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Abstract. The computation of feedback control using Dynamic Programming equation is a
difficult task due the curse of dimensionality. The tree structure algorithm is one the methods
introduced recently that mitigate this problem. The method computes the value function avoid-
ing the construction of a space grid and the need for interpolation techniques using a discrete
set of controls. However, the computation of the control is strictly linked to control set chosen
in the computation of the tree. Here, we extend and complete the method selecting a finer
control set in the computation of the feedback. This requires to use an interpolation method for
scattered data which allows us to reconstruct the value function for nodes not belonging to the
tree. The effectiveness of the method is shown via a numerical example.

1 Introduction

The computation of feedback control for differential equations is an important topic due to
applications in real life problems. Usually, one uses the dynamic programming principle and
the Hamilton–Jacobi–Bellman (HJB) equations to derive the control in feedback form (see e.g.
[8] for a complete description of the method). The major issue of this approach is that the
solution of the HJB equation is not analytical and we need to build numerical approximations.
Although there exists a huge literature on the approximation (see e.g. [14]), numerical methods
suffer from the curse of dimensionality, namely the complexity of the problem increases as the
dimension of the system we want to control does. In the last decades, there were a tremendous
effort in mitigating the curse of dimensionality using different methods such as: model order
reduction [17, 6], spectral methods [16], max-plus algebra [19, 18], neural networks [9, 10], tensor
decomposition [11, 20, 12], sparse grids method [15] and radial basis functions [7].

Recently, in [2] it has been introduced a tree structure algorithm to approximate the HJB
equation for finite horizon problem. The value function is computed using a DP algorithm on
a tree structure algorithm (TSA) constructed by the time discrete dynamics. In this way there
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is no need to build a fixed space triangulation and to project on it: the tree will guarantee a
perfect matching with the discrete dynamics and drop off the cost of the space interpolation
allowing for the solution of very high-dimensional problems. Moreover, a pruning technique
has been implemented to reduce the number of branches and the exponential complexity of the
tree. Error estimates have been derived in [21] for the TSA, including the pruning technique, to
guarantee first order convergence. Later, the method has been extended to high order methods
in [3], state constraint problems [5] and coupled with model order reduction to deal with large
scale problems [4].

In this work, we conclude the study of the TSA explaining how to build the feedback control.
Indeed, in the works presented before the control was linked to the nodes of the tree and it was not
able to be obtained for different initial conditions. In fact, the methods could not reconstruct
the control for points outside of the tree nodes. Here, we propose two algorithms based on
scattered interpolation to overcome this limit. In particular, given the tree structure and the
information of the value function on it, one may apply interpolation operators on scattered data
to construct the value function, and hence the feedback map, on points not belonging to the
tree.

The outline of the paper is the following. In Section 2, we recall the tree structure algorithm
and the main ingredients for the resolution of the dynamic programming principle on the TSA.
Section 3 is devoted to the study of our new method to reconstruct feedback control based on the
use of interpolation techniques on scattered dataset. Finally, in Section 4 we present a numerical
test to show the effectiveness of the proposed methodology.

2 The tree structure algorithm

In this section we will recall the finite horizon control problem and its approximation by the
TSA (see [2] for a complete description of the method). Let us consider the following dynamics{

ẏ(s) = f(y(s), u(s), s), s ∈ (t, T ],
y(t) = x ∈ Rd. (1)

where y : [t, T ] → Rd is the solution, u : [t, T ] → Rm is the control, f : Rd ×Rm × [t, T ] → Rd is
the dynamics and

U = {u : [t, T ] → U,measurable}

is the set of admissible controls within the compact set U ⊂ Rm. We assume that there exists
a unique solution for (1) for each u ∈ U . The cost functional we want to minimize reads

Jx,t(y, u) :=

∫ T

t
L(y(s), u(s), s)e−λ(s−t) ds+ g(y(T ))e−λ(T−t), (2)

where L : Rd × Rm × [t, T ] → R is the running cost and λ ≥ 0 is the discount factor. Finally,
the optimal control problem is

min
u∈U

Jx,t(y, u), subject to y(·;u) solution of (1) (3)

We assume that the functions f, L and g are bounded and Lipschitz-continuous with respect to
the first variable to guarantee existence and uniqueness of the control problem (3).
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The value function is defined as follows

v(x, t) := inf
u∈U

Jx,t(u) (4)

and satisfies the DPP, i.e. for every τ ∈ [t, T ]:

v(x, t) = inf
u∈U

{∫ τ

t
L(y(s), u(s), s)e−λ(s−t)ds+ v(y(τ), τ)e−λ(τ−t)

}
. (5)

From (5), one can derive the HJB equation for every x ∈ Rd, s ∈ [t, T ): −∂v
∂s

(x, s) + λv(x, s) + max
u∈U

{−L(x, u, s)−∇v(x, s) · f(x, u, s)} = 0,

v(x, T ) = g(x).
(6)

Finally, the computation of the feedback control is straightforward, assuming the value function
is known:

u∗(x) := argmax
u∈U

{−L(x, u, t)−∇v(x, t) · f(x, u, t)} . (7)

Since equation (6) is a first non-linear PDE, it is hard to find an exact solution and numerical
algorithms should take into account discontinuities in the gradient (see [14] and the references
therein). Introduced a time discretization of (6) with a time step ∆t := [(T − t)/N ] and N
number of steps, it is possible to consider the discrete version of the DPP (5). More precisely,
for n = N − 1, . . . , 0 and every x ∈ Rd we have

V n(x) = min
u∈U

[∆t L(x, u, tn) + e−λ∆tV n+1(x+∆tf(x, u, tn))], (8)

where tn = t + n∆t, tN = T , and V n(x) := V (x, tn). The iterative scheme (8) is coupled with
the terminal condition

V N (x) = g(x). (9)

In (8) we use an explicit Euler scheme for a first order approximation to simplify the presentation
(the high-order extension has been presented in [3]). The term V n+1(x+∆tf(x, u, tn)) is usually
obtained via interpolation on a fixed grid since x+∆tf(x, u, tn) is not a grid point (see [14] for
more details on this step). To bypass the interpolation step a tree structure is built where all
the possible combinations of the term x+∆tf(x, u, tn) are computed for different values of u.
First of all, let us consider a discrete version of the control domain, say U = {u1, ..., uM} with

M controls. We will denote the tree by T := ∪Nj=0T j , where each T j contains the nodes of the

tree at time tj . The first level T 0 = {x} is simply formed by the initial condition x. Starting
from the initial condition x, we discretize the dynamics using e.g. an explicit Euler scheme and
we consider all the nodes obtained with different discrete controls ui ∈ U

ζ1i = x+∆t f(x, ui, t0), i = 1, . . . ,M.

Therefore, we have T 1 = {ζ11 , . . . , ζ1M}. The procedure can be easily iterated for each node of
the level, obtaining at time tn the level T n:

T n = {ζn−1
i +∆tf(ζn−1

i , uj , tn−1)}Mj=1 i = 1, . . . ,Mn−1.
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The entire tree can be represented in short as

T := {ζni }M
n

i=1, n = 0, . . . N,

where the nodes ζni are the results of the dynamics at time tn with the controls {ujk}
n−1
k=0 :

ζnin = ζn−1
in−1

+∆tf(ζn−1
in−1

, ujn−1 , tn−1) = x+∆t
n−1∑
k=0

f(ζkik , ujk , tk),

with ζ0 = x, ik =

⌊
ik+1

M

⌋
and jk ≡ ik+1mod M .

Although it is possible to deal with arbitrary high-dimensional problems, the construction of
tree may be expensive since |T | = O(MN ), where M is the number of discrete controls and N
is the number of time steps. This leads to an exponential growth of the cardinality and it may
be infeasible to apply the algorithm due to the huge amount of memory allocations, when M
or N are too large. To mitigate this exponential growth a pruning criteria has been introduced.
Defining a threshold εT > 0, several branches of the tree can be cut off according to the distance
between nodes. More precisely, if two nodes satisfies the following criteria

∥ζni − ζnj ∥ ≤ εT , for i ̸= j and n = 0, . . . , N. (10)

they can be merge, leading to a great gain in memory storage and computational time, keeping
the same order of convergence ([21]).

The computation of the numerical value function V (x, t) will be performed on the tree nodes
in space as

V (x, tn) = V n(x), ∀x ∈ T n, (11)

where tn = t + n∆t, following directly from the DPP. The tree T = ∪Nj=0T j given by the
TSA defines a grid and we can write a time discretization on it for (6) as follows:

V
n(ζni ) = min

u∈U
{e−λ∆tV n+1(ζni +∆tf(ζni , u, tn)) + ∆t L(ζni , u, tn)}, for ζni ∈ T n, n ≤ N − 1,

V N (ζNi ) = g(ζNi ), for ζNi ∈ T N .

Since the set of controls U is discrete, the minimization will be computed by comparison.

2.1 TSA and Model Order Reduction

The Tree Structure Algorithm has been also coupled with Proper Orthogonal Decomposition
(see e.g. [22]) techniques in [4]. The idea is to consider the projection of the dynamics onto a
subspace spanned by particular orthogonal basis function in order to reduce the dimension and
the complexity of the problem. Here, we sketch briefly the main concepts, the interested reader
will find more details in [4].

Given the full dimensional dynamics (1), the TSA can be applied with few time steps and few
controls to explore the manifold of all possible solutions. Collected all the nodes of the tree in a
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matrix Y ∈ Rd×N , called the snapshots matrix, one can operate a Singular Value Decomposition
of the matrix Y , obtaining Y = ΨΣV ⊤, where Ψ ∈ Rd×d and V ∈ RN×N are orthogonal matrices

and Σ ∈ Rd×N is a diagonal matrix with diagonal entries {σi}min{d,N}
i=1 . The first ℓ≪ min{d,N}

columns of the matrix Ψ, i.e. Ψℓ = {ψ1, . . . , ψℓ}, will represent the solution of the following
minimization problem

min
ψ1,...,ψℓ∈Rd

N∑
j=1

∣∣∣∣∣yj −
ℓ∑
i=1

⟨yj , ψi⟩ψi

∣∣∣∣∣
2

such that ⟨ψi, ψj⟩ = δij .

The number of basis ℓ can be fixed according to a criterium related to the projection error.
More precisely, given a tolerance τ ∈ [0, 1] the parameter ℓ can be chosen such that

E(ℓ) =
∑min{d,N}

i=ℓ+1 σ2i∑min{d,N}
i=1 σ2i

≤ τ. (12)

The constructed matrix Ψℓ will be then employed in the projection of the dynamics (1). Indeed,
assuming the ansatz y(t) ≈ Ψℓyℓ(t) with yℓ(t) ∈ Rℓ, and the orthogonality of Ψℓ the reduced
dynamics reads {

ẏℓ(s) = (Ψℓ)⊤f(Ψℓyℓ(s), u(s), s),

yℓ(t) = Ψℓ⊤x.

In our numerical experiment we will use this method for the control of the heat equation to
reduce the dimensionality of the problem.

3 Feedback reconstruction and closed-loop control

In this section we are going to present a technique to retrieve the feedback control based on
the knowledge of the value function on the nodes of the tree. We are going to introduce two
possible post-processing reconstruction which will be compared in the section of the numerical
test.

The computational cost for the construction of the full tree is exponential in the number of
discrete controls, for this reason it is better to consider few controls for the tree construction and
for the resolution of the HJB equation. Once the value function is obtained on a tree-structure,
we consider a post-processing procedure which takes into account a finer control set. This is
possible thanks to the formula for the synthesis of the feedback control

u∗n := argmin
u∈Ũ

{
e−λ∆tV n+1(x+∆tf(x, u, tn)) + ∆t L(x, u, tn)

}
, (13)

where the argmin will be computed on a finer set Ũ with respect to the initial set U . This
minimization can be computed again by comparison, but we need to introduce an interpolation
step on scattered data. In low dimension (i.e. two or three) one may consider a Delaunay
triangulation of the data and then perform an interpolation on the triangulation. In high
dimensions, the triangulation becomes infeasible and one has to proceed in different ways, for
example via e.g. kernel methods ([13]) or via Model Order Reduction Techniques ([4]). In the
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numerical test we will consider the latter case, considering a POD reduction of the dynamical
system.

The method for the feedback reconstruction based on a minimization by comparison on a
finer control set is presented in Algorithm 1.

Algorithm 1 Feedback reconstruction via comparison on a finer control set

1: Computation of the tree T and value function {V k}k with control set U .
2: Fix a new control set Ũ ⊃ U and ζ0∗ = x.
3: for n = 0, ..., N − 1 do
4: for uj ∈ Ũ do
5: ζj = ζn∗ +∆tf(ζn∗ , uj , tn)
6: Compute V (ζj , tn+1) via scattered interpolation with (T n+1, V n+1)

7: u∗n := argmin
uj∈Ũ

{
e−λ∆tV (ζj , tn+1) + ∆t L(ζn∗ , uj , tn)

}
8: ζn+1

∗ = ζn∗ +∆tf(ζn∗ , u
∗
n, tn)

The interpolation on scattered data can be computed via the MATLAB function
scatteredInterpolant. If the dynamics f is autonomous, by Remark 3.3 in [2] we know

that we can compute at time tn the value function on the sub-tree ∪nk=0T k. In this case, in step 6
we can compute the scattered interpolation with ∪nk=0(T k, V k), guaranteeing more information
for a more efficient interpolation.

Now, let us consider a dynamics f affine in the control u ∈ R. By Remark 3.1 in [2] we
know that all the tree sons of a node lay on a segment. In this case we can apply one dimen-
sional interpolation, for instance quadratic interpolation if we consider three discrete controls
for each iteration. The quadratic interpolation is a reasonable choice in the Linear Quadratic
Regulator case since we know that the value function is quadratic and then we do not intro-
duce interpolation error in this case. Moreover, let us suppose that the running cost L is of
the form L(x, u, t) = g(x, t) + γ|u|2 + δu. In Algorithm 2 we describe this procedure based
on a quadratic interpolation, fixing λ = 0 for simplicity. In step 9 the operator PU stands for
the projection operator onto the set U . We will use and compare these two techniques in the
numerical experiment, where we will consider the optimal control for the heat equation.
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Algorithm 2 Feedback reconstruction via quadratic interpolation

1: Computation of the tree T and value function {V k}k with control set U = {u1, u2, u3}.
2: ζ0∗ = x.
3: for n = 0, ..., N − 1 do
4: for uj ∈ U do
5: ζ(uj) = ζn∗ +∆tf(ζn∗ , uj , tn)
6: Compute V (ζ(uj), tn+1) via scattered interpolation with (T n+1, V n+1)

7: V (ζ(u), tn+1) ≈ au2 + bu+ c, ∀u ∈ [u1, u3]
8: if a+∆t γ > 0 then

9: u∗n = P[u1,u3]

(
− b+∆t δ

2(a+∆t γ)

)
10: else
11: u∗n = argmin

ui∈{u1,u3}
{V (ζ(ui), tn+1) + ∆t L(ζn∗ , ui, tn)}

12: ζn+1
∗ = ζn∗ +∆tf(ζn∗ , u

∗
n, tn)

4 Numerical experiment: Heat Equation

In this example we consider the one dimensional heat equation with homogeneous Dirichlet
boundary conditions

∂ty(x, t) = σyxx(x, t) + y0(x)u(t) (x, t) ∈ Ω× [0, T ],

y(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ],

y(x, 0) = y0(x) x ∈ Ω,

(14)

where the control u(t) is taken in the admissible set U = {u : [0, T ] → [−1, 0]}, σ = 0.15,
T = 1 and Ω = [0, 1]. The space domain is discretized with 1000 nodes, leading to a dynamical
system in dimension R1000. Since the problem is truly high dimensional, we are going to apply
the POD reduction introduced in Section 2.1. We create a rough tree with two discrete controls
and ∆t = 0.1 and we fix the tolerance τ = 10−4 in (12). This procedure yields a reduced
dimension ℓ = 2. In this case two POD basis get enough information for a quasi-complete
description of the system. Then, given the reduced dynamics, we compute the reduced tree
structure and the value function with 11 discrete controls and we compare the numerical value
function computed by TSA-POD and by the Riccati equation (see e.g. [1]) according to the
following errors

Err2 =

∑N
n=0 |V (yn∗ , tn)− v(ynR, tn)|2∑N

n=0 |v(ynR, tn)|2
, Err∞ =

max
n=0,...,N

|V (yn∗ , tn)− v(ynR, tn)|

max
n=0,...,N

|v(ynR, tn)|
, (15)

where {yn∗ }n is the optimal trajectory computed via POD-TSA, while {ynR}n is the solution
of the time dependent Riccati equation. The results are presented in Table 1. The column
Pruned/Full refers to the ratio between the cardinalities of the pruned tree and the full tree.
Moreover, in Table 2 we recall the values obtained for the full dimensional problem. The coupling
of the TSA with POD leads to more accurate results in less time. In particular, we see that for
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∆t = 0.0125 we obtain a speed-up of a factor 7 and a reduction of order 4 for the cardinality of
tree. In Figure 1 we can observe the convergence of the cost functional and the approximation
of the optimal control.

∆t Nodes Pruned/Full CPU Err2 Err∞ Order2 Order∞

0.1 134 4.3e-10 0.1s 0.244 0.220
0.05 825 1.0e-19 0.56s 0.102 9.4e-2 1.25 1.22
0.025 11524 2.1e-39 8.74s 3.1e-2 3.0e-2 1.73 1.67
0.0125 194426 7.8e-80 151s 1.0e-2 8.2e-3 1.60 1.85

Table 1: Test 1: Error analysis and order of convergence for TSA-POD method with εT = ∆t2, 11
discrete controls and 2 POD basis.

∆t Nodes Pruned/Full CPU Err2 Err∞ Order2 Order∞

0.1 134 4.7e-09 0.14s 0.279 0.241
0.05 863 1.2e-18 0.65s 0.144 0.118 0.95 1.03
0.025 15453 3.1e-38 12.88s 5.5e-2 5.3e-2 1.40 1.17
0.0125 849717 3.8e-78 1.1e3s 1.6e-2 1.6e-2 1.77 1.42

Table 2: Test 1: Error analysis and order of convergence for forward Euler scheme of the TSA with
εT = ∆t2 and 11 discrete controls.
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Figure 1: Test 1: Cost functional (left) and optimal control (right) with 11 discrete controls.

Feedback reconstruction In this paragraph we are going to apply the feedback reconstruc-
tion techniques introduced in Section 3. We consider again 2 POD basis and we solve the optimal
control problem via POD-TSA with 3 discrete controls. The results for this case are presented
in Table 3.

Then, we pass to the post-processing procedure: we consider Algorithm 1, computing the
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∆t Nodes Pruned/Full CPU Err2 Err∞ Order2 Order∞

0.1 122 4.6e-04 0.02s 0.376 0.283
0.05 689 4.4e-08 0.19s 0.178 0.136 1.08 1.06
0.025 9536 1.7e-16 2.3s 0.107 6.9e-2 0.73 0.98
0.0125 155293 2.3e-34 37s 0.0655 0.0394 0.71 0.80

Table 3: Test 1: Error analysis and order of convergence for TSA-POD method with εT = ∆t2, 3
discrete controls and 2 POD basis.

optimal trajectory/control with a finer control set. The control set Ũ has now 100 discrete
controls. In Table 4 we present the errors and the orders according to the definition (15).

∆t CPU Err2 Err∞ Order2 Order∞

0.1 0.03s 0.315 0.250
0.05 0.07s 9.6e-2 0.100 1.71 1.32
0.025 0.74s 2.5e-2 3.1e-2 1.93 1.68
0.0125 25s 1.4e-2 9.0e-3 0.89 1.81

Table 4: Test 1: Error analysis and order of convergence for TSA-POD method with εT = ∆t2, 2 POD
basis and reconstruction with 100 controls.

Since we have constructed the tree with 3 discrete controls, we can apply also the quadratic
feedback reconstruction presented in Algorithm 2. The results for this case are presented in
Table 5. It is possible to notice that the CPU time and the errors are similar. Tables 4-5 can
be now compared with Table 1 in which we were solving the optimal control problem without
introducing the feedback reconstruction technique. The numerical errors in both norms are
comparable in the three cases studied, while in term of computational cost we can notice a
speed-up of almost 3 orders.

In Figure 2 we show the cost functional and the optimal control with all these techniques. In
particular, it is possible to see from the plot of the optimal control that the quadratic feedback
reconstruction is more stable, while the reconstruction by comparison presents a scattering
behaviour.

∆t CPU Err2 Err∞ Order2 Order∞

0.1 0.02s 0.251 0.229
0.05 0.04s 0.109 9.5e-2 1.21 1.27
0.025 0.63s 3.3e-2 3.0e-2 1.71 1.65
0.0125 24s 1.1e-2 5.9e-3 1.58 2.36

Table 5: Test 1: Error analysis and order of convergence for TSA-POD method with εT = ∆t2, 2 POD
basis and quadratic reconstruction.
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Figure 2: Test 1: Cost functional (left) and optimal control (right) with different techniques for the
feedback reconstruction.

5 Conclusions

In this work we have presented two algorithms to reconstruct the control in feedback form
based on a tree structure proposed in [2]. Given the knowledge of the value function on the
nodes of the tree, it is possible to introduce interpolation operators on scattered data to obtain
the synthesis of the feedback including more discrete controls. This technique has been coupled
with a Model Order Reduction method to reduce the dimensionality of the problem, allowing a
fast and accurate computation of the optimal control. In the present work we have restricted
ourselves to low dimensional reconstructions. In the next future our aim is to extend this idea
to more high dimensional general problem using e.g. kernel methods [13].
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