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ABSTRACT

The aim of this work is to examine the rich dynamics of quadratic and
quartic nonlinear diffusion-reaction (DR) equations with a nonlinear
convective flux term. These equations are crucial for simulating a variety
of biological and physical processes, such as the dynamics of species
populations. The main goal is to use the modified extended simple equa-
tion method (mESEM), a generalization of the standard simple equation
method that hasn’t been used in this situation before, to extend the
analytical treatment of such equations. We obtain a variety of new exact
solutions using this method, such as breathers, kink and anti-kink waves,
multi-peak solitons, bright-dark solitons, periodic waves, and waveforms
represented by hyperbolic, trigonometric, and rational functions. Ana-
lyzing the stability and physical relevance of these solutions is another
major goal of this work. Modulational instability analysis verifies the
robustness of the obtained waveforms, while bifurcation analysis reveals
qualitative changes in system behavior under parameter variations. The
various wave structures and their dynamical characteristics are further
highlighted with graphic illustrations. In general, the study highlights the
potential of mESEM to reveal rich wave phenomena with applications
spanning fluid dynamics, plasma physics, chemical reaction processes,
population biology, neuroscience, and optical fiber communication, in
addition to showcasing its effectiveness and versatility in solving nonlinear
DR equations.
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1 Introduction

Nonlinear wave equations hold considerable importance across various disciplines in both pure
and applied sciences, such as solid-state physics, fluid dynamics, plasma physics, population modeling,
chemical reactions, nonlinear optics, and the transmission of fluxons in Josephson junctions, among
others [1–4]. In scientific investigations, complex systems are typically described using mathematical
models, which are frequently nonlinear in nature [5–8]. Determining precise analytical solutions to
these nonlinear models is a crucial next step that helps researchers better comprehend, regulate, and
measure the fundamental behaviors of the systems [9–12].

In recent decades, significant advancements have been achieved in developing a wide range of
effective techniques for finding exact analytical solutions to nonlinear evolution equations (NLEEs)
[13,14]. To derive exact results of NLEEs, a variety of analytical schemes have been proposed and
documented in the literature [15–17]. The Kudryashov approaches [18], the homogeneous balance
scheme [19], the tanh-coth method [20], quasi-linear and monotone iterative techniques [21] and the
auxiliary equation method [22] are a few of these. Other noteworthy techniques include the extended
(G′/G)-expansion method [23], the variational scheme [24], the unified approach [25] and other
techniques in [26,27]. Furthermore, the bilinear neural network scheme [28], the enhanced expansion
technique [29], the Reduced differential transform technique [30], and the Jacobian elliptic function
method [31] have also been investigated by researchers. The enhanced Adomian decomposition
method [32], the homotopy analysis method [33], the Painlevé analysis method [34], and a number of
others [35,36] are examples of additional advancements in the construction of approximate solutions.
The SEM is a relatively new and improved technique for effectively solving nonlinear wave equations
[37]. Since then, many researchers have embraced this approach to investigate a variety of nonlinear
phenomena [38]. Moreover, researchers have also investigated other related techniques [39–42].

Although reaction-diffusion systems are naturally found in chemistry, they are also frequently
used to characterize dynamical processes that are not chemical in nature. Applications can be found in
ecology, physics, geology, biology, and sociology. These systems are usually represented mathematically
as semi-linear parabolic partial differential equations, which model different spatial and spatiotempo-
ral patterns in domains like morphogenesis, chemical reactions, predator-prey interactions, ecological
systems, nerve fiber dynamics, and flame propagation [43,44]. The DR model in its most basic form
[45] is provided by

Vt = rV
(

1 − V
κ

)
+ DVxx, (1)

where D is the diffusion coefficient, κ is the environment’s carrying capacity, and r is the linear growth
rate. With the addition of linear diffusion for population dispersal, this equation is a logical progression

of the logistic growth model. By changing the parameters to r = α and
r
κ

= β, above equation

reduces to

Vt = DVxx + αV − β2V . (2)

We will go into more detail about the mathematical and physical aspects of this equation in the
next section because of its broad applicability in natural phenomena. Whether a linear or nonlinear
form of the equation is appropriate depends on the particular phenomenon being studied in one or
more dimensions.

This study focuses on nonlinear diffusion-reaction (DR) equations, which are commonly used
to model phenomena in physical, chemical, and biological systems. DR equations are the generalized
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form of Eq. (2). Over time, many simplified forms of these nonlinear DR equations have been explored.
For instance, Triki et al. [46] analyzed three versions of nonlinear DR equations featuring both
derivative-based and algebraic non-linearities, along with long and short range diffusion components
in inhomogeneous environments, employing the auxiliary scheme. The researchers in [47] derived
various types of solutions such as periodic, double-kink, bell-shaped, and anti-kink for the cubic-
quintic nonlinear DR equation having with coefficients of variable convection. In a more recent work
[48], the authors investigated a specific case of the DR equation where the diffusion coefficient D was
assumed to be independent of concentration or density. However, in many real-world scenarios, such
as models describing insect movement or the dispersal of small rodents, the diffusion coefficient D
becomes dependent on population density [2,49]. In such cases, an increase in species concentration
leads to a corresponding rise in the diffusion rate.

Bifurcation analysis [50,51] in the context of reaction-diffusion equations is a powerful mathemat-
ical tool used to investigate how the qualitative behavior of solutions changes as system parameters
vary. This analysis helps identify critical points at which a small change in a parameter can lead to a
sudden shift in the system’s dynamics, such as the emergence of new steady states or periodic solutions.
In reaction-diffusion systems, bifurcation phenomena often explain the formation of spatial patterns
or temporal oscillations observed in biological, chemical, or ecological processes. Techniques such as
linear stability analysis and numerical continuation are commonly employed to trace these bifurcations
and understand the transitions between different dynamical regimes [52].

This study aims to improve the precision of soliton solutions for nonlinear DR equations by
utilizing a novel extended technique. The method, known as the modified extended Simple Equation
Method (mESEM), is relatively new and has not yet been applied to DR equations that incorporate
nonlinear convective flux terms. Nevertheless, mESEM has proven to be reliability and efficient in
resolving a variety of nonlinear wave equations in disciplines like applied mathematics, physics, and
engineering. Rouge waves, complex solitary waves, singular waves, kink and anti-kink profiles, and
periodic-singular solutions are among the wave structures that are revealed by this method. Fur-
thermore, rational solutions emerge naturally throughout the analytical procedure. While modulation
instability analysis is used to evaluate the model’s stability, bifurcation analysis is used to investigate the
qualitative behavior of the DR equations in order to better understand their dynamics. The outcomes
obtained from this research have potential applications in diverse scientific and engineering domains
such as chemical kinetics, population dynamics, biological pattern formation, heat and mass transfer,
and fluid mechanics.

The structure of this article is organized as follows: Section 2 offers an overview of the mESEM,
which is employed to obtain traveling wave results for NLEEs. Section 3 introduces the governing
mathematical models. In Section 4, the DR equations with quadratic and cubic nonlinear terms
are solved using the proposed approach. Section 5 is dedicated to the bifurcation analysis, whereas
Section 6 examines the stability characteristics of the models. A detailed analysis and discussion of the
obtained results are presented in Section 7. Lastly, Section 8 provides a summary of the main findings.

2 Methodology

In this part, we describe the mESEM to find exact solutions nonlinear evolution equations.
Considering the higher order NLEE below:

P (V ,Vt,Vx,Vtt,Vtx,Vxx, ...) = 0, (3)
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where P denotes a polynomial in V(x, t) and its partial derivatives with respect to x and t. The key
stages of this method are as

Step-I: Considering the traveling wave transformation

V(x, t) = F(ξ), ξ = kx − νt, (4)

where k and ν are wave number and frequency of waves. This transformation converts Eq. (3) into a
nonlinear ODE represented as follows:

H
(
F , −νF ′, kF ′, ν2F ′′, −kνF ′′, k2F ′′, ...

) = 0. (5)

Step-II: Assuming that the solution to Eq. (5) takes the following form:

F(ξ) =
M∑

i=−M

AiΦ
i(ξ), (6)

here Ai are arbitrary constants and M is a positive integer determined by applying the balancing
principle to Eq. (5), and Φ(ξ) adheres to the structure of the newly introduced ansatz equation

Φ ′(ξ) = b0 + b1Φ + b2Φ
2, (7)

where the arbitrary constants are b0, b1 and b2.

Step-III: Merging Eqs. (6) and (7) into Eq. (5) and setting the coefficients of powers of Φ i to zero,
yields an algebraic system of equations with parameters Ai, b0, b1, b2, k and ν. Mathematica solves the
algebraic system and the values of the parameters to be determined.

Step-IV: By replacing the values of the parameters obtained in Stage 3rd and Φ(ξ) into Eq. (7),
one can derive the solution to Eq. (3).

3 Governing Models

The nonlinear DR equations [10,53] include a convective flux term with quadratic and quartic
non-linearities, given as follows:

Vt + αVVx = DVxx + βV − γV 2, (8)

Vt + αV 2Vx = DVxx + βV − γV 4, (9)

where α, β and γ are physical parameters to be identified, D denotes the diffusion coefficient, and
V(x, t) varies in meaning depending on the specific phenomenon being studied. Each parameter’s
efficiency [10,54] can be summed up as follows: greater α reinforces nonlinear convection, resulting
in sharper and more asymmetric wave profiles; larger D improves diffusion, smoothing gradients
and lowering peak values. The saturation γ regulates nonlinear damping, whereas the growth rate β

amplifies the solution and raises the equilibrium level. While the steady state for the quartic reaction
βV − γV 4 has V∗ = (β/γ )1/3, indicating less sensitivity to parameter changes, the steady state for the
quadratic reaction βV−γV 2 is V∗ = β/γ . In these equations, quadratic nonlinearities are associated to
reaction-diffusion biology [2], while quartic terms arise in nonlinear transport and chemical kinetics
[48,49]. These equations also model transport processes in which both diffusion and convection play
significant roles, assuming that nonlinear diffusion behaves similarly to nonlinear convection. By
employing the transformation V(x, t) = F(ξ), ξ = kx − νt (given in Eq.(4)) on Eqs. (8) and (9),
we obtain the ODEs in following form as
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Dk2F ′′ + (ν − αkF)F ′ + βF − γF 2 = 0. (10)

Dk2F ′′ + (
ν − αkF 2

)
F ′ + βF − γF 4 = 0. (11)

4 Mathematical Formulation of Results

In this section, we construct the solitons and other wave outcomes of Eqs. (10) and (11) using
modified extended simple equation mathematical technique.

4.1 Quadratic Dynamical Model
By employing the balance principle on Eq. (10), obtain N = 2. Thus, the solution of Eq. (10) is

the form as

F(ξ) = A−2

Φ2
+ A−1

Φ
+ A0 + A1Φ + A2Φ

2. (12)

By substituting Eq. (12) and Eq. (7) into Eq. (10) and setting the coefficients of Φ i to zero, obtain
a system of algebraic equations involving Ai, b0, b1, b2, k, α, β, γ and ν. Solving these equations yields
the following cases as:

Case-I: As shown in Fig. 1. If b1 = 0

A−2 = 0, A−1 = αβ2

8b2γ 2dk
, A0 = β

2γ
, A1 = 0, A2 = 0, b0 = − α2β2

16b2γ 2d2k2
, ν = k

(
α2β + 4γ 2d

)
2αγ

. (13)

A−2 = 0, A−1 = 0, A0 = β

2γ
, A1 = 2b2dk

α
, A2 = 0, b0 = − α2β2

16b2γ 2d2k2
, ν = k

(
αβ

2γ
+ 2γ d

α

)
. (14)

A−2 = 0, A−1 = αβ2

32b2γ 2dk
, A0 = β

2γ
, A1 = 2b2dk

α
, A2 = 0, b0 = − α2β2

64b2γ 2d2k2
,

ν = k
(

αβ

2γ
+ 2γ d

α

)
. (15)

By substituting the solution sets (13), (14) and (15), together with the solution of Eq. (7) into
Eq. (12), the wave solutions of Eq. (8) can be obtained in the form as

V 1
1,1 (x, t) = β

8γ 2

(
αβ cot

(√
b0b2(ξ + ξ0)

)
√

b0b2dk
+ 4γ

)
, b0b2 > 0. (16)

V 1
1,2(x, t) = β

8γ 2

⎛
⎜⎜⎝4γ −

αβ coth
(√−b0b2ξ + ρ log(ξ0)

2

)
√−b0b2dk

⎞
⎟⎟⎠ , ξ0 > 0, ρ = ±1, b0b2 < 0. (17)

V 1
1,3(x, t) = β

2γ
+ 2

√
b0b2dk tan

(√
b0b2(ξ + xi0)

)
α

, b0b2 > 0. (18)

V 1
1,4(x, t) = β

2γ
−

2
√−b0b2dk tanh

(√−b0b2ξ + ρ log(ξ0)

2

)
α

, ξ0 > 0, ρ = ±1, b0b2 < 0. (19)
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V 1
1,5(x, t) = tan

(√
b0b2(ξ + ξ0)

) (
αβ cot

(√
b0b2(ξ + ξ0)

) + 8
√

b0b2γ dk
)2

32α
√

b0b2γ 2dk
, b0b2 > 0. (20)

V 1
1,6(x, t) = − tanh

(√−b0b2ξ + ρ log(ξ0)

2

) (
αβ coth

(√−b0b2ξ + ρ log(ξ0)

2

) − 8
√−b0b2γ dk

)2

32α
√−b0b2γ 2dk

,

ξ0 > 0, ρ = ±1, b0b2 < 0. (21)

Figure 1: The solutions (16) and (17) are depicted using appropriately chosen parameters as follows:
(a) shows a singular breather types solitary waves having diverse amplitude with CP and its 2D
representation in (c), (b) depicts a combine bright-dark multi-peak solitary waves with CP, and its
2D representation is provided in (d), respectively
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Case-II: As shown in Figs. 2 and 3. If we take b0 = 0

A−2 = 0, A0 = A−1b2

b1

+ β

γ
, A1 = 0, A2 = 0, k = γ

αb1

, ν = γ 2d
α2b1

. (22)

A−2 = 0, A−1 = 0, A0 = β

γ
, A1 = βb2

b1γ
, A2 = 0, k = αβ

2b1γ d
, ν = β

(
α2β + 4γ 2d

)
4b1γ 2d

. (23)

A−2 = A−1b1

2b2

, A0 = A−1b2

2b1

, A1 = 0, A2 = 0, k = γ

2αb1

, ν = α2β + γ 2d
2α2b1

. (24)

A−2 = 0, A−1 = 0, A0 = 0, A1 = −βb2

b1γ
, A2 = 0, k = − αβ

2b1γ d
, ν = −β

(
α2β + 4γ 2d

)
4b1γ 2d

. (25)

A−2 = 0, A0 = A−1b2

b1

, A1 = 0, A2 = 0, k = γ

αb1

, ν = α2β + γ 2d
α2b1

. (26)

A−2 = A−1b1

2b2

, A0 = A−1b2

2b1

+ β

γ
, A1 = 0, A2 = 0, k = γ

2αb1

, ν = γ 2d
2α2b1

. (27)

By substituting the solution sets (22), (23) and (24), together with the solution of Eq. (7) into
Eq. (12), the solitary wave results of Eq. (8) can be obtained in the form as

V 1
2,1(x, t) = β

γ
+ A−1e−b1(ξ+ξ0)

b1

, b1 > 0. (28)

V 1
2,2(x, t) = β

γ
− A−1e−b1(ξ+ξ0)

b1

, b1 < 0. (29)

V 1
2,3(x, t) = β

γ − b2γ eb1(ξ+ξ0)
, b1 > 0. (30)

V 1
2,4(x, t) = β

b2γ eb1(ξ+ξ0) + γ
, b1 < 0. (31)

V 1
2,5(x, t) = A−1e−2b1(ξ+ξ0)

2b1b2

, b1 > 0. (32)

V 1
2,6(x, t) = A−1

(
b2

2b1

+ e−2b1(ξ+ξ0) − b2
2

2b1b2

)
, b1 < 0. (33)

One can construct more results in more generalized form of Eq. (8) from solution sets (25), (26)
and (27).
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Figure 2: The solutions (18) and (19) are depicted by assigning suitable parameter values as follows: (a)
shows periodic multi-peak solitary waves having diverse amplitudes with CP and its 2D representation
in (c), (b) depicts a Kink Soliton with CP, and its 2D representation is provided in (d), respectively
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Figure 3: The solutions (20) and (28) are depicted using appropriately chosen parameters as follows:
(a) shows periodic breathers type solitary waves having diverse amplitudes with CP and its 2D
representation in (c), (b) depicts solitary wave with CP, and its 2D representation is provided in (d),
respectively

Case-III: As shown in Fig. 4.

A−2 = 0, A−1 = 0, A1 = 2b2dk
α

, A−2 = 0, β = 2γ

(
A0 − b1dk

α

)
, b0 = αA0 (2b1dk − αA0)

4b2d2k2
,

ν = k
(

αA0 − b1dk + 2γ d
α

)
. (34)
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A−2 = 0, A−1 = −2b0dk
α

, A1 = 0, A2 = 0, β = 2γ (αA0 + b1dk)

α
, b2 = −αA0 (αA0 + 2b1dk)

4b0d2k2
,

ν = k
(

αA0 + b1dk + 2γ d
α

)
. (35)

A−2 = 0, A−1 = 0, A0 = β

2γ

(
b1√

b2
1 − 4b0b2

+ 1

)
, A1 = βb2√

b2
1 − 4b0b2γ

, A2 = 0,

k = αβ

2
√

b2
1 − 4b0b2γ d

, ν = β
(
α2β + 4γ 2d

)
4
√

b2
1 − 4b0b2γ 2d

. (36)

A−2 = 0, A−1 = − βb0√
b2

1 − 4b0b2γ
, A0 = 1

2γ

(
β − βb1√

b2
1 − 4b0b2

)
, A1 = 0, A2 = 0,

k = αβ

2
√

b2
1 − 4b0b2γ d

, ν = β
(
α2β + 4γ 2d

)
4
√

b2
1 − 4b0b2γ 2d

. (37)

Figure 4: The solutions (30) and (31) are defined using appropriately chosen parameters as follows:
(a) shows a anti-Kink soliton with CP and its 2D representation in (c), and (b) shows a combine bright
dark solitary wave with CP and its 2D representation in (d), respectively
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By substituting the solution set (34), together with the solution of Eq. (7) into Eq. (12), the wave
solutions of Eq. (8) can be obtained in the form as

V 1
3,1(x, t) = A0 + dk

α

(√
4b0b2 − b2

1 tan

(√
4b0b2 − b2

1

2
(ξ + ξ0)

)
− b1

)
, 4b0b2 > b2

1, b1 > 0. (38)

V 1
3,2(x, t) = A0 +

dk
(√

4b0b2 − b2
1 tan

(√
4b0b2−b2

1
2

(ξ + χ)

)
+ b1

)
α

, 4b0b2 > b2
1, b1 < 0. (39)

One can construct more results in more generalized form of Eq. (8) from solution sets (35), (36)
and (37).

4.2 Quartic Dynamical Model
By employing the balance principle on Eq. (11), obtain N = 1. Thus, the solution of Eq. (11) is

the form as

F(ξ) = A−1

Φ(ξ)
+ A0 + A1Φ(ξ). (40)

By substituting Eq. (40) and Eq. (7) into Eq. (11) and setting the coefficients of Φ i to zero, obtain
a system of algebraic equations involving A−1, A0, A1, b0, b1, b2, k, α, β, γ and ν. Solving these equations
yields the following cases as:

Case-I: As shown in Fig. 5. If b1 = 0

A0 = γ d
α2

, A1 = 0, β = ∓8γ 4d3

α6
, b0 = ±α4A2

−1b2

3γ 2d2
, k = ± 3γ 3d2

α5A−1b2

, ν = ∓ 6γ 5d4

α8A−1b2

. (41)

A−1 = 0, A0 = γ d
α2

, β = ±8γ 4d3

α6
, b0 = ∓b2γ

2d2

α4A2
1

, k = −A1γ

αb2

, ν = 6A1γ
3d2

α4b2

. (42)

A−1 = ± 3γ 3d2

4α5b2k
, A0 = γ d

α2
, A1 = −αb2k

γ
, β = ∓8γ 4d3

α6
, b0 ± 3γ 4d2

4α6b2k2
, ν = −2γ 2d2k

α3
. (43)

By substituting the solution sets (41), (42) and (43), together with the solution of Eq. (7) into
Eq. (40), the wave solutions of Eq. (9) can be obtained in the form as

V 2
1,1 (x, t) = γ d

α2
+ A−1b2 cot

(√
b0b2(ξ + ξ0)

)
√

b0b2

, b0b2 > 0. (44)

V 2
1,2(x, t) =

A−1

√−b0b2 coth
(√−b0b2ξ + ρ log(ξ0)

2

)
b0

+ γ d
α2

, ξ0 > 0, ρ = ±1, b0b2 < 0. (45)

V 2
1,3(x, t) = dγ

α2
+ A1b0 tan

(√
b0b2(ξ + ξ0)

)
√

b0b2

, b0b2 > 0. (46)

V 2
1,4(x, t) = γ d

α2
+

A1b0 tanh
(√−b0b2ξ + ρ log(ξ0)

2

)
√−b0b2

, ξ0 > 0, ρ = ±1, b0b2 < 0. (47)
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Figure 5: The solutions (44) and (45) are depicted by assigning suitable parameter values as follows: (a)
shows a breather types solitary waves having diverse amplitude with CP and its 2D representation in
(c), (b) depicts a breather type multi-peak solitary waves with CP, and its 2D representation is provided
in (d), respectively

Similarly, one can construct more results in more generalized form of Eq. (9) from solution
set (43).

Case-II: As shown in Figs. 6 and 7. If we take b0 = 0

A−1 = 0, A0 = 0, A1 = −2b2γ d
α2b1

, β = 8γ 4d3

α6
, k = 2γ 2d

α3b1

, ν = −12γ 4d3

α6b1

. (48)

A−1 = 0, A0 = 2γ d
α2

, A1 = 2b2γ d
α2b1

, β = 8γ 4d3

α6
, k = −2γ 2d

α3b1

, ν = 12γ 4d3

α6b1

. (49)
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Figure 6: The solutions (46) and (47) are depicted by assigning suitable parameter values as follows:
(a) shows periodic solitary waves having diverse amplitudes with CP and its 2D representation in (c),
(b) depicts a Kink Soliton with CP, and its 2D representation is provided in (d), respectively
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Figure 7: The solutions (50) and (51) are defined using appropriately chosen parameters as follows: (a)
shows a singular combine dark-bright solitary wave with CP and its 2D representation in (c), and (b)
shows a anti-Kink solitary wave with CP and its 2D representation in (d), respectively

By substituting the solution sets (48) and (49), together with the solution of Eq. (7) into Eq. (40),
the solitary wave results of Eq. (9) can be obtained in the form as

V 2
2,1(x, t) = 2b2γ deb1(ξ+ξ0)

α2 (b2eb1(ξ+ξ0) − 1)
, b1 > 0. (50)

V 2
2,2(x, t) = 2b2γ deb1(ξ+ξ0)

α2 (b2eb1(ξ+ξ0) + 1)
, b1 < 0. (51)

V 2
2,3(x, t) = − 2γ d

α2 (b2eb1(ξ+ξ0) − 1)
, b1 > 0. (52)

V 2
2,4(x, t) = 2γ d

α2 (b2eb1(ξ+ξ0) + 1)
, b1 < 0. (53)
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Case-III:

A−1 = 0, A0 = γ d
α2

(
1 +

√
3b1√

4b0b2 − b2
1

)
, A1 = 2

√
3b2γ d

α2
√

4b0b2 − b2
1

, β = −8γ 4d3

α6
,

k = − 2
√

3γ 2d

α3
√

4b0b2 − b2
1

, ν = 4
√

3γ 4d3

α6
√

4b0b2 − b2
1

. (54)

A−1 = 2
√

3b0γ d

α2
√

4b0b2 − b2
1

, A0 = γ d
α2

(
1 +

√
3b1√

4b0b2 − b2
1

)
, A1 = 0, β = −8γ 4d3

α6
,

k = 2
√

3γ 2d

α3
√

4b0b2 − b2
1

, ν = − 4
√

3γ 4d3

α6
√

4b0b2 − b2
1

. (55)

A−1 = 0, A0 = γ d
α2

(
1 −

√
3b1√

4b0b2 − b2
1

)
, A1 = − 2

√
3b2γ d

α2
√

4b0b2 − b2
1

, β = −8γ 4d3

α6
,

k = 2
√

3γ 2d

α3
√

4b0b2 − b2
1

, ν = − 4
√

3γ 4d3

α6
√

4b0b2 − b2
1

. (56)

A−1 = − 2
√

3b0γ d

α2
√

4b0b2 − b2
1

, A0 = γ d
α2

(
1 −

√
3b1√

4b0b2 − b2
1

)
, A1 = 0, β = −8γ 4d3

α6
,

k = − 2
√

3γ 2d

α3
√

4b0b2 − b2
1

, ν = 4
√

3γ 4d3

α6
√

4b0b2 − b2
1

. (57)

By substituting the solution sets (54) and (55), together with the solution of Eq. (7) into Eq. (40),
the wave solutions of Eq. (9) can be obtained in the form as

V 2
3,1(x, t) = γ d

α2

(
1 + √

3 tan

(√
4b0b2 − b2

1

2
(ξ + ξ0)

)
+ 1

)
, 4b0b2 > b2

1, b1 > 0. (58)

V 2
3,2(x, t) = γ d

α2

(
1 + 2

√
3b1√

4b0b2 − b2
1

+ √
3 tan

(√
4b0b2 − b2

1

2
(ξ + ξ0)

))
, 4b0b2 > b2

1, b1 < 0. (59)

V 2
3,3(x, t) = γ d

α2

⎛
⎜⎜⎝1 +

√
3b1√

4b0b2 − b2
1

− 4
√

3b0b2√
4b0b2 − b2

1

(
b1 − √

4b0b2 − b2
1 tan

(√
4b0b2−b2

1
2

(ξ + ξ0)

))
⎞
⎟⎟⎠ ,

4b0b2 > b2
1, b1 > 0.

(60)

V 2
3,4(x, t) = γ d

α2

⎛
⎝1 +

√
3b1√

4b0b2 − b2
1

+ 4
√

3b0b2√
4b0b2 − b2

1

(√
4b0b2 − b2

1 tan
(

1
2

√
4b0b2 − b2

1(ξ + χ)
)

+ b1

)
⎞
⎠ ,

4b0b2 > b2
1, b1 < 0.

(61)
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One can construct more results in more generalized form of Eq. (9) from solution sets (56)
and (57).

5 Bifurcation Analysis

The bifurcation analysis of the nonlinear DR equations is examined in this section. The study of
bifurcation theory looks at how minor adjustments to system parameters can result in significant shifts
in how solutions behave. We find critical points where the dynamics of the system change, resulting
in phenomena like the appearance of new equilibrium states or periodic solutions, by methodically
altering important parameters. Our comprehension of the intricate behaviors displayed by nonlinear
DR systems is improved by this analysis, which sheds light on the stability and multiplicity of solutions.

5.1 Quadratic Dynamical Model
Through the Galilean transformation on Eq. (10), the equation can be rewritten as the following

planer dynamical system:

F ′ = R,

R′ = aF 2 − bF + cFR − eR. (62)

where a = γ

Dk2 , b = β

Dk2 , c = α

Dk
and e = ν

Dk2 . Next, we will discuss the bifurcations of the phase profiles
in the parameters paces a, b, c and e of system (62). According to the bifurcation theory applied to
two-dimensional nonlinear systems, the nature of the equilibrium point (F , R) depends on the sign of
the Jacobian determinant J(F , R). Here, J(F , R) represents the determinant of the system’s Jacobian
matrix. The system in (62) possesses two equilibrium points: P = (0, 0) and Q = (

b
a
, 0

)
.

Determinant of the Jacobian matrix of the system (62) as

J(F , R) = b − 2aF − cR. (63)

The nature of each equilibrium point is determined by evaluating the Jacobian determinant at that
point. The trace of the Jacobian

τ = cF − e,

is also be important for stability. Now analyze the two points for different values of parameter b.
(Table 1, Figs. 8 and 9)

Table 1: Classification of fixed points and bifurcation type depending on parameter b

Condition Fixed points Type of fixed point
P (0, 0)

Type of fixed point
Q (b/a, 0)

Bifurcation type

b > 0 2 Stable (Spiral/Node) Saddle (Unstable) No bifurcation
b = 0 1 (P and Q coincide) Linearization fails Linearization fails Transcritical

bifurcation
b < 0 2 Saddle (Unstable) Stable (Spiral/Node) No bifurcation
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Figure 8: Phase portraits of system (62) for different values of parameter b

Figure 9: Bifurcation diagram showing equilibrium points as a function of parameter b

Case-I: b > 0

At Point P(0, 0):

• Determinant: J(P) = b > 0.

• Trace: τ(P) = c · 0 − e = −e. If we assume small or positive damping (e ≥ 0), the trace is ≤ 0.

• Conclusion: Since J > 0 and τ ≤ 0, P is a stable equilibrium. It is a stable spiral if τ 2 < 4J, or
a stable node if τ 2 > 4J. If e = 0, it is a center.

At Point Q
(

b
a
, 0

)
:

• Determinant: J(Q) = −b < 0.

• Conclusion: Since J < 0, Q is a saddle point, which is always unstable.
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Case-II: b < 0

At Point P(0, 0):

• Determinant: J(P) = b < 0.

• Conclusion: Since J < 0, P is a saddle point and is unstable.

At Point Q
(

b
a
, 0

)
:

• Note: Since b < 0, b
a

must be positive for Q to be physically relevant (assuming a > 0). This
requires a < 0. Let’s assume a > 0, making Q a non-physical point in this parameter region. The
analysis would need to be adjusted if a can change sign. For the standard case (a > 0, b < 0),
Point Q does not exist in the real plane.

Case-III: b = 00 (Bifurcation Point)

At Point P(0, 0):

• Determinant: J(P) = 0.

• The linearization fails. This is a non-hyperbolic point, indicating a potential bifurcation.

• The system undergoes a transcritical bifurcation at b = 0. In this bifurcation, the stability of
the two fixed points P and Q is exchanged as parameter b passes through zero.

5.2 Quartic Dynamical Model
Through the Galilean transformation in Eq. (11), the equation can be rewritten as the following

planer dynamical system:

F ′ = R,

R′ = aF 4 − bF + cF 2R − eR. (64)

where a = γ

Dk2 , b = β

Dk2 , c = α

Dk
and e = ν

Dk2 . Next, we will discuss the bifurcations of the phase profiles
in the parameters paces a, b, c and e of system (64). The system in (64) possesses two equilibrium points:

P1 = (0, 0) and Q1 =
((

b
a

) 1
3 , 0

)
.

Determinant of the Jacobian matrix of the system (62) as

J(F , R) = b − 4aF 3 − 2cFR. (65)

At the equilibrium points (where R = 0), the determinant simplifies to:

J(F , 0) = −(4aF 3 − b).

Now, analyze the stability for different parameter regimes (Table 2 and Figs. 10 and 11):

Case-I: For b > 0,

• Point P (0,0): J(0, 0) = b > 0 – Stable center

• Point Q
(

3
√

b
a
, 0

)
: J(Q) = −(4b − b) = −3b < 0 – Unstable saddle point

Case-II: b < 0,

• Point P (0,0): J(0, 0) = b < 0 – Unstable saddle point

• Point Q
(

3
√

b
a
, 0

)
: J(Q) = −3b > 0 – Stable center

https://www.scipedia.com/public/Arshad_et_al_2026 18

https://www.scipedia.com/public/Arshad_et_al_2026


M. Arshad, A. Bashir, K. Hosseini, M. Farman, A. Sambas

Bifurcation analysis and dynamical investigation of nonlinear diffusion-reaction equations

with nonlinear convective flux term: stability and applications,

Rev. int. métodos numér. cálc. diseño ing. (2026). Vol.42, (1), 14

Case-III: b = 00,

• Point P (0,0): J(0, 0) = 0 – Degenerate case (linearization fails)

• The system undergoes a pitchfork bifurcation at b = 0

Table 2: Stability and bifurcation analysis of the quartic dynamical system

Condition Fixed points Type of point P (0, 0) Type of point Q (
√

b/a, 0) Bifurcation type

b > 0 2 Center (stable) Saddle (unstable) No bifurcation
b = 0 1 Degenerate N/A Pitchfork

bifurcation
b < 0 2 Saddle (unstable) Center (stable) No bifurcation

Figure 10: Phase portraits of system (64) for different values of parameter b
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Figure 11: Bifurcation diagram showing equilibrium points as a function of parameter b

6 Modulational Instability Analysis

Modulational Instability (MI) Analysis is a fundamental technique used in nonlinear wave theory,
especially in optics, fluid dynamics and Bose-Einstein condensates. It describes the process where
a uniform (or plane wave) solution of a nonlinear dispersive equation becomes unstable under the
influence of small perturbations, leading to the growth of modulated waveforms often resulting
in localized structures like solitons or rogue waves. For diffusion-reaction equations, MI can arise
when the system exhibits certain nonlinearities, such as in reaction-diffusion systems that describe
the spatiotemporal evolution of concentrations of chemical species. Using a standard linear stability
analysis [1,52], we develop the analysis of MI for the dynamical models (8) and (9).

6.1 Quadratic Dynamical Model
The steady-state solution (S-SS) of dynamical model (8) takes the form as

V(x, t) =
(√

S + Ψ (x, t)
)

e�(t), �(t) = Sλεt, (66)

here, S denotes the normalized optical power. To ensure that Ψ <<
√

S, a small perturbation Ψ (x, t)
is incorporated. Substituting Eq. (66) into Eq. (8) and performing a linearization yields as

∂Ψ

∂t
− D

∂2Ψ

∂x2
+ (Sλε − β) Ψ = 0. (67)

Considering the solution of Eq. (67) has as

Ψ (x, t) = ηeσx−ωt, (68)

where σ and ω are the wave numbers and frequency of Ψ , respectively. When Eq. (68) is substituting
Eqs. (68) into (67), the relation is obtained as

ω = λSε − β − Dσ 2. (69)
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The dispersion relation in (69) show that the wave number, self-phase modulation, and Stimulated
Raman scattering influences the stability of the steady-state condition. For all σ , the ω in (69) remains
real, indicating that the steady state is stable under small perturbations (Fig. 12).

Figure 12: The relations in (69) and (73) are shown in (a) and (b), respectively

6.2 Quartic Dynamical Model
The S-SS of dynamical model (9) takes the form as

V(x, t) =
(√

R + �(x, t)
)

e�(t), �(t) = Rλεt, (70)

here, R denotes the normalized optical power. To ensure that � <<
√

R, a small perturbation �(x, t)
is incorporated. Substituting Eq. (70) into Eq. (9) and performing a linearization yields as

∂�

∂t
− D

∂2�

∂x2
+ (Rλε − β) � = 0. (71)

Considering the solution of Eq. (71) has as

Ψ (x, t) = ηeμx−τ t, (72)

where μ and τ are the wave numbers and frequency of Ψ , respectively. When Eq. (72) is substituting
into Eq. (71), the relation is obtained as

τ = λRε − β − Dμ2. (73)

The dispersion relation in (73) show that the wave number, self-phase modulation, and Stimulated
Raman scattering influences the stability of the steady-state condition. For all μ, the τ in (73) remains
real, indicating that the steady state is stable under small perturbations.

7 Discussion and Physical Interpretation

The dynamics of nonlinear DR systems with quadratic and quartic non-linearities in the presence
of nonlinear convective flux terms are the main focus of the study. These equations interplay of quartic
and quadratic nonlinear terms enriches the solution space by enabling a broad range of waveforms and
transition patterns. Analytical soliton solutions for these equations are obtained using the mESEM.
These kinds of NLEEs are essential for simulating physics, biology, and chemistry phenomena like
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population migration, chemical kinetics, and the formation of biological patterns. This method yields
a large class of exact solitary wave solutions, such as breather-type waves, periodic and rational
solutions, kink and anti-kink solitons, and combined bright-dark solitary structures. These solutions
are relevant to physical and biological phenomena such as species dispersal, chemical transport, and
pattern formation in ecological systems. Through bifurcation and modulational instability analyses,
the study identifies critical parameter thresholds that determine the emergence and stability of
various waveforms. The results show that small variations in diffusion coefficients, reaction rates, or
convective terms can significantly influence the nature, amplitude, and speed of the wave propagation,
offering valuable insight into the qualitative behavior of real-world systems. Our findings offer new
wave structures that are very different from those found in earlier research, and they constitute an
enhanced and more varied version of the current findings. These novel structures demonstrate how
well our method captures intricate dynamical behaviors while also expanding the pool of potential
solutions. Different authors applied traditional methods to construct the wave solutions of these
models for constructing the wave solutions. The authors in [10] applied three analytical methods
namely the (G′/G)-expansion scheme, its generalized version and Kudryashov scheme for constructing
the traveling wave solutions. The researchers in [53] used direct algebraic scheme for obtaining the
solitary wave solutions of these models. In [55], the authors obtained kink and anti-kink wave solutions
of Eq. (8). In [48], the researchers investigated a specific case of the DR equation where the diffusion
coefficient D was assumed to be independent of concentration or density. Hence, the findings of this
work represent original contributions that have not been addressed in prior studies.

The figures illustrate various types of soliton structures derived from the obtained solutions
by selecting appropriate parameter values for the corresponding equations. In Fig. 1, solutions
(16) and (17) are visualized: (a) shows singular breather-type solitary waves with CP and diverse
amplitudes; (b) illustrates combined bright-dark multi-peak solitary waves with CP; (c)–(d) provide
their corresponding 2D views. Fig. 2 shows solutions (18) and (19): (a) depicts periodic multi-peak
solitary waves with CP; (b) presents a kink soliton with CP; with (c)–(d) as their 2D counterparts. In
Fig. 3, solutions (20) and (28) include (a) periodic breather-type waves with CP and (b) a solitary wave
with CP, along with their 2D views in (c) and (d).

Fig. 4 illustrates solutions (30) and (31): (a) shows an anti-kink soliton with CP; (b) displays a
combined bright-dark solitary wave with CP, both with 2D versions in (c)–(d). Figs. 5 and 6 both
visualize solutions (46) and (47): (a) shows periodic solitary waves; (b) shows a kink soliton, with
respective 2D representations. In Fig. 7, solutions (50) and (51) depict: (a) a singular combined dark-
bright soliton; (b) an anti-kink soliton, with 2D plots in (c) and (d). Figs. 8–11 show phase portraits
of systems (62) and (64) for varying parameters. In Fig. 12, the relations given in (69) and (73) are
illustrated in subfigures (a) and (b), respectively.

8 Conclusion

In this paper, the mESEM has been effectively applied to nonlinear diffusion-reaction equations
incorporating both quadratic and quartic non-linearities having non-linear convective flux terms.
These types of equations frequently arise in various physical and biological contexts, such as in
modeling species population dynamics. A wide range of novel travelling and solitary wave solutions is
obtained, including multi-peak breather-type waves, kink and anti-kink structures, as well as solutions
expressed through hyperbolic, trigonometric, and rational functions. These solutions provide rich
insight into the complex wave structures that can emerge in systems governed by diffusion, convection,
and nonlinear reaction dynamics. These solutions also have applications in ecology, fluid mechanics,
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and chemical transport. Bifurcation analysis is employed to explore the qualitative behavior of the
solutions under varying parameters. Additionally, modulational instability analysis is conducted to
assess the stability of the obtained solutions, confirming that they are both exact and stable. The
graphical representation of several solutions illustrates their physical significance and demonstrates
the wave-like nature of the solitons in realistic settings. The results confirm that mSEM is a powerful
and flexible tool for solving higher-order NLEEs and can contribute significantly to the modeling
of various physical, biological, and engineering phenomena involving nonlinear wave propagation.
Future investigations will focus on multi-dimensional generalizations to examine more intricate spatial
interactions and wave structures, as well as fractional-order extensions to capture memory and
hereditary effects.
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