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Abstract. Snow is a high porosity and multi-phase material whose behaviour is strongly 

influenced by peculiar features, such as time-driven metamorphisms of its microstructure and 

sintering processes between ice grains. Furthermore, from a mechanical point of view, the 

response of snow to external actions (anthropic, atmospheric, etc.) is characterized by both 

material and geometric non-linearities. This latter item is also accompanied by a clear strain-

rate dependence induced by volumetric viscous effects acting on the ice microstructure.  

These factors influence the choice of the best constitutive model capable of reproducing this 

complex behaviour especially in the framework of Finite Element (FE) analyses. In the 

scientific literature, many authors suggested the use of elasto-plastic constitutive models, in 

many cases derived from soil mechanics applications, to perform reliable FE analyses of snow 

behaviour with reference to both laboratory and on-site experiments. Nevertheless, the available 

models often show some issues both in their initial hypotheses and in the following FE 

implementations. For instance, problems may arise in: i) choosing the proper deformation field 

(e.g., small or large deformations), ii) selecting the most appropriate shape of the yield function, 

iii) defining the hardening and plastic-flow rules, etc.         

In this work, some of the still open and unsolved questions related to the constitutive 

modelling of snow and suggestions on possible computational solutions through FE tools are 

highlighted. The goal is twofold: first, we try to summarize the current state-of-the-art of 

constitutive modelling and FE analysis on snow; and second, we suggest some possible research 

directions and computational solutions to improve the existing mechanical models. 
 

 

1 INTRODUCTION 

Within the wide set of natural materials, snow represents a peculiar case. It is indeed a 

complex, multi-phase and high-porosity medium whose mechanical behaviour at the 

macroscopic scale of observation is strongly influenced by the peculiar characteristics of its 

microstructure [1]. Moreover, snow can be considered as a “hot material” because, in many 

terrestrial environments, exists at temperatures that are very close to its melting point. 

Therefore, as soon as snowflakes fall on the ground, they are first subjected to mechanical-

induced shape modifications and then to thermal-induced changes (i.e., snow metamorphisms) 
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that transform the single sharpened precipitation particles in more complicated interconnected 

structures [2]. The physical and mechanical properties of metamorphosed snow are thus 

determined by the shape of the crystals (or grains) and the connections between them (sintering 

bonds). All these issues, coupled with the fact that layers of snow with different properties are 

usually present in a snowpack, are at the basis of the comprehension of the mechanical response 

of snow to external actions and should be taken into account in several different application 

fields. Snow, indeed, is a natural resource which is essential for the alpine ecosystem as well as 

for winter tourism and sports, but on the other hand is a critical element to be considered in the 

design of structures and infrastructures in alpine and cold environments. Moreover, snow 

avalanches represent one of the main hazards in mountain areas, that can potentially endanger 

human lives, economical activities, structures, and also historical and natural heritages [3]. 

To investigate the multifaceted aspects of the mechanical behaviour of snow and to deal with 

such a wide range of engineering applications, a more and more crucial role was assumed by 

constitutive relationships and computational methods. Generally, snow constitutive models can 

be divided in two groups, namely phenomenological and micro-mechanical models [4]. Those 

in the first group reproduce the macroscopic behaviour of snow neglecting all the processes that 

occur at the microscopic level and are usually implemented in the field of Continuum 

Mechanics. Instead, the ones in the second group specifically take into account the role of 

microstructure (i.e., intergranular glide, inelastic bond deformations, etc.) in deformational 

processes and can be adopted both in the framework of Continuum and Discrete Mechanics.  

Historically, the modelling of snow as a continuum medium is performed in the framework 

of pressure-dependent elasto-plastic (EP) constitutive laws, that allows to properly describe 

large inelastic deformations and the observed macroscopic behaviour with reference to shear 

stress and hydrostatic pressure [5]. Furthermore, this type of EP models (Modified Cam Clay, 

for instance) was already widely exploited in soil mechanics and, taking advantage of the 

numerous similarities between soil and snow, they were adapted to the case of snow. From a 

purely computational point of view, the Finite Element (FE) method was largely adopted in 

snow applications starting from the beginning of 1970s [6]. FE methods are generally used, 

under the hypothesis of infinitesimal strains, to reproduce laboratory tests and to calibrate 

constitutive models for snow [7] but can also be employed for on-site applications such 

avalanche release or ski-snowpack interaction [8]. Unfortunately, considerations of finite strain 

are necessary for the proper description of snow and the traditional mesh-based numerical 

methods (e.g., FE method) generally suffer from mesh-distortion issues associated with large 

deformation of snow. Alternative to FE methods are the continuum point-based methods, such 

as the Lagrangian Smoothed Particle Hydrodynamics (SPH) and the hybrid Eulerian-

Lagrangian Material Point Method (MPM), that allow to solve field-scale applications 

involving large deformation and post-failure of geomaterials [9]. For instance, with the aim of 

studying the processes causing the release of snow slab avalanches, Gaume et al. (2018) [10] 

apply MPM and finite strain EP model to reproduce the onset and dynamic propagation of 

fracture in a weak interface layer, which generates between two stiffer snow slabs. Therefore, 

MPM and SPH, as well as their further developments, could be able to face more complex 

processes involving snow, such as heat flux or water flow developing into the snow 

microstructure, melting and re-crystallization, temperature-deformation relations, localization 

and bifurcation, etc.  

In this work, the focus will be on Continuum Mechanics applications and FE analyses in 
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particular. Here, we summarize the current state-of-the-art of the constitutive models 

specifically devoted to snow that are currently available in literature and, at the same time, we 

highlight some of the still unsolved questions in the EP theory applied to snow mechanics. To 

achieve this goal the paper is organized in three parts (Sect. 2 to 4) following the main 

ingredients of a classical EP model: elastic stress-strain law, yield criterion and hardening law 

and flow rule. A final section (Sect. 5) is devoted to the formulation of FE problems involving 

snow.   

2 ELASTIC STRESS-STRAIN LAW 

The vast majority of snow constitutive models currently available are based on the theory of 

small strains and on the additive decomposition of the strain rate tensor �̇�:  

�̇� = �̇�𝑒 + �̇�𝑖𝑟𝑟 (1) 

where �̇�e and �̇�𝑖𝑟𝑟 are the recoverable (elastic) and the irrecoverable (plastic) part of the strain 

rate tensor, respectively.  

In the framework of small strain EP, the �̇�e component is typically defined via the well-

known elastic law of the Cam Clay type, wherefrom it is possible to obtain the volumetric 

(𝜀̇𝑒vol) and deviatoric (𝜀̇𝑒dev) components as follows [7]:  

𝜀̇𝑒vol = −
𝑘

𝑣

�̇�

𝑝
 

(2i) 

𝜀̇𝑒dev =
1

3𝐺
�̇� (2ii)  

where k is a dimensionless material constant (related to the bulk modulus), v is the specific 

volume, G is the shear modulus, and p and q are two stress invariants named isotropic stress 

and equivalent shear stress, respectively. This formulation highlights the intimate relation 

existing between the currently available snow mechanical models and the constitutive laws 

originally developed for soil mechanics purposes. In fact, most of the currently used models for 

snow derives from models originally developed for soils, conveniently adapted.  However, Eqn. 

(2i) shows some problems in case of finite strain models, due to the inverse proportionality 

existing between the specific volume and the compressibility [11].    

The irreversible component is classically linked to the viscous behaviour of snow 

microstructure and has a paramount relevance in the whole amount of deformation experienced 

by snow under load. Some authors quantified the irreversible viscous deformation of snow 

starting from creep, relaxation and triaxial compression tests [12], and implemented linear 

[1,13] or non-linear [14] rheological models by combining elastic springs and viscous dashpots.  

Other types of snow constitutive models are extended to finite strains in order to better 

describe the large inelastic deformations suffered by snow under the action of shear and 

hydrostatic pressures. In these cases, the usual approach is to adopt a multiplicative 

decomposition of the deformation gradient tensor F into elastic (𝐅𝑒) and plastic (𝐅𝑝) parts:  

𝐅 = 𝐅𝑒𝐅𝑝 (3) 

Then, the elastic stress-strain law can be derived in different ways. For instance, following 

an hyperelastic approach, the Kirchhoff stress tensor 𝛕 can be obtained from the strain energy 

density function 𝜓 with the following general relation [15]: 
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𝛕 = 2
𝜕𝜓(𝐅𝑒 , 𝜶)

𝜕𝐛𝑒
𝐛𝑒 

(4) 

where 𝐛𝑒 = 𝐅𝑒𝐅𝑒𝑇
 is the left Cauchy-Green strain tensor and 𝜶 is a vector of (strain-like) 

internal material variables. Other types of elastic constitutive laws can be used. Gaume et al. 

(2018) [10], for example, adopt the Hencky strain tensor (𝛜 =
1

2
log 𝐛𝑒

) that provides a 

convenient description of elastic deformation of snow. By referring to the principal components 

of Kirchhoff stress and Hencky strain tensors (i.e., �̂� and �̂� vectors, respectively), they propose 

the following constitutive relation:  

�̂� = 𝐂�̂�. (5) 

The tensor C is a matrix given by C =  2𝐈 + 𝟏𝟏𝑻, where I is the identity tensor, 1 is the all 

ones vector, and  and  are the Lamé parameters.  

3 YIELD CRITERION AND HARDENING LAW 

The choice of yield criteria for snow is a crucial point in the constitutive modelling of this 

natural material. Depending on the application field and on the purpose of the study, different 

choices can be done. Generally, with reference to volumetric and tangential load conditions, 

the pressure dependency of snow leads to pressure-dependent EP constitutive laws with strain 

hardening. Moreover, many authors suggested that snow modelling could be faced in a way 

similar to soils. This is due to some patterns of behaviour that snow and soils have in common, 

such as [16]: i) immediate response to external action, ii) linear response in the semi-logarithmic 

plane volume-volumetric strain, iii) increasing volumetric stiffness with density, iv) dilation by 

shearing and creep deformation, and v) wide inelastic deformation. For these reasons, Lang and 

Harrison (1995) [16] suggested to apply to snow the critical state theory conceived for soils. In 

1996, Meschke et al. [5] introduced a large strains EP model similar to Modified Cam Clay [17] 

with a yield convex surface, symmetric around the hydrostatic axis and properly adapted for 

snow (Figure 1a). This approach had a remarkable success and in the following decades was 

implemented in many scientific works. As a brief overlook, some examples are given below.  

Meschke (1995) [18] proposed a visco-EP model characterized by two coexisting yield 

functions (Figure 1b), i.e., ft and fc, that define the tension cut-off and the closed smooth shape 

of the surface, respectively. With reference to I1 and J2 Kirchhoff stress tensor invariants, the 

yielding criteria can be expressed with the following relationships: 

𝑓𝑡(𝐼1, 𝑞𝑡) =
𝐼1

3
− 𝑞𝑡 ≤ 0, 

(6i) 

𝑓𝑐(𝐼1, 𝐽2, 𝑞𝑐) = √𝐽2 −
𝑐𝑐

𝑞𝑐
( 𝐼1̅ + 𝑞𝑐)4 − 𝑘𝑐𝐼1̅ − √𝑐𝑐𝑞𝑐

3

2  ≤ 0    (6ii)  

where 𝐼1̅ = 𝐼1 − 3𝑡, being t the intercept of the yield surface with the p-axis on the traction side, 

and cc and kc are two material parameters. qt and qc, are two parameters describing the 

hardening/softening mechanisms of snow. Experimental findings show that the tensile strength 

is reduced when inelastic volumetric tensile strains are accumulated (tensile volumetric 

softening), thus qt shifts the tension cut-off towards the origin. On the contrary, qc describes the 

evolution of the shape of the yield surface in the meridian plane. According to isotropic 

compression and direct shear test data, the shape of fc changes continuously in the stress space, 
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passing from the closed smooth shape with compression cap and tension cut-off to a shape 

similar to the Drucker-Prager failure criterion as ultimate condition.  

Other models followed the path traced by Meschke, also including some other snow features. 

For instance, Cresseri et al. (2010) [7] introduced a visco-EP model based on Modified Cam 

Clay with some modifications in order to account for the effects of sintering (i.e., the formation 

of bonds between snow particles), both in compression and in tension. Three internal material 

variables were taken into account: p0, pm, and pt. The first one (p0) is linked to snow density and 

represents the intersection of the yield surface with the hydrostatic axis in case of non-sintered 

state. Its evolution is associated with the amount of volumetric plastic deformation, which 

reflects the macroscopic effects of an irrecoverable change of snow density. The two further 

parameters (pm and pt) represent the additional strength, in compression and tension, 

respectively, conferred by intergranular bonding to the material. The variation of pm in time is 

supposed to follow a linear dependence on the degree of bonding. pm and pt are proportional to 

each other: 𝑝𝑡  =  𝑝𝑚, with  = 0.1. A representation of the Cresseri et al. (2010) yield surface 

can be observed in Figure 2a. 

 

Figure 1: a) Sketch of the meridian section of the Meschke et al. (1996) yield criterion at different values of the 

hardening parameters (adapted from [5]). Blue dashed lines show the progressive hardening of the surface; b) 

Sketch of the meridian section of the Meschke (1995) yield criterion. Blue solid lines highlight the initial yield 

surface and tension cut-off, while blue dashed lines and solid orange ones represent the ongoing evolution of the 

surface and the ultimate conditions, respectively (adapted from [18]). 

Figure 2: a) Sketch of the meridian section of the Cresseri et al. (2010) yield criterion. Orange line shows the 

surface for the unbonded material while the blue one is that for the bonded snow (adapted from [7]); b) Sketch of 

the meridian section of the Gaume et al. (2018) yield criterion. Bonded (blue line) and unbonded (orange line) 

Modified Cam Clay yield surfaces are reported in the p-q plane snow (adapted from [10]).  
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Finally, Gaume et al. (2018) [10] proposed a new cohesive Cam Clay model with the 

following ellipsoidal and symmetric yield function in p-q plane (Figure 2b): 

𝑦(𝑝, 𝑞) = 𝑞2(1 + 2𝛽) + 𝑀2(𝑝 + 𝛽𝑝0)(𝑝 − 𝑝0) (7) 

where p0 is the consolidation pressure, M is the slope of the cohesionless critical state line, and 

  0 is the ratio between the tensile and compressive strength that controls the amount of 

bonding between grain (cohesion). The hardening/softening behaviour of snow is introduced 

through the variation of the p0 parameter, that follows a hyperbolic relationship depending on 

the volumetric plastic deformation. When the plastic deformation is compressive, p0 increases 

and the yield surface expands. Otherwise, in case of tensile deformation, p0 decreases and yield 

surface shrinks, allowing the snow to fracture in tension. This model allows to reproduce 

the collapse of snow under compression (anticrack) and the onset and propagation of fracture 

in weak snow layers.  

From these simple examples, the need for a variable, shrinkable and expandable yield surface 

for snow is clear. Different responses in compression and tension have to be considered in snow 

modelling and the role of hardening due to both volumetric plastic deformation and bonding 

assumes a crucial and not negligible role. 

4 FLOW RULE 

In the framework of snow constitutive models, flow rules generally follow the same laws 

governing the evolution of plastic deformation in case of other materials with EP behaviour. 

Simple and classical associative flow rules were adopted by some authors [5,10], while non-

associative flow rule is used, for instance, by Cresseri et al. (2010) [7]. This latter example is 

interesting because the plastic deformation is supposed to be linked to the viscous properties of 

snow through the following relation:   

�̇�𝑖𝑟𝑟 = 𝜓𝜙(𝑓)
𝜕𝑔

𝜕𝝈
= 𝜓

√𝑞2 + 𝑝2

√3𝑝0

𝑒𝛼𝑓
𝜕𝑔

𝜕𝝈

1

|𝛁𝑔|
  

(8) 

where g is the plastic potential, 𝜓 is the so-called fluidity parameter and 𝜙(𝑓) is the viscous 

nucleus. The 𝜓 parameter defines the rate at which irrecoverable strains take place and depends 

on the actual stress level, the viscous coefficient 𝜓, and the density of snow (through p0). The 

viscous nucleus is strictly positive (0 < 𝛼𝑓 ≤ 50) and rules the dependence of the amount of 

deformation on a measure of the distance between the stress state and the yield surface f. 

5 FINITE ELEMENT FORMULATION 

Since snow is a highly non-linear, porous and visco-EP material, an analytical solution to 

the partial differential equations (PDEs) governing the stress-strain constitutive relation is not 

available. Therefore, the FE method was historically identified as the simplest tool to compute 

the approximate solution of the set of constitutive PDEs. Through the discretization of a given 

continuous domain into a finite number of sub-domains, or elements, the FE method describes 

the mechanical behavior of these elements and, therefore, of the entire system.  

 The implementation of FE methods for snow mechanics purposes began in early 1970s and 

rapidly increased. In 2013, Podolskiy et al. [6] summarized the application of FE analysis in 

snow mechanics. They identified nine major categories of physical and engineering problems 
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in snow mechanics that has been studied with FE method: i) on-site state of strain and stress in 

snowpack, ii) influence of snow weak layer on the mechanical state of snowpack and slab 

avalanche release, iii) fracture propagation in snow, iv) skier loadings on inclined snowpack, 

v) shock loading and explosive loading on snowpack, vi) reproduction of mechanical 

experiments for validating snow mechanical models, vii) assessment of actions exerted by snow 

cover on avalanche defense structures, viii) interaction between tires and snow, and 

ix) microstructure studies of snow volume obtained from X-ray microtomography. 

Despite this wide number of applications, FE models of snow present a certain number of 

issues, especially for slope stability and avalanche purposes. For instance, Cresseri et al. (2010) 

[7] implemented their small-strain visco-EP 14-parameter model in the FE code ABAQUS [19]. 

During the implementation of Eqn. (2i) to the case of isotropic compression, they observed that 

the hydrostatic pressure increment (Δ𝑝) calculated by the effect of a prescribed volumetric strain 

increment (Δ𝜀̇𝑒vol) had an incorrect sign. To avoid this problem, i.e. ensuring that the predicted 

Δ𝑝 has the same sign as the imposed Δ𝜀̇𝑒 vol, the authors introduced a restriction on the 

magnitude of the strain increments. This goal could be achieved through two possible strategies: 

i) sub-incrementation, by which the current strain increment is divided into smaller intervals, 

or ii) time step cutting, by which the current time step is reduced. This example highlights one 

of the most important issues in FE analysis of snow, that is linked to the proper choice of the 

deformation or time increment. 

Another type of problems involving FE analyses in snow is related to the proper mechanical 

description of the weak interface layer that can be potentially buried between two stiff snow 

slabs. Typically, this part of the snowpack is the preferential zone in which fracture develops. 

In 2006, Stoffel [8], following Bader et al. (1989) [13], suggested to introduce a special finite 

element to model the crack in a snowpack. This element, called weak layer element (WLE), has 

special features. By referring to a weak layer parallel to the slope surface, the WLE has an 

infinite stiffness in the direction transversal to the slope, thus any forces acting in this direction 

do not deform the element and are simply transmitted through the element. Otherwise, along 

the direction parallel to the slope the WLE has lower stiffness and viscosity, and the slide can 

occur.  

Another solution for the modelling of weak layer in FE methods is to adopt a fracture 

mechanics approach. From this point of view, the snow layer can be seen as a component with 

a crack. Under certain hypotheses (i.e., limited size of the plastic zone close to the crack spike), 

the general and computationally intensive theory of elastic plastic fracture mechanics (EPFM) 

can be simplified with the linear elastic fracture mechanics (LEFM). This method allows to 

simulate the evolution of the crack within a snowpack in very simple conditions. More complex 

situations need for more detailed numerical methods, even different from the FE method (e.g. 

MPM, SPH, etc.) (Gaume et al. 2018) [10].  

6 DISCUSSION AND CONCLUSIONS 

In this work a brief overview of EP models for snow is presented with particular attention to 

constitutive modelling and FE analysis. Some literature works are briefly introduced in order 

to summarize the current state-of-the-art with reference to the topic. Starting from the analysis 

of the available literature works, and to the best of our knowledge, some conclusions can be 

drawn: 
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- EP models allow to reproduce some of the main features of the mechanical behaviour 

of snow, such as wide inelastic deformations, hardening and softening, etc. 

- In the framework of continuum EP models for snow, the modified Cam Clay, originally 

developed for soil mechanics applications, was largely used as a starting point for 

deriving snow-specific constitutive models, usually under the assumption of isotropy. 

The modified Cam Clay allows to account for a closed, smooth and convex yield 

surface with finite extent of the elastic range both in compression and in tension. 

Moreover, this surface is able to considerably shrink and expand to reproduce the gain 

in cohesion due to sintering or to the increasing compressive stiffness.   

- Generally, the available snow constitutive models do not consider several micro-

structural parameters that in reality strongly influence the snow response, such as the 

change in shape of snow crystals (due to snow metamorphism).     

- Infinitesimal strain theory was typically introduced in FE codes to validate the 

reliability of constitutive relationships with reference to laboratory tests, even though 

it shows some limits in describing the typically large deformation of snow in natural 

conditions.  

- Finite strain theory was implemented since long time for snow, both for validating 

theoretical models and for on-site applications. Referring to the latter topic, 

constitutive models implemented with large deformation are able to properly 

reproduce, for instance, the growth of fracture within weak interface layers and the 

avalanche onset.  

Despite the considerable developments of both theoretical and numerical models in recent 

decades, further improvements in snow constitutive models are required in order to account for 

many other issues, that are in part highlighted in this work. The research should be pointed to 

the following key points: 

- A new class of EP constitutive models based on large deformation theory and 

multiplicative decomposition of the deformation gradient are needed.  

- These models should be capable of accounting for: i) the hardening/softening 

behaviour of snow linked to the sintering process (formation, growth and breakage of 

bonds between grains), ii) the viscous effects of snow ice skeleton, iii) the 

implementation of some micro-structural parameters that can describe the variation in 

time of the snow particles and their effects on the mechanical response of snow.  

- The yield surfaces should be able to vary their shapes, to considerably shrink and 

stretch on both the meridian and deviatoric sections in order to follow the different 

stress paths observed in laboratory and on-site conditions.  
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