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Abstract. In this work, we propose iterative modal solvers to generate multiphysics finite
element reduced order models. We consider the strongly coupled problems defined through
differential-algebraic equations with sparse discrete operators. Piezoelectric models are common
examples of such problems.

The approach we propose is based on the Model Order Reduction (MOR) after Implicit
Schur method [1] which is used for the Krylov subspace reduction of piezoelectric devices.
While their work uses the knowledge of the loading applied to the model to generate a Krylov
subspace reduction basis, we propose to build a reduction basis with a priori unknown loading
by modal synthesis. The basis is built from the eigenvectors of the problem after the static
condensation by Schur complement of one of the physics. Typically, the Schur complement
matrix is computed explicitly and it leads to dense operators [2] which limit the problem
scales that can be studied due to large memory requirements and costly computations for the
eigensolver used afterward.

For Krylov-based eigensolvers, the most computationally difficult step is to obtain a basis
spanning the eigenspace of the problem on the considered eigenvalue range. By generalizing
the MOR after Implicit Schur method, this basis can be constructed by an iterative procedure
using the original sparse operators instead of the dense condensed operators. The original
model may be significantly larger compared to the condensed model for typical cases. However,
keeping the sparsity is a critical computational advantage for the considered problems. This
method is minimally intrusive for the eigensolvers that only require the implementation of a
matrix-vector product. Comparing this implicit Schur complement approach to the explicit
Schur complement approach shows large computational cost reductions. It also underlines
the problem scale limitations of the explicit approach even on high performance computing
hardware.
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1 INTRODUCTION

Industrial applications nowadays often involve the study of structural dynamics in
a multiphysics environment. From microelectromechanical systems to large actuators,
piezoelectricity is a typical example of such coupling. Piezoelectricity is commonly modeled in
commercial software by strongly coupled finite element formulations, implemented in monolithic
solvers. The use of finite element industrial models with millions of degrees of freedom is
becoming more and more common. With the digital twin paradigm, the trend is toward
increasingly larger problem sizes and more complex models. In this context, superelements are
required not only to speed up computations, but also to enable a substructuring approach where
complex models are partitioned into multiple components for design and efficiency reasons.
It is common to simplify piezoelectric problems into structural-only problems using static
condensation, thus we can apply structural superelement methods to piezoelectric models.
As described by Jézéquel [3], there are numerous and varied substructuring methods. The
typical structural superelements are listed in [4]. The Hurty/Craig-Bampton method [5, 4] is
one method widely used in the industry. It uses modal synthesis to reduce most of the domain
while keeping in physical space a smaller subdomain of master nodes. We can leverage its
robustness and existing software implementations to reduce piezoelectric problems.

To achieve static condensation of the electric unknowns, we perform a Schur complement
on the piezoelectric stiffness matrix. In the general case, the resulting Schur complement
matrix is dense. Generating a Hurty/Craig-Bampton superelement after static condensation
requires the computation of the first eigenvectors of a generalized eigenproblem involving the
Schur complement matrix. The straightforward approach is to explicitly compute the Schur
complement matrix and solve the dense eigenproblem. For the problem sizes that warrant Model
Order Reduction (MOR), the computational cost and memory requirements of the reduction
procedure are prohibitive. For large industrial models, this procedure is impossible with current
High Performance Computing (HPC) hardware.

In the context of the Krylov subspace reduction of microelectromechanical devices, Hu et al.
[1] proposed the MOR after Implicit Schur method to circumvent the increased computational
cost of the reduction procedure after static condensation. They proved that the same Krylov
subspace can be generated without the need to explicitely perform the Schur complement.
This implicit Schur approach uses the sparse matrices of the original piezoelectric problem and
implicitly condenses the electric unknowns. Contrary to Krylov subspace reduction, modal
synthesis is not based on a known load-case. However, the required modes can be computed by
iterative eigensolvers that use Krylov subspaces with procedures like the Arnoldi, Lanczos or
Krylov-Schur algorithms. In this study, we adapt their implicit Schur approach to Krylov-based
eigensolvers by modifying the iteration operator used in their procedures. This is non-intrusive
for matrix-free solver implementations.

We propose a generalization of the MOR after Implicit Schur approach to Krylov
eigensolvers. We implement the proposed method in an existing matrix-free Krylov-Schur
eigensolver. We use this implicit Schur eigensolver to extract the first modes of a
piezoelectric oscillator after static condensation and with boundary conditions representative
of a Hurty/Craig-Bampton superelement generation procedure. Efficiency and accuracy of the
implicit Schur eigensolver are compared to the explicit Schur approach using a dense eigensolver
from the reference LAPACK linear algebra library [6].
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NOTATIONS

In this study, we write the scalars 𝑥, vectors x and matrices X related to a physical problem
with the indices (·)𝛽𝛼,(𝑘). 𝛼 refers to a specific geometric domain. 𝛽 refers to a specific physics.
(𝑘) refers to the index of an element in a sequence. When two indices are juxtaposed, it refers
to the input and output of the transformation. For example, A12 is a transformation coupling
the physics 1 and 2, while A12 couples the geometric domains 1 and 2. Usually, we do not
write the zero vector 0 and zero matrix O in block vectors and matrices to avoid a cluttered
notation. We call modal space a graded space ℳ(𝑆𝜆) :=

⨁︀
𝜆∈𝑆𝜆

𝐸𝜆 of the 𝜆-eigenspaces 𝐸𝜆 of
an operator over a subset 𝑆𝜆 of its eigenvalues.

2 PIEZOELECTRIC FULL ORDER MODEL

Several formulations of piezoelectricity are commonly used. In this study, we consider
a displacement and voltage (u, v) two-field formulation. We are interested in the typical
symmetric finite element formulation as implemented in the Ansys Mechanical APDL solver
[7]. The problem is assumed to be conservative. The Full Order Model (FOM) is the discrete
problem [︂

Muu

O

]︂{︂
ü
v̈

}︂
+

[︂
Kuu Kuv

Kuv⊺ Kvv

]︂{︂
u
v

}︂
=

{︂
fu

f v

}︂
(1)

⇔M

{︂
ü
v̈

}︂
+ K

{︂
u
v

}︂
= f , (2)

of size 𝑛 := 𝑛u+𝑛v, with 𝑛u displacement unknowns u and 𝑛v voltage unknowns v. The K and
M matrices are sparse thanks to the finite element formulation. Note that the mass matrix M
is indefinite, and the stiffness matrix K is singular without boundary condition on the voltage
field.

The generalized eigenproblem (K,M) (3) defines the modes of the FOM (1), with Λ its real
spectrum, and Φ its real eigenvectors. From the sequence of increasingly larger eigenvalues, we
define Λ as the spectral matrix diag(𝜆(1), ..., 𝜆(𝑛)). From the corresponding sequence of column
eigenvectors, we define Φ as the modal matrix

[︀
ϕ(1) · · · ϕ(𝑛)

]︀
.[︂

Kuu Kuv

Kuv⊺ Kvv

]︂ [︂
Φu

Φv

]︂
=

[︂
Muu

O

]︂ [︂
Φu

Φv

]︂
Λ (3)

⇔ KΦ = MΦΛ. (4)

The eigenvectors may be normalized to enforce either orthonormalization Φ
⊺
Φ = I or

M-orthogonality Φ
⊺
MΦ = I.

3 REDUCE ORDER MODEL

3.1 Electric static condensation

Piezoelectric problems like (1) can be simplified into structural problems by static
condensation of the electric unknowns v. For a conservative problem, this is an exact reduction
because the electric subproblem only introduces algebraic equations to the differential-algebraic
system.
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This static condensation can be equivalently applied to the FOM (1) by Galerkin projection
using the reduction basis of constraint modes

T :=

[︂
I

−Kvv−1Kuv⊺

]︂
, (5)

similar to Guyan reduction [8] in structural dynamics, or by the Schur complement

Suu = Kuu −KuvKvv−1Kuv⊺ = T
⊺
KT. (6)

The structural condensed problem is then

T
⊺
MTü + T

⊺
KTu = T

⊺
f (7)

⇔Muuü + Suuu = fu −KuvKvv−⊺f v =: fu. (8)

3.2 Superelement overview

The Hurty/Craig-Bampton superelement [5] is a widespread and well-understood
superelement method in structural dynamics. Following this method after electric static
condensation, the problem (8) can be partitioned into condensed unknowns u𝑐 and interface
master unknowns u𝑚. This leads to the equivalent problem[︂

Muu
𝑐𝑐 Muu

𝑐𝑚

Muu⊺
𝑐𝑚 Muu

𝑚𝑚

]︂{︂
ü𝑐

ü𝑚

}︂
+

[︂
Suu
𝑐𝑐 Suu

𝑐𝑚

Suu⊺
𝑐𝑚 Suu

𝑚𝑚

]︂{︂
u𝑐

u𝑚

}︂
=

{︂
fu𝑐
fu𝑚

}︂
. (9)

In the Hurty/Craig-Bampton method, the condensed unknowns u𝑐 are reduced by modal
synthesis with the fixed-interface boundary condition u𝑚 := 0. This requires the computation
of the first normal modes (Λu

𝑐 ,Φ
u
𝑐 ) which are solutions to the generalized eigenproblem

Suu
𝑐𝑐 Φ

u
𝑐 = Muu

𝑐𝑐 Φ
u
𝑐Λ

u
𝑐 . (10)

4 SCHUR COMPLEMENT

4.1 Explicit Schur complement

The mass matrix Muu of the condensed problem (8) is sparse. However, its loaded stiffness
matrix is the Schur complement matrix Suu and is shown by Kudryavtsev et al. [2] to be a
dense matrix for piezoelectric models. Thus, the subproblem (10) to solve is also dense.

Because we need the first modes of (10) and not its dominant modes, the iterative eigensolvers
based on the power iteration or subspace iteration methods cannot be used. The typical
eigensolvers that can be used to extract the first modes of (10) will require at least a costly
dense matrix factorization and dense linear solves involving the Schur complement matrix Suu

𝑐𝑐 .
Notable exceptions are LOBPCG-based eigensolvers [9, 10]. They do not require the

matrix factorization of Suu
𝑐𝑐 . A matrix-free reprensation of Suu

𝑐𝑐 could even be derived from
(6), thus avoiding the explicit computation of the matrix and leveraging the sparsity of its
constituents. However, the LOBPCG method is only efficient for the computation of very few
modes. Generating a superelement generally requires the computation of too many modes for
LOBPCG-based eigensolvers to be competitive. Moreover, the performance of LOBPCG-based
eigensolvers is highly dependent on the preconditioner used and it is not trivial to find a good
preconditioner that does not depend explicitly on the dense Schur complement matrix Suu

𝑐𝑐 .
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4.2 Implicit Schur complement

Hu et al. [1] proved that the same Krylov subspace can be computed using the operators
before (1) and after the static condensation (8). They used this property to propose the MOR
after Implicit Schur method that performs efficiently the Krylov subspace reduction of their
piezoelectric model. Although they are larger, using the original sparse matrices from (1)
enables far better scalability compared to using the dense matrices from (8). This is significant
because MOR is expected to be applied to very large models.

Because we are interested in component mode synthesis, we cannot apply the MOR after
Implicit Schur method that requires a known external loading. Instead, we need the first modes
of the eigenproblem (10). However, we note that eigenproblems of large sparse matrices are
commonly solved by Krylov-based eigensolvers. Algorithm 1 is an overview of a Krylov-based
eigensolver using the Arnoldi procedure [11].

Algorithm 1: Basic Arnoldi eigensolver.
input : operator O, starting vector x(0) and direct eigensolver eig.
output: approximate modes (Λ̃,QΦ̃) of operator O.

1 q(1) ← x(0)/
⃦⃦
x(0)

⃦⃦
2

2 Q ←
[︀
q(1)

]︀
// initialized Krylov subspace basis

3 for 𝑗 ← 1 to 𝑘 do
4 x ← Oq(𝑗) // operator iteration

5 for 𝑖← 1 to 𝑗 do
6 ℎ(𝑖𝑗) ← x*q(𝑖) // Hessenberg coefficient
7 x ← x − ℎ(𝑖𝑗)q(𝑖) // orthogonalization

8 ℎ(𝑗+1,𝑗) ← ‖x‖2 // Hessenberg coefficient

9 if ‖x‖2 = 0 then // breakdown check
10 break
11 else
12 q(𝑗+1) ← x/‖x‖2
13 Q ←

[︀
Q q(𝑗+1)

]︀
// enriched Krylov subspace basis

14 H ←
[︀
ℎ(𝑖𝑗)

]︀
// Hessenberg matrix

15 (Λ̃, Φ̃)← eig(H) // small-scale direct eigensolve

16 return (Λ̃,QΦ̃)

If we use the algorithm 1 to solve the eigenproblem (10) with the typical explicit Schur
approach, the operator O used in line 4 would be

O := −Suu−1
𝑐𝑐 Muu

𝑐𝑐 , (11)

of size 𝑛u. The algorithm would require an expensive matrix factorization of the dense Schur
matrix Suu as well as 𝑘 dense linear solves. In fact, this solver should not be used here.
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Instead, we propose the implicit Schur approach with the modified operator

O := −
[︀
I O

]︀ [︂Kuu
𝑐𝑐 Kuv

𝑐𝑐

Kuv⊺
𝑐𝑐 Kvv

𝑐𝑐

]︂−1 [︂
Muu

𝑐𝑐

O

]︂ [︂
I

−Kvv−1
𝑐𝑐 Kuv⊺

𝑐𝑐

]︂
, (12)

of size 𝑛 > 𝑛u. While the rest of the eigensolver works in the structural subspace of u𝑐 from
the subproblem (10) to solve, we expand in line 4 to the multiphysics space of

⟨︀
u𝑐 v𝑐

⟩︀⊺
using

constraint modes similar to those (5) of the global electric static condensation. This enables the
use of sparse blocks from the matrices K and M of the original problem (1). While this space is
larger, the sparsity should provide far better scalability. To restrict back to the subspace of the
eigensolver, we just truncate the resulting vector to its structural part and discard its temporary
constrained voltages. With this implicit Schur operator (12), the algorithm only requires the
matrix factorization of the K𝑐𝑐 sparse block but also one more linear solve, although sparse,
due to the constraint modes. However, because Mvv

𝑐𝑐 = O for this piezoelectric problem,
the operator could be further optimized by removing the constraint modes and only padding
with zero voltages to expand the input space. While the explicit (11) and implicit (12) Schur
operators are analytically equivalent, we expect some deviations in the modal results because
the numerical operations are different.

Because the operator O is only required at the line 4 of the algorithm 1 to evaluate the
operator-vector product, it is possible to implement matrix-free eigensolvers for which the
operator is defined outside of the solver. For such eigensolvers, implementing the implicit
Schur approach is not intrusive.

5 NUMERICAL TEST CASE

5.1 Piezoelectric oscillator

We apply our implicit Schur approach to a piezoelectric oscillator and compare it to the
explicit Schur approach. The model considered is a quartz tuning fork based on an example
from the Ansys Mechanical APDL documentation [12]. The geometry is meshed with quadratic
hexaedral piezoelectric elements from Mechanical APDL. The meshes considered are shown in
figure 1. The problem sizes range from very small to quite large. To be consistent with the
eigenproblem (10) of interest, we use the boundary conditions described by figure 2. The
interface of master nodes is clamped u𝑚 := 0. A reference voltage v0 := 0 is applied as
shown by the blue electrodes in figure 2. The rest of the unknowns are reduced. Among them,
observation or control voltages v𝑒, represented as the red electrodes in figure 2, could be kept
in physical space but they are reduced to simplify the implementation of the methods. The
condensed subdomain is then defined as⟨︀

u𝑐 | v𝑐

⟩︀⊺
:=

⟨︀
u𝑖 u0 u𝑒 | v𝑖 v𝑒 v𝑚

⟩︀⊺
. (13)

5.2 Computing setup

We use Ansys Mechanical APDL 2023R1 for modelling and meshing. We implement the
explicit and implicit Schur approaches in Julia 1.8.5 [13] on a HPC server with 503 GB of RAM
and two 20 cores/40 threads CPUs (Intel Xeon Gold 6138). All the BLAS/LAPACK linear
algebra operations are performed using the widespread and optimized Intel Math Kernel Library
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(a) 𝑛 = 4693. (b) 𝑛 = 17 041. (c) 𝑛 = 37 093.

(d) 𝑛 = 64 777. (e) 𝑛 = 100 237.

Figure 1: Piezoelectric oscillator meshes of 𝑛 degrees of freedom.

{︂
u𝑚

v𝑚

}︂
:=

{︂
0
v𝑚

}︂ {︂
u𝑖

v𝑖

}︂

{︂
u𝑒

v𝑒

}︂

{︂
u0

v0

}︂
:=

{︂
u0

0

}︂

Figure 2: Piezoelectric oscillator partitioning and boundary conditions.
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(MKL) 2022.2 wrapped in Julia. All the computations are performed in double precision with
Shared Memory Parallelism on 24 threads (SMP24). We compute the first 48 modes of the
eigenproblem (10).

To simplify the implementation of the explicit Schur approach, we compute the Schur
complement matrix Suu

𝑐𝑐 using the simple algorithm described in [14]. Because this is inefficient
compared to optimized algorithms implemented in PARDISO [14] or MUMPS [15], the Schur
complement cost is ignored to not skew the measured computational costs. However, this cost
is significant for large problems even for optimized implementations. The dense eigenproblem
(10) is solved using the reference linear algebra library LAPACK [6]. We use the LAPACK
implementation from the MKL. We use the DSYGVX LAPACK eigensolver which is optimized
for the computation of a small subset of modes of a symmetric generalized eigenproblem in
double precision. We do not leverage the symmetry of the dense matrices to reduce their
storage cost. However, this will not change the memory scalability of the approach and we
observe that matrix storage only account for approximately 25% of the allocated memory for
all the explicit Schur eigensolves performed in this study.

For the implicit Schur approach, we use the SuiteSparse library shipped with Julia 1.8.5 for
all the sparse linear algebra operations. We use the matrix-free Krylov-Schur eigensolver from
the ArnoldiMethod.jl 0.2.0 Julia package. The Krylov-Schur procedure [16] is a generalization
of the Arnoldi procedure overviewed in algorithm 1.

5.3 Modal space similarity indicator

The common approach to quantify the similarity of two modal spaces is to compute the
Modal Assurance Criterion (MAC) for each eigenvector pair of their eigenbases. However,
we prefer to quantify directly the similarity between the two spaces instead of studying each
vector of the bases. This is motivated by the fact that the same modal space can be spanned
by different eigenbases if at least one eigenvalue is repeated. To achieve that, we use the space
similarity indicator proposed by Campanile et al. [17]. For a reference orthogonal eigenbasis
Ψ and an orthogonal eigenbasis Θ, the modal space similarity indicator 𝜁 between the modal
spaces span(Ψ) and span(Θ) is

𝜁 := | cos 𝛿| = min
a

max
b
|(Θb)

⊺
Ψa| = |(Θb⋆)

⊺
Ψa⋆|, (14)

where Ψa⋆ ∈ span(Ψ) is the direction of the reference modal space which has the worst
approximation Θb⋆ ∈ span(Θ) at the irreducible angle 𝛿. Using the Lagrange multpliers
method, the indicator is efficiently computed as{︃

Ψ
⊺
ΘΘ

⊺
Ψ

[︁
φ(1) · · · φ(𝑚)

]︁
=

[︁
φ(1) · · · φ(𝑚)

]︁
diag(𝜆(1), ..., 𝜆(𝑚))

𝜁 =
√︀
𝜆(1).

(15)

5.4 Results

The meshes from figures 1d and 1e are not studied with the explicit Schur approach due
to unreasonable computational costs. Considering the explicit Schur results as reference, table
1 demonstrates that both the spectrums and modal spaces computed with the implicit Schur
approach are accurate.
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Table 1: Implicit/explicit Schur accuracy for 48 modes.

full problem size 𝑛 max eigenfrequency deviation (%) modal space similarity 𝜁 (%)
4693 0.310 99.996
17 041 0.286 99.998
37 093 0.270 99.998

Regarding scalability, the figure 3 shows far better scalability in execution time for the
implicit Schur approach. Here, the explicit Schur appproach scales in 𝑛2.9 while the implicit
Schur scales in 𝑛1.8. Despite not accounting for the Schur complement cost in the explicit Schur
approach, the implicit Schur approach is faster at all problem sizes. As expected of a dense
approach, the figure 4 shows poor scalability in memory usage for the explicit Schur approach.
Here, the explicit Schur memory usage is quadratic while the implicit Schur is linear. Varying
the number of threads leads to similar trends.

These results demonstrate that the explicit Schur approach is unsuitable for large models.
The good scalability observed with the implicit Schur approach is promising and very large scale
problems should be reachable with distributed memory parallelism which is often implemented
for Krylov-based sparse eigensolvers.
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Figure 3: Time to extract 48 modes in
SMP24.
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Figure 4: Memory usage to extract 48 modes
in SMP24.

Using the MAC, we observe that all the explicit and implicit Schur eigenvectors are similar
except for the modes 25, 26, 35 and 36 as described by table 2. Because the modal spaces are
similar as shown in table 1, this should be caused by mode multiplicity and not by error on the
modal results. The gaps between the eigenvalues of the pairs (𝜆(25), 𝜆(26)) and (𝜆(35), 𝜆(36)) are
less than 1%, which is inconsistent with the modal density of the rest of the spectrum. This
suggests that 𝜆(25) = 𝜆(26) and 𝜆(35) = 𝜆(36) are repeated eigenvalue pairs. However, comparing
visually the eigenvector 35 figure 5a and eigenvector 36 figure 5b shows no obvious symmetry
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typical of repeated modes.

∀(𝛾, 𝜇) ∈ R2, max
(𝛼,𝛽)∈R2

MAC(𝛾ψ(I) + 𝜇ψ(II), 𝛼θ(I) + 𝛽θ(II)) > 99.9%. (16)

By numerical validation of the relation (16) between the explicit Schur (ψ(I), ψ(II)) and
implicit Schur (θ(I), θ(II)) eigenvector pairs, we observe that the modes (25, 26) and (35, 36)
are in fact repeated modes. The eigenspaces 𝐸𝜆(25)=𝜆(26)

and 𝐸𝜆(35)=𝜆(36)
from the explicit and

implicit Schur approaches are similar as predicted by the modal space indicator. This shows
the advantage of the modal space indicator instead of relying directly on the MAC of the
eigenvectors even when no trivial symmetry of the model is identified. The multiplicities
observed are probably caused by symmetries in the underlying electric subproblem before static
condensation.

Table 2: Low similarity of some eigenvectors for the mesh of figure 1c.

mode number 25 26 35 36
MAC (%) 99.626 99.569 98.573 98.088

(a) Explicit Schur eigenvector 35. (b) Explicit Schur eigenvector 36.

(c) Implicit Schur eigenvector 35. (d) Implicit Schur eigenvector 36.

Figure 5: Displacement magnitude of eigenvectors 35 and 36 from the implicit and explicit
Schur approaches for the mesh of figure 1c.
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6 CONCLUSIONS

This study shows that superelements of large piezoelectric models cannot be generated
after electric static condensation using the straightforward explicit Schur complement. We
generalized the work of Hu et al. [1] to propose an implicit Schur complement approach. For
realistic numerical tests, the proposed implicit Schur approach demonstrates its accuracy as
well as good scalability for the computation of normal modes. This enables superelement
generation after electric static condensation for large conservative piezoelectric models using
the well-understood substructuring methods. The implicit Schur approach uses existing
Krylov-based eigensolvers and is minimally intrusive for matrix-free eigensolvers. To
generate piezoelectric superelements of very large models, a distributed memory parallelism
implementation of the implicit Schur approach is required. This implementation is possible
because only common linear algebra operations are used.

Only conservative piezoelectricity is considered in this study, however the application of
the implicit Schur approach to other multiphysics superelements is investigated. Moreover,
differential-algebraic problems unrelated to multiphysics may benefit from the implicit Schur
approach. To go further, a wide range of transformations instead of a simple static condensation
can also be tested by capitalizing on the developed implicit strategy.
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