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Abstract
A semi-explicit Lagrangian scheme for the simulation of thermally coupled incompressible flow problems is presented. The
model relies on combining an explicit multi-step solver for the momentum equation with an implicit heat equation solver.
Computational cost of the model is reduced via application of an efficient strategy adopted for the solution of momen-
tum/continuity system by the authors in their previous work. The applicability of the method to solving thermo-mechanical
problems is studied via various numerical examples.

Keywords Navier–Stokes · thermo-mechanical · Particle finite element method · Lagrangian · Explicit · Benchmark ·
Boussinesq

1 Introduction

Lagrangian finite element models for the simulation of flow
problems originated from the ideas presented in [32,33] and
[30]. Unlike their fixed grid counterparts, Lagrangian fluid
models naturally track the evolving boundaries and do not
suffer numerical diffusion. Lagrangian fluid approaches have
been further developed for free surface flows in [27] and
[18] resulting in what is now generally known as the “par-
ticle finite element method” (PFEM), a methodology that
combines the features of the classical Lagrangian finite ele-
ment methods and the mesh-free approaches. The PFEMs
have been further advanced by various groups and applied to
flows with multi-fluids [16,17], fluid–structure interactions
[15,34,42] and multi-fluid–structure interaction problems
[38].

Another area where Lagrangian fluid models may be
suitable is the thermally coupledflowproblems. In such prob-
lems, PFEMs facilitate convection of the material properties
(which, in case of being temperature dependent, requires
solving additional transport equations in case of using fixed

B Julio Marti
julio.marti@cimne.upc.edu

1 Centre Internacional de Mètodes Numèrics en Enginyeria
(CIMNE), Gran Capitán s/n, 08034 Barcelona, Spain

2 Department of Civil and Environmental Engineering,
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

grid approaches). This explains why PFEM-based models
were successfully used for analyzing polymer melting [21,
28]. PFEM-based models also appear to be suitable for the
simulation of material forming processes (e.g., mold filling),
also characterized by a strongly coupled thermo-mechanical
nature. Since convection is resolved automatically due to
Lagrangian nature of the fluid solver, the heat solver in these
models involves solely the diffusion (or diffusion–radiation)
equation [23].

In [25], a Lagrangian-based thermally coupled model is
applied to the simulation ofmetal casting. In [3], a basic strat-
egy for the solution of incompressible fluids with thermal
convection and free surfaces using the PFEM is presented.
The integration scheme is fully implicit; pressure and veloc-
ity are uncoupled via the fractional step approach. Besides,
the thermal buoyancy effects are considered by introducing
the Boussinesq approximation. This strategy is applied to
mold filling in [29]. Similar Lagrangian thermally coupled
approach is used in commercial software POLYFLOW [1]
and applied to glass forming simulation in [13]. A PFEM-
based model applied to bottle forming can be found in
[35,40].

All the aforementioned PFEM-based approaches rely on
fully implicit time integration schemes. Unfortunately, this
usually results in very high computational costs in case of
mesh degradation and thus strongly limits the application of
the PFEM-based model to real-life problems. As shown in
[37], time step restriction cannot be eliminated even by a
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frequent re-meshing. The possibility of element inversion at
any nonlinear iteration step leads to an immediate failure of
the implicit solver [37]. Thus, all the mentioned approaches
require estimating a critical time step in order to ensure that
no element gets inverted. In practice, this often introduces a
prohibitively small time step restriction. Taking into account
that the problem solution at each time step involves nonlin-
ear iterations and each nonlinear iteration, in turn, requires
solving large linear systems, the resulting methods turn out
to have a very large computational cost.

In order to alleviate the above-mentioned drawbacks of
the iterative procedure involved in an implicit solution, Idel-
sohn et al. [14] proposed a scheme, where particles were
moved only once, prior to implicit solution of the Navier–
Stokes equations (which was considered linear). Such mesh
movement step was fully explicit. The obtained configura-
tion was considered to be the end of step configuration and
was not further updated. In order to ensure improved accu-
racy of this prediction, the particle positions were obtained
following the streamline corresponding to velocity at the
known time step. The advantage of this method was that it
allowed using large time steps without falling into the dan-
ger of element inversion as the mesh was considered fixed
within an implicit step. Themethodology that combinedfixed
background mesh with the moving particles is extended to
thermally coupled problems in [41]. There, thermal and vis-
cous diffusivity are treated explicitly. The thermal coupling
is carried out via a temperature-dependent buoyancy term
added to fluid acceleration (Boussinesq approximation).

An alternative explicit–implicit Lagrangian method was
proposed in [22]. There, domain configuration was accu-
rately predicted by using fourth-order Runge–Kutta scheme
for integrating both the velocity and the particle positions.
Due to the implicit nature of the pressure in incompress-
ible flows, pressure was integrated implicitly. The approach
introduced re-meshing prior to pressure solution step, ensur-
ing that no element may be inverted during the implicit step.
This allowed to alleviate time step restrictions and eliminate
its dependence on the mesh deformation. The computational
cost of the method was strongly reduced also due to a tech-
nique that allowed solving for the pressure only once per time
step.

In the presentwork, the explicit–implicit schemeproposed
in [22] is extended to thermally coupled problems (a fixed
grid version of the scheme can be consulted in [36] and [39]
). For the problems where buoyancy effects are essential,
Boussinesq term is added to the fluid acceleration.

The paper is organized as follows: Sect. 2 presents the
governing equations of a thermally coupled incompressible
fluid. The solution algorithm is outlined. Section 3 is devoted
to solution of various benchmarks. First, a thermal square
cavity is solved and the solution is validated using the biblio-
graphic data. Next, a problem involving a thermally coupled

fluid flow in a backward facing step is solved. Ultimately, a
thermally coupled fluid sloshing example is simulated. Sec-
tion 4 is devoted to the summary and concluding remarks.

2 Numerical model for thermally coupled
incompressible flows

In thermally coupled problems, the energy equation is cou-
pled to the momentum/continuity system via the convective
velocity. For the low-speed flows with nonnegligible buoy-
ancy effects, Boussinesq hypothesis is often employed,
provided that temperature gradients are small. It allows to
account for the aforementioned thermal buoyancy phenom-
ena using an incompressible flow model [26]. According
to this hypothesis, the buoyant term of the momentum
equation is assumed to be temperature dependent, while
the density is assumed constant everywhere else in the
model. Boussinesq solvers allow solving the energy and the
momentum–continuity system in a staggered fashion. The
popularity of Boussinesq hypothesis is specially related to
its practical applicability and the simplicity of its implemen-
tation.

In the following, the governing equations for a thermally
coupled incompressible flow problems are specified and the
solution algorithm is presented.

2.1 Governing equations at continuum level

LetΩ ⊂ R3 be a bounded domain containing viscous incom-
pressible fluid. We denote the time by t , the Cartesian spatial
coordinates by x = xi |3i=1 and the vectorial operator of spa-
tial derivatives by∇ = {∂xi }3i=1. The evolution of the velocity
v = v(x, t), the pressure p = p(x, t) and the temperature
T = T (x, t) is governed by the following equations:

ρ
∂v
∂t

+ ρ(v · ∇)v − ∇ · (μD́) + ∇ p = f, (1)

∇ · v = 0, (2)

ρC
∂T

∂t
+ ρCv · ∇T − κ�T = 0. (3)

where μ is the fluid dynamic viscosity, ρ is the density, p
is the fluid pressure, D́ = 1

2 (∇v + ∇T v) is the symmetric
part of the velocity gradient tensor, C is the heat capacity
and κ is the thermal conductivity. According to Boussinesq
hypothesis, the body force f is computed as

f = ρg[1 − β(T − T0)] (4)

where g is the gravity acceleration, T and T0 are the actual
temperature and the reference temperature, respectively, and
β is the thermal diffusion coefficient.
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Fig. 1 Domain and boundaries

The position x of a givenmaterial particle (which in PFEM
coincideswith themeshnodeonce the problem is discretized)
is given by:

Dx
Dt

= v (5)

The governing equations are completed with standard
Dirichlet and Neumann boundary conditions on ΓD and ΓN ,
respectively. The domain boundaries are shown in Fig. 1.

(
v = vpr

T = T pr

)
on ΓD (6)

(
σ · n = σ

pr
n

k ∇T · n = q pr
n

)
on ΓN (7)

where vpr and T pr are the prescribed velocity and tem-
perature, respectively, n is the outer unit normal to ΓN , σ

pr
n

and q pr
n are the prescribed traction vector and normal heat

flux. Note that σ stands for Cauchy stress tensor.
The discrete version of the governing equations is pre-

sented next.

2.2 Governing equations at discrete level

In the present work, we use a semi-explicit solver of [22]
for the mechanical problem and a Backward Euler scheme
for the heat equation. An updated Lagrangian reference
frame is considered. The semi-explicit solver for themomen-
tum/continuity/position system is based on the fourth-order
Runge–Kutta scheme and is characterized by the second-
order temporal accuracy.

Considering linear finite element approximations for the
temperature (note that N is the vector of shape functions)

T (x) = NT (x)T̄ (8)

heat equation discretized in space and time reads (note
the absence of the convective term due to adopting the
Lagrangian reference frame)

ρCM
T̄ n+1

�t
+ κLT̄ n+1 = ρCM

T̄ n

�t
. (9)

A linear approximation of the same order is used for the
velocity and the pressure

p (x) = NT (x) p̄ (10)

vi (x) = NT (x) v̄i (11)

We note that the nodal variables are distinguished from
their continuum counterparts by an overbar.

Applying the above spatial approximations and the fourth-
order Runge–Kutta time integration scheme, the following
equations are obtained (see [22] for further details):

v̄n+1 = v̄n + �t

6
M−1(r1 + 2r2 + 2r3 + r4)

−�t

6ρ
M−1G p̄n+1 (12)

where intermediate residuals, nodal velocities and positions
are defined as:

ri = G(
1
ρ

) p̄ j − K(
μ
ρ

)v̄k + F (13)

v̄βi = v̄n + φ�tM−1rm (14)

x̄βi = x̄n + γ�t v̄n (15)

In the following Tables 1, 2 and 3 i , j , k, m, n, φ and γ

are summarized for the different variables:
Introducing an intermediate velocity ṽ, following the frac-

tional step approach [4] for decoupling the velocity and the
pressure, Eq. (12) can be replaced by the following three
equations to be solved sequentially:

Table 1 Intermediate residuals ri
i j k

1 n n

2 n β1

3 β2 β2

4 β3 β3

Table 2 Velocities v̄βi

i φ m

1 1/2 1

2 1/2 2

3 1 3
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Table 3 Nodal positions x̄βi

i γ n

1 1/2 n

2 1/2 β1

3 1 β2

ṽ = v̄n + �t

6
M−1 (r1 + 2r2 + 2r3 + r4)

+�t

6
M−1G(

1
ρ

) p̄n (16)

�t

6
L p̄n+1 = �t

6
L p̄n − Dρ ṽ (17)

v̄n+1 = ṽ + �t

6
M−1G(

1
ρ

)( p̄n+1 − p̄n) (18)

Particle’s position x̄ at time n + 1 can be found as

x̄n+1 = x̄n + �t

6
(v̄n + 2v̄β1 + 2v̄β2 + v̄β3) (19)

The matrices in the above equations are defined as:

K(
μ
ρ

) =
∑
elem

∫
Ω

μ

ρ

(
∇NT∇N + ∇NT∇TN

)
dΩ (20)

M =
∑
elem

∫
Ω

NTNdΩ (21)

F =
∑
elem

∫
Ω

NT gdΩ (22)

G(
1
ρ

) =
∑
elem

∫
Ω

1

ρ
∇NTNdΩ (23)

Dρ =
∑
elem

∫
Ω

ρN∇NT dΩ (24)

L =
∑
elem

∫
Ω

∇NT∇NdΩ (25)

Equation (17) must be stabilized to avoid numerical oscil-
lation due to the equal order of approximation for velocity
and pressure. The stabilization technique used in the present
work is the algebraic sub-grid scale method [5]. For the
sake of simplicity, stabilization terms are omitted here. They
can be consulted in [22] where the mechanical solver was
derived.

2.3 Solution algorithm

The problem to be solved can be formulated as: given the
nodal positions, the velocity, the pressure and the tempera-
ture at time step tn , find these variables at tn+1. The overall
solution strategy according to the method proposed is sum-
marized in Table 4.

3 Examples

The model presented in this paper was implemented by the
authors in the open-source Kratos Multi-Physics software
[7]. In the following, three numerical tests are solved. They
validate the thermo-mechanical scheme proposed.

3.1 The thermally driven cavity benchmark

This test models the fluid flow in two-dimensional unitary
square. Different temperatures are prescribed andmaintained

Table 4 Lagrangian explicit–implicit solution algorithm for thermally coupled incompressible flow problems

1. Knowing the velocity v, pressure p, temperature T and nodal position x corresponding
to time tn perform the explicit step:
– For i from 1 to 4

Evaluate intermediate Runge-Kutta residuals ri (i = 1, ..., 4) using Eqs.(13).
Move particles to the new position x̄βi (Eq.(19)).
Update elemental matrices and vectors according to the new nodal positions

(Eqs. 20-25).
2. Re-mesh the fluid domain
3. Perform the implicit step: solve the Poisson’s equation for the pressure (Eq.(17)). Result:

p̄n+1.
4. Correct the velocity to obtain a divergence-free solution. Result: v̄n+1 (Eq.(18)).
5. Solve the heat equation (Eq. (9)). Result: T̄n+1

6. Compute the Boussinesq term for the next time step using the obtained temperature
(Eq. (4)).

7. Go to the next time step.
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Fig. 2 Boundary conditions for thermal cavity benchmark problem

at the vertical walls. Convective transport in this test is
known as “natural convection.” It develops exclusively due
to nonzero temperature gradients. This example is used to
test the numerical algorithms designed for the integration
of the Navier–Stokes equations in incompressible recirculat-
ing flows. Boussinesq approximation [2] is valid due to very
small temperature variation.

The input data provided below are taken from the bench-
mark description given in [8]. The top and the bottom walls
are insulated (adiabatic condition is considered), and the
velocity at all boundaries is set to zero. Vertical walls’ tem-
peratures are T0 = 298.5 K(right wall) and T1 = 297.5 K
(left wall). Fluid inside the cavity is initially at rest. Its ini-
tial temperature equals the mean of the temperatures on
the vertical walls. The scheme of the example is shown in
Fig. 2.

The simulations were executed for a range of Rayleigh

number (Ra = gβH3�T
αν

) values: Ra = 106, Ra = 105 and
Ra = 104. Prandtl number (Pr = ν

α
) was set to (0.71). Note

that g,β,α and ν are the gravity, thermal diffusion coefficient,
thermal diffusivity and kinematic viscosity, respectively. A
constant temperature difference of �T=1 K was applied to
the two vertical walls, adjusting the thermal diffusion coeffi-
cient β until obtaining the desired Rayleigh number, keeping
all the other variables constant.

Table 6 Numerical solution for the thermal square cavity, Ra = 105.
Comparison with [8]

Ra Data RK Davis

105 vx,max(x = 0.5) 34.924 34.870

105 ymax 0.862 0.855

105 vy,max(y = 0.5) 67.910 67.910

105 xmax 0.0576 0.067

The following values were used for the main variables

ρ = 1
kg

m3

ν = 0.001
m2

s

gy = −10
m

s2

α = 0.001
m2

s

The simulations were carried out using mesh size h =
0.015 m and time step dt = 0.0025 s.

To validate the present numerical results, the obtained
results are compared for different Ra values with the data
found in bibliography [8,12,19] and [6,41]. The values and
the locations of maximum horizontal and vertical velocities
are considered. The comparison is summarized in Tables 5, 6
and 7. A nearly exactmatch in terms of themaximumvertical
and horizontal velocity for the entire range of the considered
Rayleigh numbers is observed. For Ra = 106 and Ra = 104,
the results are compared against the fixed grid simulations of
[6,8] and the combined PFEM-Eulerian simulation of [41].
For Ra = 105, no results are presented in [6] and [41]; thus,
the comparison is made only with [8]. One can see a very
good agreement among the results. The largest discrepancy
is observed in the location of the maximum vertical velocity.
One can see that for Ra = 106 the difference between the
compared values is as high as 20 %. For smaller Rayleigh
number, this discrepancy diminishes.

Results shown in Fig. 3 compare the isotherms obtained
in our simulations with those corresponding to the reference
solution [9]. The results are in very good agreement with the
benchmark solution.

Table 5 Numerical solution for
the thermal square cavity,
Ra = 106. Comparison with
[6,8], [41]

Ra Data RK Davis [8] Corzo [6] Sklar [41]

106 vx,max(x = 0.5) 65.45 65.81 64.558 64.483

106 ymax 0.85 0.852 0.851 0.845

106 vy,max(y = 0.5) 213.07 214.64 221.572 218.054

106 xmax 0.0474 0.0396 0.067 0.037
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Table 7 Numerical solution for
the thermal square cavity,
Ra = 104. Comparison with
[6,8,41]

Ra Data RK Davis [8] Corzo [6] Sklar [41]

104 vx,max(x = 0.5) 16.250 16.182 16.282 15.982

104 ymax 0.821 0.823 0.822 0.824

104 vy,max(y = 0.5) 19.541 19.509 19.547 19.378

104 xmax 0.115 0.120 0.123 0.116

Figure 4 shows thehorizontal velocity profiles in the cavity
along the vertical line at x = 0.5. One can see that the present
results coincide with those of [6] for all the considered values
of Rayleigh number.

The results of the present method are compared against
those of the former version of thermally coupled purely
Lagrangian implicit PFEMmodel in Fig. 5. Rayleigh number
considered here is Ra = 106, and nine isotherms are shown
so as to facilitate the comparison with the reference results.
Figure 5a shows the solution obtained in the present work,
while Fig. 5b and c displays the isotherms of the reference
solution [8] and the PFEM model of [24], respectively. One
can see that all the isotherms in the upper part of the graphs are
nearly identical for all the models, while the third isotherm
(counted from the bottom) obtained by the present approach
exhibits a much closer match to the reference solution than
the former PFEMmodel, where the isotherm is considerably
shifted toward the bottom.

3.2 Heat transfer for backward facing step duct
flows

This example models the well-known backward facing step
duct flow, which is one of the very commonly simulated CFD
problems. Although the geometry of the test is simple, it
is characterized by complex flow physics. This example is
commonly used to validate conjugate heat transfer models
[31]. In our case for the sake of simplicity, heat transfer is
modeled only in a single homogeneous fluid.

Geometrical details, boundary and initial conditions of the
problem are depicted in Fig. 6. The problem was simulated
for two values of Reynolds number: Re = 100 and Re =
800. Prandtl number was maintained identical in both cases:
Pr = 0.71. Fluid conductivity was set as κ =0.02 W/(m ·
K). Gravity is neglected.

Obtained velocity and temperature fields are shown in
Figs. 7, 8, 9 and 10. The results obtained using the present
semi-explicit model are compared with those of an implicit
fixed grid model. The latter solver was validated and applied
to the thermally coupled backward facing step in [20].

The correlation between the solutions obtained for Re =
100 using the present model and the Eulerianmodel is shown
in Figs. 7 (velocity) and 8 (temperature). The solutions are
nearly identical.

For Re = 800, some differences between the Lagrangian
and theEulerian simulation resultsmanifest. Figures 9 and 10
show the cold fluid entering from the left reattaches on the
solid wall at approximately x = 6 m. After the reattachment
point, the cold fluid in contact with the relatively hot solid
wall is heated. A hot spot that appears in the fluid region
extending from x = 0 to the reattachment point results from
the fluid trapped between the entering fluid stream and the
channel. However, the posterior development of the ther-
mal boundary layer downstream of the impingement point
is slightly different. This is related with the evolution of the
velocity that can be observed in detail in Fig. 12which affects
the evolution of the heated layer of fluid. While the Eulerian
model exhibits a steady-state solution, the Lagrangian model
shows a periodic solution. The difference is particularly evi-
dent in the vicinity of the step. Nevertheless, the velocity and
the temperature distributions are very similar in the entire
domain. This issue requires further investigation as the same
periodic behavior was obtained when applying formerly pro-
posed implicit schemes as well.

Temperature profiles along the vertical axis recorded at
x = 6, 14 and 30 are plotted in Figs.11 and 12. Once again,
one can see that for Re = 100 Eulerian and Lagrangian solu-
tions are coincident. For Re = 800, the present approach
slightly deviates from the reference solution due to the
unsteady nature of the flow in the vicinity of the step. This
difference is largest along the horizontal axis of the chan-
nel at y = 0.5. Further away from the step, the solutions
completely coincide.

3.3 Sloshing in a hot container

While previous examples involved analysis of problems with
fixed boundaries and were solved for the sake of the solver
validation, the next test deals with a problem that involves
a domain with moving boundaries. It deals with a free sur-
face flow in a container with hot walls. Tests of this kind
were proposed in [11] for illustrating the capability of ther-
mally coupled PFEM-solvers. The example focuses on the
impact of temperature-induced viscosity changes upon the
flow behavior.

Domain configuration at t = 0 is shown in Fig. 13. No-
slip boundary condition is prescribed at all the walls of the
domain. Free surface (zero tractions) condition is prescribed
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Fig. 3 Natural convection in a
square cavity. Temperature field
and isolines. Comparison with
[9]. Blue and red colors in the
present method results
correspond to 297.5 and 298.5
K, respectively

at the free surface. The dimensions of the domain are: H =
0.1m and h = 0.02m. The free surface shape is sinusoidal.
The properties are: density ρ = 1000 kg/m3 and gravity
g = −9.8m/s2.

The initial temperature of the fluid is set to T0 = 273 K.
Walls are kept at a fixed temperature: Tw (the simulation is
carried out for three values of wall temperature: 273, 373
and 473 K). The viscosity is computed from the temperature
using the following expression:
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Fig. 4 Natural convection in a
square cavity. Horizontal
velocity profiles along the
vertical cut at x = 0.5.
Comparison with [6]

Fig. 5 Natural convection in a
square cavity, isotherms. (a)
Present work, (b) [8], (c) [24]

Fig. 6 Thermally coupled
backward facing step.
Geometric details, initial and
boundary conditions
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Fig. 7 Thermally coupled backward facing step. Velocity magnitude contours (Re = 100, Pr = 0.71) at 40 s. Eulerian (above) versus Lagrangian
(below) simulation results. Red and blue colors stand for 1.5 and 0 m/s, respectively. (Color figure online)

Fig. 8 Thermally coupled backward facing step. Temperature contours (Re = 100, Pr = 0.71) at 40 s. Eulerian (above) versus Lagrangian (below)
simulation results. Red and blue colors stand for 0 and 1 C, respectively. (Color figure online)

Fig. 9 Thermally coupled backward facing step. Velocity magnitude contours (Re = 800, Pr = 0.71) at 40 s. Eulerian (above) vs Lagrangian
(below) simulation results. Red and blue colors stand for 1.5 and 0 m/s, respectively. (Color figure online)

Fig. 10 Thermally coupled backward facing step. Temperature contours (Re = 800, Pr = 0.71) at 40 s. Eulerian (above) vs Lagrangian (below)
simulation results. Red and blue colors stand for 0 and 1 C, respectively. (Color figure online)

Fig. 11 Thermally coupled backward facing step. Comparison of temperature profiles at x = 6; 14; and 30 for the case of Re = 100. Eulerian
(reference) [20] versus Lagrangian (present approach) simulation results
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Fig. 12 Thermally coupled backward facing step. Comparison of temperature profiles at x = 6; 14; and 30 for the case of Re = 800

Fig. 13 Free surface fluid
sloshing in a hot container

ν = −2.996 · T 3 · 10−7 + 0.000379 · T 2 − 0.161 · T
+23.12 (26)

The above formulamimics the relative viscosity change of
water between 273 and 473 K [10]. The heat capacity C and
the conductivity κ of the fluid were set to: 4000.0 J/(kg · K)
and 2000.0 W/(m · K), respectively.

A total time of 1 s is simulated. The domain is discretized
with an unstructured triangular mesh of size 0.002 m (6000
elements approximately).

We test the impact of the thermal effects upon the fluid
behavior considering that the walls of the container are
hot. Domain configurations showing temperature distribu-
tions are shown at various time instances in Fig. 14. As
the temperature propagates (mainly due to diffusion in the
present case) from the walls into the fluid volume, the vis-
cosity changes and the differences in the free surface location
becomemore andmore evident. In particular, at t = 0.9 s the
case characterized by the highest wall temperature exhibits a
significantly different solution, as the temperature increases
significantly nearly in the entire domain (except for the small
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Fig. 14 Sloshing in a hot
container. Temperature
distribution at various time
instances

area in the center). Attaining lower viscosity, the fluid moves
faster, therefore, e.g., at 0.9 s, the crest of the wave moves
further from the right wall as the temperature of the wall
grows.

The example above shows that for the free surface
flow problems characterized by temperature changes, the
present fluid solver may be advantageous as it allows to
easily account for temperature-dependent viscosity by sim-
ply adding a diffusion solver to an efficient semi-explicit
mechanical solver.

4 Summary and conclusion

In this paper, a semi-explicit incompressible flow model was
coupled to a heat equation solver. Being fully Lagrangian, the
model automatically resolves convection and the heat mod-

ule solves only the transient diffusion equation. The model
belongs to the second generation of the Particle Finite Ele-
ment Method solvers, where the particles–nodes are moved
explicitly prior to the solution of the implicit problem. The
solver for the thermally coupled flows presented here inherits
the advantages of the mechanical solver formerly proposed
by the authors in [22], namely, the possibility of using con-
stant time step.

The thermal coupling was validated using several bench-
mark cases. The validation tests revealed that the proposed
solver provides reliable solutions. Being semi-explicit the
solver provides an attractive alternative to the fully implicit
models, provided that the time step estimates are favorable.
In particular, since in the mechanical part of the solver only
the pressure is treated implicitly, favorable time step can
be encountered in problems characterized by low viscosity
values. For the flows characterized by high viscosity, the pro-
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posed solver is not advantageous (e.g., the casting problems,
or melting problems where material viscosity at low temper-
atures is typically very high). This occurs due to the time step
size restriction introduced by the explicit treatment of the vis-
cous term. However, it is beneficial for thermo-mechanical
fluid flow problems characterized by temperature-dependent
viscosity.
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