuaciones (28) utilizando valores de los
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multiplicadores de Lagrange obtenidos, de forma independiente, a partir de la expresién
(29). El método NWRAG aborda la resolucién del sistema (28)—(29) de forma directa,
de ahf su calificativo de global. Dicha resolucién se lleva a cabo mediante el método de
Newton-Raphson de resolucién de sistemas de ecuaciones no lineales.

El sistema de ecuaciones

fily) = 0 i=1,2,...,M, (35)
= {y;} i=1,2...,M, (36)

es resuelto por el método de Newton-Raphson por aproximaciones sucesivas mediante
el empleo de la expresion recurrente

of; :
) + Zaf Ay; = 0 i = 1,2,..., M. (37)

Identificando los términos que figuran en las expresiones (35) y (36) con los
correspondientes al sistema de ecuaciones que se trata de resolver, (28) y (29), se
obtienen las relaciones

M = na 4+ ma, (38)

N = na + ma, (39)

= {X1, X2, s Xnas A, Az, -+ oy Ama )} (40)

fily) = LC; 1 = 1,2,...,na, (41)

fi(y) = Gicna i = na+1l,na+2,...,na+ ma. (42)

La inclusién en (37) de los resultados dados en (38)-(42) conduce a la expresién
recurrente

8LC, dLC; :
LC428XJAX+Z AN =0 3

1,2,...,na,  (43)

8G

G+§ +Z

; =0 t = 1,2,...,ma. (44)

Teniendo en cuenta (31), el sistema de ecuaciones (43)—(44) se reduce a
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(Z Ak Gk,ij) AXJ‘ + ZGJ",' A/\j = LC,i i = 1,2,...,na, (45)
=1 k=1 i=1
Z Gi’j AXJ‘ = —Gi T = 1,2,...,ma. (46)
7=1 '

Estas expresiones resuelven el sistema de ecuaciones planteado en (28)-(29) en
forma recurrente, es decir, partiendo de unos valores de las variables de diseno, X;, y
de los multiplicadores de las restricciones activas, A;, calculan una mejor aproximacién
de estos valores a los correspondientes al disefio éptimo.

El sistema de ecuaciones (45)—(46) puede ser generalizado introduciendo un
parametro ¢ que controle la magnitud de la variacién experimentada por las variables
del problema (variables de disefio y multiplicadores) en cada etapa del proceso de disefio
(de forma similar al método Newton-Raphson®®. Se obtiene asi la expresién definitiva
del método NWRAG: '

2 (Z Ak Gk,ij) AXJ' + ZGJ',,; A)\J = ¢L0,i 1 = 1,2,...,naqa, (47)

=1 k=1 =1

El sistema lineal de ecuaciones resultantes tiene las siguientes particularidades

) La matriz de coeficientes del sistema es simétrica.
2) Es necesario proporcionar un valor inicial a los multiplicadores de las restricciones
activas. En las aplicaciones dicho valor inicial se ha estimado mediante la aplicacién
del método de las ecuaciones lineales*?.

ANALISIS DE SENSIBILIDAD

El calculo de todas aquellas derivadas que se precisen de la funcién objetivo y de
las restricciones existentes recibe el nombre de analisis de sensibilidad. En la expresién
del método, ecuaciones (45)-(48), se observa la necesidad de conocer las primeras y
segundas derivadas de todas las restricciones activas. ,

Teniendo en cuenta las limitaciones de espacio y que el cdlculo de estas derivadas no
es relevante para el desarrollo del método presentado, se remite al lector a la referencia’
donde aparecen recogidos, para una gran variedad de elementos, las derivadas citadas.
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PARTICULARIDADES DE LA IMPLEMENTACION
DEL METODO NWRAG

A lo largo de los dos primeros apartados se ha abordado el planteamiento del
problema y su resolucién mediante el método NWRAG. Las expresiones desarrolladas
son generales y no detallan la manera de llevar a cabo operaciones necesarias para la
implementacién del método. En este apartado se pretende subsanar esta deficiencia
desarrollando los algoritmos para la:

1) Estimacidn de la tabla de restricciones de comportarmento paswas y puesta al dia
de esta tabla a lo largo del proceso de disefio.

2) Estimacién del conjunto de variables de diseno activas y puesta al dia de dicho
conjunto a lo largo del proceso de optimizacidn.

Algoritmo de eleccién de restricciones de comp01 tamlento activas

Dada una etapa cualqulera del proceso de dlseno seréd considerada actlva, ‘en
principio, cualquier restriccién que resulte violada en dicha etapa. De esta manera
se obtiene el conjunto- de restricciones activas requerido para la aplicacién de las
expresiones (45)-(48).

Puede darse el caso de wuna restriccion que, ain habiendo sido violada
(correspondiendo por tanto, segin el criterio anterior, a una restriccién activa en
la etapa en curso), no es realmente activa en el 6ptimo. Mantener en la tabla de
activas a este tipo de restricciones fuerza al método a tender a soluciones falsas (no
éptimas) y es deseable, por tanto, su eliminacién. Se comprueba que los valores de
los multiplicadores obtenidos para este tipo de restricciones resultan negativos®. Esta
propiedad permite la elaboracién de un criterio de eliminacién de dichas restricciones
(aquellas que, resultando activas en la etapa en curso, no lo son en el éptimo).

En la implementacién efectuada ‘del método NWRAG se elimina de la tabla
de restricciones activas toda restriccién cuyo multiplicador resulte mnegativo un
determinado nimero de etapas. Esta medida se mantiene durante una etapa
permitiendo a dicha restriccién pasar a formar parte de dicha tabla en la etapa siguiente.

Algoritmo de eleccién de variables de diseno activas

Dado que las expresiones deducidas para el método NWRAG consideran
dnicamente las variables de disefio activas en el 6ptimo, es necesario elaborar un criterio
que permita la estimacién de dichas variables. Las expresiones obtenidas anteriormente
permiten, de forma intuitiva y casi inmediata, la deduccién de dicho criterio.

Sea la recta real donde se representan los posibles valores de la variable X},
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El algoritmo actua de la siguiente manera:

1) Si X; pertenece a I toma el valor XI; y pasa a ser pasiva.
2) Si X pertenece a I, pueden darse dos casos:

a) R; < 1. En este caso X; toma el valor XI; y pasa a ser pas1va
b) R; > 1. En este caso X; es considerada activa.

[
~—

Si X; pertenece a I3 es considerada activa.
4) Si X; pertenece a I pueden darse dos casos:

a) R; < 1. En este caso X; es considerada activa.
b) R; > 1. En este caso X; toma el valor X §; y pasa a ser pasiva.

5) Si X, pertenece a I5 toma el valor X S; y pasa a ser pasiva.

El procedimiento descrito es coherente con las propiedades de R; dadas en las
expresiones (33)—(34), ya que si la variable X; ronda el limite inferior (o superior) y R;
es < 1 (o > 1) es 1égico que sea considerada pasiva y tome el valor XI; (0 X S;) ya que
su tendencia para la siguiente etapa sera seguir disminuyendo (o aumentando) dado el
valor de R;. '

Cuando una variable pasa a ser pasiva, su valor queda fijado. Unicamente las
variables activas tienen la posibilidad de variar el disefio actual y constituyen el conjunto
de auténticas variables de disefio. En cada etapa del proceso de disefio es posible
actualizar la lista de variables activas mediante el procedimiento descrito.

EJEMPLOS

Como muestra del correcto funcionamiento del método NWRAG, desarrollado en
este articulo, se presentan en este apartado ejemplos consistentes en la obtencién del
disefio éptimo de tres estructuras que serdn denominadas membrana placa, placa plana
y estructura espacial.

A continuacién se enumeran las caracteristicas y pardmetros que son comunes a
todos los casos resueltos:

1) Las unidades empleadas para expresar los valores de todas las magnitudes son
kilogramos (kgrs.), para los esfuerzos, y milimetros (mm.}), para las longitudes.

2) Elmaterial considerado es un acero de médulo de Young 21000 kgrs./mm.%, médulo
de Poisson 0.3 y densidad 0.00000784 kgrs./mm.3. La tensién admisible varia en
los distintos ejemplos. 4

3) En lo relativo al problema de optimizacién planteado, en todos los ejemplos

- se parte de un disefio inicial infradimensionado (existen inicialmente
restricciones violadas),
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las restricciones de seccién imponen valor positivo a las variables de disefio,
la tolerancia, ¢, empleada en las restricciones de frontera es 0,

se maneja una tolerancia para las restricciones de comportamiento de valor
0.01y .

el criterio de convergencia detiene el proceso cuando la variacién relativa en
peso en dos etapas consecutivas es menor o igual que 0.0001 dando lugar,
ademas, a un disefio admisible.

El algoritmo utilizado en la resolucién de todos los casos se caracteriza por

dar al pardmetro ¢ el valor 1 (las expresiones empleadas son, por tanto, las
ecuaciones (45)-(46)),

calcular el valor inicial de los multiplicadores mediante el método de las
ecuaciones lineales dando al pardmetro » el valor 2,

actualizar los valores de las variables de disefio utilizando la relacidén de
recurrencia lineal*® (también para r = 2) cuando el método NWRAG no es
aplicable y

no admitir valores negativos de los multiplicadores ni una sola etapa.

En los apartados siguientes se describen los ejemplos resueltos.

Membrana plana

En la Figura 1 se representa la membrana plana y los elementos (todos tipo

membrana) resultado de su modelizacién por el Método de los Elementos Finitos, MEF.
Se consideran tres elementos de disefio, e1, e; y e3 (Figura 1), formados por las tres
hileras horizontales, de cuatro elementos cada una que componen la estructura.

1

18

Figura 1. Membrana plana

La longitud de la base (empotrada) es de 800 mm. siendo la altura 450 mm.. Todos

los elementos tienen las mismas dimensiones. El valor inicial de todas las variables de
disefio {espesor inicial de los elementos de disefio) es 2 mm.
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wn
M

Figura 2. Placa plana

LY

N

X y

Figura 3. Estructura espacial

La hipdtesis de carga la constituye una carga lineal uniforme aplicada en la arista
superior en el sentido negativo del eje Y y de valor 50 kgrs./mm..

Se imponen a la estructura una restriccién de desplazamiento en el grado de
libertad, gdl., 18-Y (Figura 1) de valor limite 0.2 mm. y otra de tensidn, en el elemento
1 (Figura 1), de valor 9 kgrs./mm.2.

Los resultados obtenidos se muestran en las Figuras 4 a 7.

Placa plana

La Figura 2 muestra la placa plana y los elementos (placa tipo Mindlin) resultado
de su modelizacién por el MEF. Se consideran, de forma idéntica al caso anterior, tres
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Figura 4. Evolucién del peso en la membrana plana
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Figura 5. Evolucién de los espesores en la membrana plana
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Pigura 6. Desplazamiento restringido en la membrana plana
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Figura 7. Tension restringida en la membrana plana

elementos de disefio, e;, ez y e3 (Figura 2}, formados por las tres hileras horizontales,
de cuatro elementos cada una, que componen la estructura.

Pesoc

Etapas
Figura 8. Evolucién del peso en la placa plana

La base {empotrada) mide 800 mm. y el voladizo 450 mm.. Las dimensiones de
todos los elementos son las mismas. El valor inicial de la variable de disefio 1 (espesor
inicial de e;) es 4 mm., el correspondiente a la variable 2 es 3 mm. y 2 mm. parala
variable 3.

La hipdtesis de carga consiste en una carga lineal uniforme aplicada en el extremo
del voladizo en el sentido negativo del eje Z y de valor 0.15 kgrs./mm..

Se imponen a la estructura tres restricciones de tensién de valor 10 kgrs./mm.?
los elementos 1, 5 y 9 (Figura 2).

Las Figuras 8, 9 y 10 muestran los resultados obtenidos.

a
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Figura 9. Evolucién de los espesores en la placa plana

Tansion (kgrs./mn.2)
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Figura 10. Tensiones restringidas en la placa plana

Estructura espacial

En la Figura 3 se muestra la estructura espacial y los elementos (con efectos
membrana y placa Mindlin superpuestos) resultado de su modelizacién por el MEF.
Se consideran seis elementos de disefio, e, es, es, €4, €5 ¥ eg (Figura 3), formados
por las seis hileras verticales, de tres elementos cada una, que componen la estructura.
Los lados de la base (empotrados) miden 300 mm. y la altura es 450 mm.. Todos los
elementos tienen las mismas dimensiones. El espesor inicial de los elementos de disefio
e1 ¥ eg es de 5 mm. y 3 mm. para los eg, e3, e4 ¥ €s.

La hipétesis de carga estd formada por dos cargas puntuales, una de -2000 kgrs.
en el gdl. 22-X y otra de -1600 kgrs. en el gdl. 28-Y.

El disefio final ha de satisfacer dos restricciones de desplazamiento y dos de tensién.
Los desplazamientos de los grados de libertad 25-X y 25-Y (Figura 3) no deben
sobrepasar el valor 0.3 y la tensién de los elementos 1 y 6 {Figura 3) estd limitada
al valor 8 kgrs./mm?.
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Figura 11. Evolucién del peso en la estructura espacial

Espesor (mm.)
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Figura 12: Evolucién de los espesores en la estructura espacial

Etapas
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Figura 13. Desplazamientos restringidos en la estructura espacial
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Tension (kgrs./mm.2)
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Figura 14. Tensiones restringidas en la estructura espacial

En las Figuras 11 a 14 se muestran los resultados obtenidos.
CONCLUSIONES

En este articulo se ha presentado un nuevo método de optimizacién dimensional
de estructuras. El método se basa en aplicar la metodologia de Newton-Raphson de
resolucidén de sistemas de ecuaciones no lineales a las condiciones de Kuhn-Tucker; es,
por tanto, un método de optimalidad, principalmente cuando se aplica a estructuras con
elementos de flexién (6). Por otra parte, la implementacién del método, junto con un
algoritmo eficiente de variables activas y pasivas, ha demostrado ser lo suficientemente
robusta y eficaz como para considerar que el método presentado en este articulo puede
ser de utilidad en programas de disefio automatico.

APENDIGE

Conceptos manejados

— Caracteristica de un elemento : Magnitud cuyo valor define completamente su
geometria. Puede tratarse de un espesor (caso de elementos planos), de una seccién
(caso de elementos lineales), etc..

— FElemento : Porcién mas elemental de la estructura producto de su modelizacion
mediante el MEF.

—  Elemento de disefio : Conjunto de elementos con la misma caracteristica.

- Espacio de disefio : Espacio de dimensién n cuyos puntos representan todos los
posibles disefios, es decir, todas las posibles colecciones de valores de las variables
de diseno.

-  MEF : Método de los Elementos Finitos.

~ NWRAG : Método Newton-Raphson-Global. Nuevo método de optimizacién
presentado en este trabajo.
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—  Subespacio de disefio : Subespacio del espacio de disefio cuyos puntos representan
todos los disefios admisibles.
— Variable de disefio : Valor de la caracteristica de un elemento de disefio.

Magnitudes escalares

A;
G

G Dy
GFI
GFSy
GTy

LC

mda

nia
nsa

R*
Up
ug
X;
X7
XI;
XS;

Ak
Al
AS,

constante correspondiente al elemento de disefio 7 que multiplicada por su
variable de disefio, X;, proporciona el volumen de dicho elemento.

valor de la restriccién de comportamiento k. En G} se incluyen los valores
GDk y GTk.

valor de la restriccién de desplazamiento k.

valor de la restriccién frontera interior k.

valor de la restriccidn frontera superior %.

valor de la restriccién de tensidn k.

Lagrangiana, expresién (16), considerando todas las restricciones activas.
Lagrangiana, expresién (31), correspondiente al problema simplificado (sélo
restricciones de comportamiento activas).

nimero total de restricciones de desplazamiento y tensién impuestas. Se
cumple que m = md + mt.

nimero total de restricciones activas considerando tnicamente las
restricciones de comportamiento, es decir, de desplazamiento y tensién. Se
cumple que ma = mda + mta.

nimero de restricciones de desplazamiento impuestas.

numero de restricciones de desplazamiento activas.

numero de restricciones de tensién impuestas.

numero de restricciones de tensién activas.

ntumero de variables de disefio existentes (o nimero de elementos de disefio).
numero de elementos que forman el elemento de disefio 7.

nimero de variables de disefio activas.

nimero total de elementos (= Y7, n{7)).

numero de restricciones frontera inferior activas.

numero de restricciones frontera superior activas.

valor definido por la expresidén (32) correspondiente a X;.

valor de E; en el éptimo.

desplazamiento del grado de libertad k de la estructura.

valor limite impuesto a u en el disefio.

peso total de la estructura.

valor tomado por la variable de disefio :.

valor de X; en el éptimo.

limite inferior tmpuesto a X;.

limite superior impuesto a X,.

delta de Kronecker de segundo orden. Vale 1 cuando sus dos indices son
iguales, se anula en los demas casos.

multiplicador correspondiente a la restricecién de comportamiento activa k.
multiplicador correspondiente a la restriccién de frontera inferior activa k.
multiplicador correspondiente a la restriccién de frontera superior activa k.
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p; densidad del elemento de disefio <.
o, tensidn equivalente calculada en el elemento k.
o} limite impuesto a oy.

Magnitudes vectoriales

{f} cargas nodales correspondientes a una hipétesis de carga dada. |
{fo} cargas nodales correspondientes a las fuerzas no conservativas (esfuerzos
aplicados directamente en los nudos).
{fsi} cargas nodales equivalentes correspondientes a las fuerzas conservatlvas
(expresadas como fuerzas de volumen) actuantes sobre los elementos del
, elemento de disefio ¢ para X; = 1.
{u} desplazamientos de la estructura.
{or} vector tensién correspondiente al elemento k.

Magnitudes matriciales

[Bx] matriz de célculo de tensiones en el elemento k.

[B}] componente de [B;] correspondiente al efecto membrana del elemento k.

[Bf] componente de [By] correspondiente al efecto placa del elemento k.

[K] matriz de rigidez general de la estructura.

[K;] matriz de rigidez del elemento de disefio <.

[K#] componente proporcional a X; (para X; = 1) de la matriz de rigidez [K;].

[KP] componente proporcional a X3 (para X; = 1) de la matriz de rigidez [K;].
[K Eyx)] matriz de rigidez del elemento k del elemento de disefio <.
[KE%;C)} componente proporcional a X; (siendo X; = 1) de la matriz de rigidez

(K Ei()| (expresién 54).
[ﬁf(k)} componente proporcional a X? (siendo X; = 1) de la matriz de rigidez
[K Ei()] (expresién 55) al efecto membrana del elemento k del elemento de
disefio ¢ para X; = 1.
(K EZE:;)] componente de la matriz [K E;;)] correspondiente a la componente de
flexién del efecto placa del elemento k del elemento de disefo ¢ para X; = 1.
[K EZSCT))} componente de la matriz [K E;;y] correspondiente a la componente del
esfuerzo cortante del efecto placa del elemento k del elemento de disefio
¢ para X; = 1.
[U*] matriz que, postmultiplicada por el vector de desplazamientos {u}, extrae
los valores correspondientes a los grados de libertad del elemento k.
[V] matriz de cdlculo de la tensidn equivalente (expresién (70) y (78)).

Convenios manejados

Todas aquellas magnitudes dependientes de una determinada variable de disefio
que se desean expresar cuando el valor de dicha variable es la unidad se representaran

THT)

con un guién en la parte superior. Sirvan de ejemplo las definiciones dadas a [K By 1

{fm-}, etc..
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La derivacién respecto de las variables de disefio se expresa mediante el
correspondiente subindice precedido por una coma. Sirvan de ejemplo las expresiones.

L= g
{Uk,ij} = %‘%,
[kij] = %[—)}g
) - 2L
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