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Abstract. This contribution introduces a novel approach to simulate the nonlinear elastic bend-
ing behaviour of cables. Bending tests on real cables with complex structures clearly show the
existence of nonlinear constitutive bending behaviour. In our current framework, only constant
effective stiffness parameters are used. In order to enable nonlinear bending behaviour within
the current framework, we propose an iterative method where, at each step, constant stiffness pa-
rameters are used and are updated according to the current cable state. The presented method
is demonstrated by means of numerical experiments. Moreover, the inverse problem, i.e. the
determination of state-dependent bending stiffness characteristic, is considered. Here, besides
purely virtual considerations, we also investigate measurements from real cable experiments

1 INTRODUCTION

Flexible slender structures like cables and hoses are omnipresent in modern cars. Therefore,
the demand of fast and geometrically exact simulations of these flexible objects has increased in
recent years. In [1] and [2], typical applications of such a simulation tool are illustrated.

The theory of Cosserat rod provides a framework for modeling the deformation of cables in
a geometrically exact and efficient way [2, 3, 4, 5]. We follow [2], where the static equilibrium
of a Cosserat rod under given boundary conditions is obtained by minimization of the poten-
tial energy, which consists of the external potential (usually gravity) and the elastic energy. In
many applications with rather simple cables and hoses, a linear elastic constitutive behaviour is
sufficient, such that the elastic energy is characterized by constant effective stiffness parameters.
However, for more complex cables, e.g. high-voltage cables or cable bundles, nonlinear constitu-
tive bending behaviour can be clearly observed during cyclic pure bending [6] and MeSOMICS
bending experiments [7]. Moreover, investigations taking into account inter layer friction and
slip of cables, as the one conducted by Papailiou [8, 9], show the dependence between bending
stiffness and bending curvature. Dörlich et al. used a piecewise linear elastic bending constitu-
tive law to approximate the nonlinear elastic bending behaviour of a Bowden cable and applied
it to Cosserat theory [6].
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In this work, we propose an iterative method to enable nonlinear bending behaviour, namely
a state-dependent bending stiffness characteristic, within the framework of energy minimization
with constant stiffness parameters. The general idea is to iteratively update the constant stiffness
parameters until the cable state converges. In each iteration, the constant stiffness parameters
are set according to the current cable state and the new equilibrium is computed by energy
minimization. Moreover, we discuss the inverse problem, i.e. how to determine the corresponding
state-dependent bending stiffness characteristics from given measurement results.

The paper is structured as follows: Section 2 describes a Cosserat model in two-dimensional
space. Next, the bending experiment used for our virtual and real experiments is introduced
in Section 3. In Section 4, an iterative method is proposed which enables the simulation of
nonlinear elastic behaviour, although in each iteration step, constant stiffness parameters are
used for the energy minimization. The inverse problem is presented in Section 5, and we give a
conclusion of our work in Section 6.

2 COSSERAT ROD IN TWO DIMENSIONAL SPACE

In this work, we only consider in-plane bending, therefore a simplified two-dimensional version
of a geometrically exact Cosserat rod is used. The Cosserat rod is described by the centerline
(x(s), y(s))T ∈ R2 and the rotation angle α(s), with arc length parameter s ∈ [0, L]. Since we
allow shear deformation, α(s) can be different from the centreline’s tangent angle at arc length
s. The rotation matrix at a given arc length can simply be represented as

R(s) =

(
cos(α(s)) − sin (α(s))
sin (α(s)) cos (α(s))

)
. (1)

 
 

 

Figure 1: Left: Continuous Cosserat rod in R2. Right: Discrete Cosserat rod in R2.

2.1 Continuous Cosserat rod

In the continuous case, strain measures, i.e. the local bending curvature K(s) and shear-
extensional strain Γ(s) are given as
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K(s) = α′(s) and Γ(s) =

(
Γ1(s)
Γ2(s)

)
= R(s)T ·

(
x(s)
y(s)

)′

−
(
1
0

)
, (2)

where Γ1(s) measures primarily extension and Γ2(s) measures transverse shearing.
Above we assumed vanishing pre-curvature in the undeformed rod configuration. In principle,

one can incorporate a non-vanishing pre-curvature. However, in this work we consider only cases
with a straight reference configuration.

For linear elastic rods, forces and bending moments can be formulated as F = CΓ · Γ(s) and

M = [EI] · K(s), where CΓ =

(
[EA] 0
0 [GA]

)
contains the effective tension stiffness [EA] as

well as effective shear stiffness [GA] and [EI] is the effective bending stiffness. Finally, we can
formulate the elastic potential energy as

W =
1

2

∫ L

0
ΓT (s) · CΓ · Γ(s)ds+ 1

2

∫ L

0
[EI] ·K(s)2ds. (3)

where the first term denotes the contribution of shear and tension energy, the second term is the
bending energy. In principle, the static equilibrium can be obtained by minimizing the elastic
potential energy. For more details, we refer to [2].

2.2 Discrete Cosserat rod

The configuration of a discrete Cosserat rod deformed in the x-y plane as shown in Fig. 1,
consists of discrete vertices (xi, yi) and edge-centered rotation matrices Ri(αi+1/2). The index i
is used for vertex quantities at si for i = 0, ..., N and i+ 1/2 is used for edge-centered quantities
at si+1/2 for i = 0, ..., N−1. The discrete local strains Γi+1/2 are edge-centered quantities, while
the discrete local curvatures Ki are vertex based quantities

Γi+1/2 = RT (αi+1/2) ·

(xi+1−xi

∆si+1/2
yi+1−yi
∆si+1/2

)
−
(
1
0

)
, Ki =

αi+1/2 − αi−1/2

δsi
, (4)

where ∆si+1/2 = si+1 − si for i = 0, ..., N and 2δsi = ∆si−1/2 + ∆si+1/2 for i = 0, ..., N − 1
(2δs0 = ∆s1/2, 2δsN = ∆sN−1/2). Further details about the derivation from continuous case
can be found in [10, 11].

The discrete approximation of the elastic potential energy using midpoint and trapezoidal
quadrature is given as

V =
1

2

N−1∑
i=0

∆si+1/2 · (Γi+1/2)
T · CΓ · Γi+1/2 +

1

2

N∑
i=0

δsi · [EI] ·K2
i , (5)

where the first term denotes the contribution of discrete shear and tension energy, the second
term is the discrete bending energy. Again, the equilibrium state can be found by minimizing
the elastic potential energy.
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We want to emphasize, that the bending stiffness [EI] might vary along the rod, such that
we rewrite the potential bending energy from Eqn. (5) as

VB =
1

2

N∑
i=0

δsi · [EI]i ·K2
i (6)

with local bending stiffness [EI]i around each vertex si.

3 BENDING EXPERIMENT

Real bending experiments and virtual bending experiments are conducted to investigate the
bending behaviour of cables.

3.1 Real bending experiment

Bending experiments are conducted on the MeSOMICS [7] measurement machine. In this
bending experiment, the specimen is mounted between two low-friction bearings, such that
we have (ideally) moment-free boundary conditions at both clamping points. Fig. 2 shows a
top-view photo of the bending test. Fig. 3 shows a schematic sketch. During the test, the
left clamping point is displaced stepwise towards the right clamping point, leading to different
bending deformations (cf. Fig. 3), while the resulting reaction force at the right clamping point
is measured and the applied displacement is recorded. The measured data is further used in
Section 5.2 to determine the characteristic from the real bending experiment.

Figure 2: Top-view of MeSOMICS bending exper-
iment.

d

Figure 3: Schematic representation of experimen-
tal procedure for bending measurements.

3.2 Virtual bending experiment

Besides real bending experiments we also perform virtual bending experiments, using the
discrete Cosserat rod in two-dimensional space from Section 2.1. The boundary conditions are
the same as for the real bending experiment and we also, virtually, measure the resulting forces
for the applied boundary conditions. The two-dimensional Cosserat rod is implemented using
MATLAB and the built-in function fmincon is used to minimize the elastic potential energy.
Fig. 4 shows an example of the bending deformations in virtual bending experiment.

4 ITERATIVE UPDATE OF CONSTANT BENDING STIFFNESS

As previously mentioned, during measurements we found that cables show nonlinear elastic
behaviour, namely, a state-dependent bending stiffness. In this work, we focus on curvature-
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Figure 4: Bending deformations of the initial rod (already slightly bend) and three displacement steps
d, 2d, 3d, with d = 5 · 10−3 m. The following parameters are used for the simulation: L = 0.2m, N = 11,
[EI] = 10−3 Nm2, [EA] = 1000N, [GA] = 1000N.

dependent bending stiffness parameters.
Following the work in [2], in general, the potential bending energy is WB =

∫ L
0 Φ(K(s))ds,

where Φ(K(s)) is the bending energy density. Again, the potential bending energy is discretized
according to trapezoidal quadrature as VB =

∑N
i=0 δsiΦ(Ki).

The constitutive equation for the bending moment is given by

M(K(s)) =
dΦ(K)

dK

∣∣∣∣
K=K(s)

, (7)

and, further, the local bending stiffness computes as

dM(K)

dK

∣∣∣∣
K=K(s)

=
d2Φ(K)

dK2

∣∣∣∣
K=K(s)

:= fEI(K(s)). (8)

To make sure that an increased curvature always leads to an increased bending moment, the
local bending stiffness must fulfill fEI(K(s)) > 0 for all s ∈ [0, L].

In general, fEI(K(s)) also explicitly depends on the arc length s, such that the bending
stiffness characteristic is different for all local cross sections. In this work, however, we only
consider an implicit dependence of s via the bending curvature K(s).

With Ki = K(si), we find from Eqn. (7) and (8) that the local bending moment and the
bending energy density can be written as

M(Ki) =

∫ Ki

0
fEI(κ)dκ and Φ(Ki) =

∫ Ki

0

∫ ξ

0
fEI(κ)dκdξ. (9)

For the special case of a curvature-independent bending stiffness, i.e. constant [EI]i at each
vertex, Eqns. (9) simplify to

M(Ki) = [EI]i ·Ki and Φ(Ki) =
1

2
· [EI]i ·K2

i . (10)
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In principle, one can use the second Eqn. in (9) in the elastic potential energy to solve for
the static equilibrium as before, i.e. minimizing the elastic potential energy. However, this is
computationally expensive. Thus, in this work we investigate how to exploit Eqn. (6) also for
the simulation of nonlinear bending behaviour. More precisely, we aim for an iterative method,
where in each step we update the constant [EI]i according to fEI(Ki) and solve the energy
minimization problem with constant stiffness values.

To obtain correct simulation results, we need to make sure to use consistent bending moments.
This means, the bending moment within one iteration step with constant bending stiffness
in Eqns. (10) must equal the general bending moment calculated with the first Eqn. in (9).
Consequently,

[EI]i ·Ki =

∫ Ki

0
fEI(κ)dκ (11)

must hold and yields

[EI]i =
1

Ki
·
∫ Ki

0
fEI(κ)dκ. (12)

Thus, the stiffness update in each step is done by setting [EI]i = gEI(Ki), where we define

gEI(κ) :=
1

κ

∫ κ

0
fEI(ξ)dξ, (13)

and, vice versa,

fEI(κ) = gEI(κ) + κ · dgEI(κ)

dκ
. (14)

The suggested iterative procedure is illustrated in Fig. 5. In each step, a cable state (xmi , ymi ),
i = 0, ..., N and αm

i+1/2, i = 0, ..., N−1, is given, with corresponding curvatures Km
i and algorith-

mic local bending stiffness constant [EI]mi = gEI(K
m
i ) at each vertex. The upper index specifies

the iteration step, while the lower index reflects the spatial discretization. By minimizing the
elastic potential energy, we find a new equilibrium state (xm+1

i , ym+1
i ), αm+1

i+1/2 and corresponding

curvatures Km+1
i . If the curvatures converge, i.e. if

∑N
i=0 δsi · |Km

i −Km+1
i | < tol, we stop the

iteration. Otherwise, we update [EI]m+1
i = gEI(K

m+1
i ) and proceed with the next iteration

step. As initial value, we typically use a static equilibrium obtained with constant [EI] for all
vertices.

Depending on the slope of the state-dependent bending stiffness characteristic, the iterative
method might fail to converge. Therefore, a relaxed update of the bending stiffness values
is implemented, leading to convergence also for rather steep slopes. However, details are not
discussed in this work.

To illustrate the iterative method, we perform a virtual bending experiment (as described
in Section 3.2) where we use a fictive state-dependent bending stiffness characteristic. The
characteristic is specified by a natural cubic spline, its shape is determined by three control
points (see Fig. 6).
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Figure 5: A flow chart for iterative update of the local effective bending stiffness.

In order to validate the iterative method, the solution of an energy minimization with the
general bending energy density in Eqns. (9) is performed and serves as reference solution.

The model parameters are shown in Table 1, where (κ̂0, ˆ[EI]0), (κ̂1,
ˆ[EI]1) and (κ̂2, ˆ[EI]2)

are control points for the spline function to represent the state-dependent bending stiffness
characteristic.

[EA] [N] 1000
[GA] [N] 1000
L [m] 0.2
κ̂0 [m−1] 0
κ̂1 [m−1] 5
κ̂2 [m−1] 10
ˆ[EI]0 [Nm2] 1 · 10−3

ˆ[EI]1 [Nm2] 3 · 10−3

ˆ[EI]2 [Nm2] 3.5 · 10−3

Table 1: Simulation parame-
ters.
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fEI(5)

Control point

Figure 6: The state-dependent bending stiffness
characteristic fEI(κ).

First, we only consider one static boundary condition. In Fig. 7, the discrete curvatures
Ki are plotted over the arc length si. The curvatures in the reference solution are plotted as
black dashed curves. The initial state for the iterative method, a circular arc and thus constant
curvature, is plotted in solid blue. In the left figure, the first two iteration results are shown
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Figure 7: Discrete curvatures in each iteration, compared with the reference solution. As initial state,
a circular arc, i.e. constant curvature, is used.

whereas in the right the curvatures after iteration three and six are plotted. One can observe,
that after a few iterations, the curvatures in the iterative method converge to the reference
solution. In this example, the computational cost for the iterative method is approximately five
times lower than for the reference solution, i.e. than solving the energy minimization problem
with the bending energy density given in Eqns. (9).

Next, we apply a sequence of static boundary conditions and displace the left mounting point
as described in Section 3.2. Fig. 8 shows the horizontal reaction force over the displacement.
Since we already start in a bent configuration, the displacement does not start from zero. The
plot shows very good agreement between the horizontal reaction force obtained at the fixed end
point from iterative method and the reference solution.
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Figure 8: Horizontal reaction force obtained at the fixed end point, resulting from varying displacements.
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5 INVERSE PROBLEM

So far, we have assumed given state-dependent bending stiffness characteristics fEI(κ) and
discussed how to utilize those in our framework of energy minimization with constant bending
stiffness. Now, we focus on the question how to determine the characteristic from given mea-
surement results, i.e. the horizontal reaction force. This leads to an inverse problem: find fEI(κ)
such that

∑J
j=1(F

S
j − FG

j )2 < tol, where the index j = 1, ..., J denotes the given displacements,

FS
j represents the simulated force computed from the current fEI(κ) at displacement step j and

FG
j represents the corresponding measured target force.
As previously mentioned, we use a natural cubic spline to represent the state-dependent

bending stiffness characteristic. Thus, with that rather general but simple representation, in the
inverse problem we find the control points (κ̂0, ˆ[EI]0), (κ̂1,

ˆ[EI]1) and (κ̂2, ˆ[EI]2). For simplicity,

we assume fixed κ̂0, κ̂1 and κ̂2 and only consider ˆ[EI]0,
ˆ[EI]1 and

ˆ[EI]2 as optimization variables.

5.1 Inverse problem using virtual measurement data

In order to verify the solution of the inverse problem, we first use virtual measurement data.
This means, we simulate the force FG

j for j = 1, ..., J for a known state-dependent bending
stiffness characteristic fEI(κ). Thus, one knows the virtually measured force as well as the
underlying characteristic fEI(κ) and can assess the solution of the inverse problem.

Fig. 9 illustrates the optimization procedure to identify fEI(κ). The known state-dependent
bending stiffness characteristic, i.e. the reference solution is plotted as black dashed curves.
Starting with a constant bending stiffness characteristic, already after the first iteration, fEI(κ) is
close to the reference solution. In the third iteration, we have a very good agreement. Moreover,
Fig. 10 shows the target force FG

j and the simulated force FS
j which results from a simulation

with the identified state-dependent bending stiffness characteristic after three iterations. This
also shows a very good agreement.
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Figure 9: Optimization procedure to identify the fEI(κ) using virtual measurement data.
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Figure 10: The target force FG
j and the simulated force FS

j resulting from a simulation with the
identified fEI(κ), i.e. after three iterations.

5.2 Inverse problem using real measurement data

Finally, we use real experimental data to solve the inverse problem, i.e. to find fEI(κ) for a
real cable. The bending test was performed with a cable of diameter 4.6mm and a free length
of 181mm from clamping to clamping.

Fig. 11b shows the measured force, the force simulated with a constant [EI] (the initial
value) and the simulated force according to the identified fEI(κ). The identified state-dependent
bending stiffness characteristic fEI(κ) is shown in Fig. 11a, together with the constant initial
characteristic.

The simulated force with the identified stiffness characteristic fEI(κ) shows good agreement
with the measured force. However, looking on the identified characteristic right from the last
control point, the slope looks not very reliable. This is not a surprise, since the maximum
curvatures which occur during the test are approx. 11m−1 and, thus, only very little data is
available right from the last control point. Moreover, for small curvatures the fEI(κ) becomes
negative. Again, a lack of data might be an explanation for that unphysical solution. Another
source might be a possible pre-curvature of the cable not considered in the identification of
fEI(κ). In principle, as described in Section 2, a pre-curvature can simply be added to the rod
model. However, identifying the pre-curvature K0(s) for a real cable specimen is a non-trivial
task. In a first observation, we added constant pre-cuvature to the cable model. This clearly
influences the solution of the inverse problem (cf. Fig. 12). In a future work, we plan to add the
pre-curvature as optimization variable and add the requirement fEI(κ) > 0 (strict positivity)
as a constraint. To this end, another reasonable optimization input might be pictures of the
bending line, which are also available from MeSOMICS measurements.

6 CONCLUSION

In this work, we analyzed two aspects for the simulation of nonlinear constitutive behaviour.
First, we showed how to efficiently utilize arbitrary state-dependent stiffness characteristics

10



Tian Zhao, Fabio Schneider-Jung, Joachim Linn and Ralf Müller

0 5 10
5 [m!1]

-0.01

0

0.01

0.02

[E
I
]
[N

m
2
]

Initial [EI]

Identi-ed fEI(5)

(a) The identified state-dependent bending stiffness
characteristic fEI(κ).
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Figure 11: Identification of the [EI] characteristic using real measurement data.
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Figure 12: Identified fEI(κ) without considering pre-curvature, i.e. vanishing K0,i, and with a constant
non-zero pre-curvature of 2m−1.

fEI(κ) by means of an iterative method which uses constant stiffness values in each step. The
described routine makes use of a very cheap procedure to evaluate the bending energy term.
Second, we discussed how to identify state-dependent bending stiffness characteristics fEI(κ)
from a bending experiment by solving the inverse problem. For both aspects, the current results
are promising. Next steps foresee a deeper understanding how pre-curvature influences the
solutions of the inverse problem, how to treat pre-curvature as an optimization variable, and
constraining the function fEI(κ) to the physically admissible range of strictly positive values.
Moreover, different cable types will be considered, especially in the inverse problem, to learn
more about their qualitative state-dependent bending stiffness characteristic.
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