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Abstract. The application of unmanned aerial vehicles (UAV) in the
area of inspection, survey or urban logistics has become a rapidly de-
veloping research domain. While the feasibility of material transports
with UAVs has already been shown in the scope of different projects,
the payload is thereby usually transferred manually into the UAV’s load
handling device. A decisive factor for the economic usability of UAVs
for aerial transportation, however, is a fully automated system includ-
ing the autonomous recognition and pick-up of the cargo. We therefore
present a solution for the automated detection, localization and grasping
of small load carriers with UAVs. The system includes a specialized load
handing device, a camera-based real-time tracking solution for small load
carriers and a fusion of the global and relative position measurements to
achieve the in-flight positioning accuracy required for the autonomous
cargo pick-up.

Keywords: autonomous aerial vehicles, aerial grasping, object localiza-
tion

1 Introduction and related work

In recent years, UAVs have found their way into various industrial applications.
In addition to tasks in the area of inspection or surveying, there are also various
use cases in the field of material transport, as UAVs enable fast, highly flexible
and direct material transport in the air. In addition to the transport of parcels
in retail or the delivery of urgent medical products or devices, UAVs are also
suitable for the transport of spare parts or urgently needed parts on the company
premises or within a production hall. Due to their three-dimensional scope of
movement UAVs are able to operate in the unused space above the production
systems, extend the flow of materials by the third dimension and offer a highly
flexible and fast transportation. [1]

While different publications have already shown that autonomous UAVs can
provide an efficient addition to existing logistic systems there are still only few
solutions or publications describing fully functional systems for the automated
aerial in-house transportation [2]. Existing research and pilot projects on the
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aerial transportation with autonomous UAVs commonly do not focus on the
autonomous cargo pick-up. [3] [4]

To enable autonomous aerial gripping of objects, different operating princi-
ples including suction-gripping, interlocking gripping or magnetic gripping have
been developed during the recent years. Among the most common design are
mechanic finger or jaw grippers as they are easy to produce, robust and can
handle objects independently of their material and shape. However, they require
a precise positioning of the UAV or an underactuated and flexible design to be
able to grasp objects properly.

To compensate the displacement between the UAV and the target object
caused by inaccuracies during manual flight Pounds et al. utilize an underac-
tuated four finger gripper for the reliable in-flight grasping of different objects.
Each finger features two elastic joints to compensate the contact forces between
gripper and object, resulting from the positional fluctuation of the UAV. [5] [6]

Optical tracking systems such as motion capturing systems allow a precise
tracking of UAVs with an accuracy below 1 mm. The usage of such systems
allows the application of fully actuated grippers in combination with autonomous
drones. Qi et. al. utilize a basic single-DOF finger gripper for the successful aerial
gripping of a cuboid [7].

The usage of interlocking connections for aerial grasping has been shown in
[8] and [9]. Thereby pins or clamps are actuated by servo motors to penetrate
the cargo objects and to attain a secure fastening of the object.

While the automated cargo pick-up is considered a key requirement for the
cost-efficient in-house aerial transportation, the state of the art lacks of working
solutions in this area. We thus present a system architecture for the autonomous
detection and grasping of small load carriers with autonomous UAVs. The system
includes an autonomous hexarotor system equipped with a camera system to
detect and locate the cargo objects and an appropriate load handling device to
realize an autonomous grasping.

2 System architecture

To ensure an economic usage of the transportation of small load carriers with
autonomous UAVs both the cargo pick-up and the drop-off need to be fully
automated. Therefore, we want to achieve the following transportation scenario:
The UAV receives a transportation task including an approximate position of
the load carrier (e.g. the position of the stockyard) and the drop point. After
the approach to the transmitted pick-up position, the UAV detects and locates
the load carrier and positions itself precisely above the object to allow a reliable
pick-up. After the pick-up using an automated load-handling device the cargo is
transported to the transmitted destination. Subsequent to the aerial transport
the load carrier is either precisely set down on a landing area defined by optical
markers or simply at the transmitted drop-off coordinates.

242



As we focus on the indoor transportation we use an ultra-wide band (UWB)
tracking system for global positioning. The system allows a tracking with 10 cm
accuracy and can cover areas of several ten-thousand square meters. When flying
in outdoor areas this localization system can be easily replaced with tracking
data provided by satellite-based radio-navigation systems without modifying the
remaining system components.

2.1 Mechatronic cargo handling device

To ensure an automated pick-up and drop-off a mechatronic load handling de-
vice is developed and attached to a modified version of a commercially available
hexarotor system. The load handling device is designed to be set down vertically
on the load carrier. To compensate inaccuracies and fluctuations in the posi-
tioning of the UAV and to center the load carrier during the landing phase the
system provides four lead-in chamfers (cf. Figure 4).

To fasten the load carrier after the landing, retaining bolts are used to create
an interlocking connection with the indentations on the outer contour (1). As
depicted in Figure 1, the individual bolts (2) are guided by linear bearings (3)
and actuated by servo motors (4). A servo lever with a slotted hole (5) is used to
convert the rotary motion into a linear one. As the servos are only actuated while
the UAV is resting on the load carrier, no additional force or momentum other
than the friction force needs to be overcome to move the bolts. During the flight
phases, the weight force of the load carrier presses the bolts onto the bearing
thus creating an efficient load restraint additional to the counter-momentum of
the motor.

Fig. 1: Fixation of the load carrier by an interlocking connection between the undercut
of the load carrier (1) and the retaining bolts (2). The bolts are guided by linear
bearings (3) and actuated by a servo motor (4) and a servo lever (5)

2.2 Object localization and tracking

Machine learning approaches are often considered as state of the art for object
segmentation tasks. There are various neural networks available for object seg-
mentation such as Mask R-CNN, DeepLab or FuseNet that allow an instance
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segmentation based on colour or combined colour and depth information [10–
12] as well as advanced pose estimation pipelines for segmenting and grasping
various objects [13]. Light-weight models and neural network architectures also
allow a near real-time image analysis low-cost hardware such as the NVidia Jet-
son Nano Board or different single board computers equipped with the Intel
Neural Compute Stick.

However, as machine learning approaches still require large amounts of suit-
able and annotated training data especially when the load carriers is filled with
different objects, we favour a solution based on color and shape segmentation.

Our approach for the detection, segmentation and localization of the individ-
ual load carriers is based on their known colour (blue) and shape (rectangular
with known size). The detailed algorithm to segment and locate the objects is
presented in detail below.

To extract the load carrier from the image, in a first step a basic colour
segmentation algorithm is used. Based on a tolerance range centred on the actual
colour value of the load carrier all blue pixels are segmented and converted into
a binary mask. As depicted in the left image in Figure 2 the resulting mask
contains most of the load carrier’s pixels but is still affected by noise and falsely
identified areas.

Afterwards Gaussian smoothing is applied to the binary image to reduce
the effect of the remaining noise that can especially occur at the edges of the
segmented objects. The Gaussian filtering prevents the incorrect detection of the
noise as the edge of an object during the subsequent edge detection using the
Canny-algorithm (cf. Figure 2, centre).

By applying topological structural analysis the contours of the remaining
objects can be extracted. As only rectangular shapes are required, we apply
the Douglas-Peucker-algorithm to approximate the remaining contours with the
minimal required number of points. As an rectangle is fully described by its four
corner points all contours with more or less points are discarded. To extract the
rectangles actually representing a load carrier their enclosed area is analysed. As
the intrinsic camera parameters, the size of the load carrier and the current flight
altitude is known, the expected size of the load carrier in the camera image can
be estimated and all rectangles that do not fulfill this criterion can be discarded.

Next, the scalar product of the vectors defining the rectangle’s borders is
calculated to get an estimate of the angle between them. This is used to only store
rectangular shaped contours with corner angles of approximately 90 degrees.
Based on this information, it can be ensured that e.g. for trapezoidal shapes,
which also consist of only four corner points, the related contours are no longer
stored for further processing.

Finally, the contours are sorted by their enclosed area and only the contour
with the biggest area is kept. This is to avoid calculating the position of smaller
rectangles within the box resulting from the possible influence of shading or
overexposure (cf. Figure 2, right). After the segmentation the transform between
the camera and the computed centroid of the load carrier is determined using
the camera’s inverted intrinsic matrix.
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Fig. 2: Binary mask resulting from the color segmentation process (left), output image
of the contour detection (center), detected load carrier with bounding box and centroid
(right)

2.3 Pose estimation and software architecture

As the optical tracking system features a significantly lower measurement noise
than the UWB tracking system, the provided transform is not only used as set-
point but also used to increase the in-flight positioning accuracy of the UAV.
This is necessary as the positioning accuracy that can be achieved by the data
of the UWB tracking system and the UAV’s intertial measurement unit is often-
times not sufficient to pick up the load carriers. To improve the estimation of the
current flight position we apply the covariance intersection algorithm presented
by Niehsen [14].

Thereby the relative pose between the UAV and the load carrier is trans-
formed into global coordinates and fused with the pose provided by the UWB
tracking system. The inverse transformation is based on the UAVs global posi-
tion at the time of the initial localization of the load carrier.

Using the covariance matrix Kxx of the global UWB tracking data and the
covariance matrix Kyy of the pose provided by the optical tracking a combined
covariance matrix Kzz can be calculated as

Kzz = (w ∗Kxx
−1 + (1 − w) ∗Kyy

−1)
−1

. (1)

To find the optimal solution for Kzz the value of w is computed in such a
way that the determinant of Kzz is minimized. Using the available closed-loop
formulations a fused position estimation

PF = Kzz ∗ (w ∗Kxx
−1 ∗ PC + (1 − w) ∗Kyy

−1 ∗ PG) (2)

is calculated and forwarded to the internal kalman filter of the flight control unit
(FCU). Thereby the position values provided by the UWB tracking system and
the box detection are denoted as PG and PC .

The implemented process for cargo pick-up, transportation and drop-off is
depicted in Figure 3. Initially the overlying task management sends an approxi-
mate position setpoint to the FCU, indicating where the cargo object is located
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Fig. 3: Flowchart of the implemented software system used for object segmentation,
pose estimation and controlling of the load-handling device

(not shown in the chart). As soon as the UAV reaches the provided position the
process for locating and grasping the load carrier becomes active.

Based on the provided RGB-data the load carrier is segmented and localized
using the algorithm presented in section 2.2. The resulting transform and the
known transforms between the camera and the FCU and the load handling
device and the FCU are then used to calculate an updated position setpoint
that is forwarded to the FCU.

Using the covariance intersection algorithm an improved position estimation
is calculated whenever valid relative tracking data is available and forwarded
to the internal kalman filter of the FCU to improve the in-flight positioning
accuracy.

The internal land detector of the FCU provides information whether the
UAV is already landed or still in-flight. Based on this feedback, the load handling
device controller drives the individual servo motors to fasten or release the cargo.

After a successful pick-up (which is determined by the increment in the re-
quired take-off thrust) the UAV heads for the provided drop-off position. When
the drop-off position is referenced by additional optical markers, they are tracked
using the algorithms presented in [15] and the resulting relative position is used
as input to the covariance intersection algorithm, otherwise the positioning dur-
ing the landing phase only relies on the UWB tracking data.

3 Evaluation

The resulting system is depicted in Figure 4. The developed load-handling de-
vice is attached to a DJI F550 airframe with the corresponding electronic speed
controllers and motors. As FCU we use the open-hardware system Pixracer run-
ning the 1.9.2 stable release of the PX4 autopilot [16] and a NVidia Jetson Nano
on-board companion computer (OBC) for object detection and data fusion.

The implemented software utilizes the Robot Operating System (ROS) and
the provided ROS communication layer. To allow a precise tracking of both
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Fig. 4: Hexarotor system equipped with the developed load handling device

the load carrier and the landing area two down-facing cameras are attached to
the system. The first is located in the center of the mounting plate of the load
handling device and the second one is mounted to the outer frame of the UAV.
The individual servo motors are connected to a suitable driver and controlled
by the OBC.

While the FCU runs the real-time modules such as attitude and position
controller the OBC runs additional software modules required for general flight
processes and navigation. Core element of our previously developed software
framework is the mission controller, a software module that is responsible for
basic navigation tasks, path-following, system diagnosis and failure detection.

Figure 5 compares the achieved in-flight accuracy based on the pose esti-
mation of the internal kalman filter when hovering around 1 m above the load
carrier. To simplify the evaluation and depiction the corresponding static set-
point is subtracted from the position values. All flights are conducted with the
same closed-loop controller but it’s effect on the positioning accuracy and poten-
tial improvements will not be discussed in detail. When only the UWB tracking
information is used, the resulting in-flight position deviates around ±5 cm from
the setpoint in x- and y-direction. However, the deviations in z-direction reach
values of up to 20 cm. This can be traced back to the fact that the noise in the
measurement values of the UWB tracking system in z-direction is significantly
higher then the noise in x- and y-direction.

When fusing additional optical tracking information, the deviations decrease
to maximal values of ±4 cm in every direction. Compared to the UWB-only
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Fig. 5: Comparison of the achievable positioning accuracy when only relying on UWB
tracking information and when fusing UWB and optical tracking data using the co-
variance intersection algorithm

dataset, especially the accuracy in z-direction improves significantly enabling a
consistent and precise descending. Compared to the z-direction, the positioning
accuracy in x- and y-direction increases less which can be traced back to inferior
measurement inaccuracies of the UWB tracking system.

While the optical tracking of the load carrier improves the flight accuracy
and improves the success rate of the cargo pick-up further improvements are
required. The lead-in chamfers of the current load handling device can compen-
sate movement of up to ±5 cm, however, the automated pick-up currently only
succeeds approximately every second time (evaluated on the basis of 20 test
flights). Besides the in-flight position oscillations also faulty tracking informa-
tion, friction on the lead-in chamfers and oscillations caused by the ground effect
are accountable for the poor success rate.

4 Conclusion and Outlook

Within this paper we have presented an approach to the autonomous aerial
grasping of small load carriers with UAVs. Using a camera-based solution for
segmenting and locating the cargo objects, a newly developed load-handling
device and the covariance intersection algorithm for optimized pose estimation,
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the automated pick-up of small load carriers was realized. While it was shown
that the autonomous pick-up of small load carriers is possible with the present
system, the reliability and rate of successful pick-ups still needs to be improved.

To optimize the flight and grasping performance within future research, the
influence of optimized and model-based controllers will be examined. Also im-
proved cameras with optimized field of views and additional sensors to measure
the current movement speed will be integrated and the influence of vibrations
caused by the spinning rotors will be examined.
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