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A series of numerical experiments is conducted to assess the 
feasibility and practical value of finite element grid optimization 
based on direct minimization of the total potential energy of the 
discrete model with respect to the node locations. An implementation 
relying upon non-linear programming techniques is found to be 
numerically reliable and to lead to improved grids in accord with 
engineering intuition. This rigorous approach is hampered, however, 
by the excessive computational effort required by the energy 
minimization process. A combination of related techniques is 
therefore proposed to make dynamic node distribution a useful tool 
within the framework of large-scale finite element analysis. The 
combined strategy involves use of substructuring methods, 
application of a local ‘energy-balancing’ optimality criterion for fast 
node distribution, and automatic refinement of previously-improved 
coarse grids. 

Introduction 

This paper is a sequel to a previous article,’ in which 
general principles for problem-controlled optimization 
of finite element grids were formulated. The 
nomenclature used in that publication will be followed 
throughout. 

The practical realization of automated grid 
improvement rests primarily on two decisions: the 
selection of a grid optimization principle, and the 
choice of an algorithm for implementing the resulting 
node-distribution process. As a first step in the study 
of the subject, the total-energy minimization criterion 
was selected as the basis for optimizing energy- 
bounding finite element grids. A non-linear 
programming approach was then implemented to 
minimize the discrete energy functional E,* defined by 
equation (15) of reference 1. Particular attention was 
paid to the method-selection guidelines discussed in 
the last two sections of that paper. 

Minimization algorithms 

Three minimization algorithms were tried in the course 
of this study; the conjugate-gradient method of 
Fletcher and Reeves’ with numerical estimation of 
derivatives of the total-energy function Es. Secondly 
the derivative-free method of Rosenbrock,3 closely 
following the implementation reported in Kuester and 
Mize4. And third the derivative-free method of 
Powell’. The implementation of this method follows 
the code presented in Himmelblau6 along general lines, 
but with substantial problem-related enhancements. 

The Fletcher-Reeves algorithm was afflicted by 
repeated premature terminations caused by the 
sensitivity of the computed gradient to the selection of 
numerical differentiation points. Rosenbrock’s method 
proved to be intolerably slow if the number of 
optimization variables (N,) exceeded 5. On the other 
hand, Powell’s method performed reliably on all test 
problems, and was the least affected by dimensionality 
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Figure 1 Basic steps of Powell’s function minimization method 

effects, which corroborates the findings of Parkinson 
and Hutchinson7. On the basis of its superior 
reliability, Powell’s method was therefore selected as 
the standard energy-minimization algorithm for the 
test problems reported in the sequel. 

Given an initial feasible point X0, Powell’s method5 
attempts to locate a minimum of an N,-dimensional 
object function F(X) by performing successive uni- 
dimensional searches along conjugate directions 
generated by the procedure. A schematic flow chart of 
the method is shown in Figure 1. Computer 
implementation details are discussed by Himmelblau6. 
Only an informal outline is given here, which will be 
useful in the discussion of numerical experiments. 

The method maintains a direction matrix D of order 
N,. The columns of D represent normalized search 
directions in X-space. Starting from the initial point 
X0. D is set to the identity matrix Z, i.e., the initial 
search directions are parallel to the Xj axes. 

The object function F(X) is numerically minimized 
along each of the search directions in D. The value of 
X on exit from the previous search becomes the initial 
point for the next one. If a search penetrates an 
infeasible region’, the last feasible point is returned. 
After all directions in D have been processed. the 
method investigates whether a new search direction 
obtained by joining the starting point X0 and the final 
point X1 should be incorporated in D. If so, another 
uni-dimensional search is carried out along the new 
direction, which is adjoined to D, and X1 is updated. 
The full sweep across D will be called a ‘Powell stage’. 

Numerical tests for acceptance of an extremum of 
F(X) at the last point X1 are then performed. If an 
extremum is not detected, another stage is initiated 
using X1 as new starting point X0. The process 

continues until a numerical extremum is accepted, or 
some run-termination condition is met. 

Test problems 

Several one- and two-dimensional boundary value 
problems which arise in structural mechanics were 
used to acquire computational experience with the 
automated grid improvement technique. 

The one-dimensional sample problems involved the 
lateral deflection of non-uniform beams under various 
types of loading and support conditions. The beams 
were modelled by the usual Hermitian finite elements. 
These problems were primarily used for debugging 
purposes and for ‘tuning up’ the energy-function 
minimizer. The results were not particularly interesting, 
because the energy improvement is very small on 
account of the high accuracy with which smooth 
solutions of one-dimensional problems are 
approximated by cubic polynomials. Consequently, the 
one-dimensional examples will be omitted for brevity. 

The two-dimensional test problems displayed more 
interesting behaviour. The examples presented in the 
sequel involve the linear plane-stress analysis of thin 
plates loaded in their own plane. The potential energy 
functional for such problems has the form: 

E(u) = ; 
s 

zTCEhdA - 
s 

pTu ds (1) 
D B 

where u is a two-vector of displacement components 
(ux, u,,); E is a 3-vector of infinitesimal mechanical 
strains associated with U; C is a 3 x 3 material- 
property matrix; p is a 2-vector of in-plane traction 
forces (p,,p,) which acts on the plate boundary B; h is 
the plate thickness, and dA, ds are elements of plate 
mid-surface area and boundary arc length, respectively. 
The energy functional equation (1) contains only first 
derivatives of the state vector U; consequently, essential 
boundary conditions involve only prescribed values of 
u on B. 

The test plane-stress problems were modelled by 
energy-bounding quadrilateral finite elements. Each 
quadrilateral is assembled by four triangles, defined by 
joining the four quadrilateral corners to an internal 
point located at the arithmetic mean of the corner 
locations. The variation of the displacement 
components over each sub-triangle is linear. 

Carltilever beam 
The first two-dimensional example, defined in Figure 
2a, involves a uniform cantilever beam of thin 
rectangular section and aspect ratio (span: height) of 4. 
The material is linearly elastic and isotropic, Young’s 
modulus, E = 100, and Poisson’s ratio \: = 0.0. Two 
load conditions are considered: (S) end shear, and (U) 
uniform lateral load. 

The two regular grids shown in Figure 2b were used 
as initial meshes for the grid improvement process. the 
results of which are displayed in Figures 34. 

While optimizing the coarser (3 x 2) mesh, it was 
noticed that the transverse motion (y motion) of the 
nodes had a negligible effect on the numerical results, 
affecting at most the fourth decimal place of E,T. 1 t 
was therefore decided to permit the variable nodes to 
move only along the longitudinal direction (.x axis). 
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Figure 2 Cantilever beam test problem. (a), problem definition; 
material data: E = 100; v = 0. Initial grids: (b), 3 x 2 mesh; (c), 
6 x 4 mesh 

These kinematic constraints have the beneficial effect of 
substantially reducing the number of optimization 
variables (N, is cut from 10 to 6 in the 3 x 2 mesh, 
and from 41 to 20 in the 6 x 4 mesh). 

As might be expected, nodes tend to ‘cluster’ near 
the cantilever root, which is the region of highest 
energy density, Perhaps the most significant result is 
the impressive improvement in the total energy 
obtained with the coarse grid (32% and 44% for load 
cases (S) and (U), respectively). Such energy variations 
directly translate into similar improvements in the 
average magnitude of the transverse deflections and of 
the computed stress field. 

Figures 3 and 5, which show the variation of EC as 
a function of the number of energy evaluations, 
illustrate some of the performance characteristics of 
Powell’s minimization algorithm. The jerky variation 
of E: near the end of the Powell stages, and the 
relatively fast decay of E,* in the case of the coarser 
grid, as opposed to the much-slower progress in the 
finer grid are particularly noticeable. In the former, the 
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Figure 3 Energy-improved grids for cantilever beam under end 
shear load. 
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Figure 4 Energy reduction history in cantilever beam under end 
shear load. Key: 0, Powell stage number; s3S, satisfied minimum 
acceptance criteria; QE, exceeded minimum evaluations; N, 
number of optimization variables; 1. improvement in E:, A, 3 x 2 
mesh (N = 6. I = 32%); B, 6 x 4 mesh, (N = 20, I = 8%) 
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Figure 5 Energy-improved grids for cantilever beam under 
uniform lateral load. 

energy minimization process was terminated at 251 
and 289 energy evaluations for load cases (S) and (U), 
respectively, after all numerical tolerances for 
acceptance of a local minimum were met. On the other 
hand, no minimum was detected in the finer grid runs 
before the maximum number of energy evaluations (set 
to 600) was exceeded. The approximate CPU times 
required per energy evaluation on the UNIVAC 1108 
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Figure 6 Energy reduction history in cantilever beam under 
uniform lateral load. (See Figure 4 for key). A, 3 x 2 mesh 
(N=6,1=44%).B,6~4mesh(N=20,/=14%) 
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Figure 7 Cracked plate test problem. Material data: E = 100, 
v = 0.25 

computer were 52 and 216 msec for the 3 x 2 and 
6 x 4 grids, respectively. 

Cracked plate in tension jield 

The second example is defined in Figure 7. A thin, 
rectangular plate is subjected to uniform x-tractions. 
The plate contains a hair-line crack extending across 
one-half of the plate x-width. Symmetry conditions 
allow consideration of one-quarter (x 3 0, y 3 0) of 
plate. 

the 

A 4 x 4 regular mesh is generated over the first 
quadrant as initial input to the grid optimizer. The 
node motion constraints and the improved grid . _ ^ ~~~ 
obtained after 500 energy evaluations are displayed in 
Figure 8. The number of optimization variables is 26. 
Each energy evaluation required 148 msec on a 
UNIVAC 1108 computer. Figure 9 shows the initial 
and improved grid layouts over the entire plate. 

In this problem the region of high energy density 
occurs in the vicinity of the crack tip, toward which 
the nodes tend to ‘drift’. Figure IO shows the variations 
in the total energy E,* plotted against number of 
energy evaluations. The rapid decay of E,* near the end 
of the first Powell stage is caused by the motion of the 
two sliding nodes located on the y-axis (which were 
numbered last) towards the crack tip. The 
improvement in Ez is rather small as compared to the 
cantilever beam example. This is not surprising, since 
most of the potential energy is associated with the 
almost-uniform extension of the plate in the x- 
direction, and the magnitude of the edge displacements 
is only slightly affected by the presence of the crack. A 
similar energy-decay pattern can be expected from 
most of the problems which involve stress 
concentrations that do not appreciably affect the 
displacements of the applied loads. The improvement 
in stress definition near the crack tip is, however, 
significant. 

Computational effort assessment 

The running time of the grid optimization program is 
largely controlled by the number of object-function 
calls, i.e., evaluations of the energy functional E:. (The 
overhead spent in the optimization driver is negligible 
for most problems.) Each energy evaluation 
corresponds to a full linear analysis of the discrete 
model with a different coefficient matrix A (see 

equation (5) of reference 1). When Powell’s method is 
used, the number of energy evaluations NE required to 
attain a satisfactory grid can be estimated to be: 

N, z N,N; 2 N,N:(N, + 1) (2) 

where N, = number of Powell stages required; 
Ng = average number of energy evaluations per stage; 
NE” = average number of energy evaluations per uni- 
dimensional search, and N, = number of optimization 
variables. 

The numerical experiments indicate that NE” z 6 
whereas Ns varies from 3 to 7. Using an average value 
N, z 5 and assuming that N, z N, + 1, Equation (2) 
gives : 

N E R 30Nx 

In finite element grids commonly utilized for 

(3) 

production-level analysis of complex engineering 
systems, N, would typically be in the range lo3 to 104. 
The estimated N, would then fall in the range 30000 
to 300000, which is clearly prohibitive. In finite 
element analysis, the cost per energy evaluation 
generally grows as NY, where the exponent m varies 
from 2 to 3 dependent on whether the assembly of A 
or the solution of the linear system dominates the 
computational effort, respectively. The total grid 
optimization cost, C, can therefore be expected to 
increase as: 

CccN;toN; (4) 

Reduction of computational effort 

Evidently the chief obstacle in the exploitation of the 
direct energy minimization method as a practical node 
placement scheme is the substantial computational 
effort associated with the non-linear programming 
approach. The implementation of more refined non- 
linear programming algorithms is unlikely to affect the 
computational cost other than marginally. Instead, a 
reduction to acceptable levels will most likely require a 
concerted plan of attack which involves a combination 
of the following techniques: 

Substructuring: the node distribution process is 
applied only within design-critical regions identified by 
the analyst. 

Fast node distribution: a scheme to displace nodes 
to high-energy density regions based on a ‘local’- 
rather than global-optimality criterion. 

Automatic grid w/inement: an optimized ‘coarse’ 
grid is refined by suitable injection of new nodes in 
regions which exhibit high energy gradients. 

I 

Crack 

Figure 8 Node motion constraints in cracked plate problem 
0, fixed nodes; 0, moving nodes 
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Figure 9 Results of grid optimization process in cracked plate 

problem. (a), initial grid; (b), improved grid 

Substructuring 

The design of a complex three-dimensional structural 
system is generally controlled by the behaviour of 
critical components, which represent the weakest links 
as regards some failure criterion. The wing-fuselage 
intersection of an aircraft would be a typical example. 
These components can sometimes be identified a priori 
by experienced analysts, but most often emerge during 
the course of the analysis-design cycle. 

Using the system-dissection approach known as 
substructure or ‘superelement’ partitioning*, critical 
regions can be embedded within subdomains 
D,, D,, D, called substructures, which contain an 
integral number of finite elements. Outside of these 
regions, the setting up of the finite element model is 
relatively unimportant and can be routinely handled 
by experienced analysts. 

The key idea is to apply the automated grid 
refinement scheme only to the critical substructures Dj. 
Nodes located on the boundary of Dj will usually be 
considered fixed for compatibility with the grid layout 
external to Dj. Typically the initial grid over each 
substructure will follow regular patterns such as the 
example grids, since regular grids are easier to 
generate. 

An initial analysis of the complete structure is 
performed. This analysis supplies stress-displacement 
boundary conditions over the Dj interfaces. 
Substructure grids are then improved following a fast 
node-distribution procedure, such as the one proposed 
below. If several load cases are active, a ‘compromise’ 
grid will have to be selected. 

The attractiveness of the substructuring approach- 
as opposed to attempting to optimize the grid over the 
entire structure-lies in the substantial savings 
achieved in computational effort (cf. equation 4) 
without sacrificing the quality of design-relevant 
information. Furthermore, this approach is readily 

integrated with a computer-aided interactive design 
system, in which sections of the design data base are 
periodically examined and updated by the analysts. 
Note that the computational savings would be even 
more impressive if it turned out that locally optimized 
grid layouts could be reused throughout the model; for 
example, the cracked plate of Figure 7 might represent 
many identical substructures. 

Energy-balancing node distribution 

The application of a rigorous optimality criterion 
based on the minimization of the total discrete energy 
I?,* requires the performance of many complete 
structural analyses over the spatial domain D of 
interest. The same would be true of any grid-optimality 
condition that involves a discretization error integral 
over D, such as Equation (6) of reference 1. An order- 
of-magnitude speed-up of the node distribution process 
can only be attained by use of a less restrictive 
optimality criterion based on a locul (element-level) 
condition rather than on a global one. 

A node-distribution scheme presently under 
consideration is based on the use of the internal 
energy-density function d,(u) given by equation (9) of 
reference 1, as a nod[d density jimction’ in the following 
sense: each finite element which pertains to a 
substructure domain D is to store the same amount of 
energy. The term ‘energy-balancing’ is therefore an 
appropriate method identifier. The resultant 
distribution algorithm consists of three basic stages. 
I 

2 

(a) 

(b) 

(c) 

InitiallJl e,iergy density culculation: the energy 
density function dr(X,) is evaluated at the node 
location vector X0 of the initial grid from a 
preliminary analysis of the discrete model. 
Node sweep: a loop is performed over all movable 
nodes. For each node K the following sequence of 
calculations is carried out: compute the total 
energy absorbed by elements that surround 
node K (a numerical quadrature scheme would 
normally be employed to that effect): 
compute the energy unbalance UK at K resulting 
from adjacent elements, and the partial derivatives 
UC, Ut, and Uf pertaining to virtual motions of 
the node K along the global coordinate directions 
x, J’. and z (all other nodes being assumed fixed): 
displace node K to a new location that 
approximately solves the local energy-balancing 
equation U K = 0 by app Y g 1 in one or two Newton- 
iteration cycles. Partial constraints on the motion 
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Figure 70 Energy reduction history in cracked plate problem 
(see Figure 4 for key) 
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apportioned in equal amounts to the resulting 
subelements. 

(e.g., node K must remain on a surface or curve) 
can easily be taken into account; 

(d) recompute the energy density dl(xK, y,, zK) at the 
new location of node K by appropriate 
interpolation. 

Energy density recalculation: repeated node sweeps 
will displace nodes toward regions of higher energy 
density. After a number Nsw of node 2 sweeps have 
been performed, the energy-density function which 
corresponds to the new grid should be recalculated by 
solving the boundary value problem over the 
substructure. (Nsw could be automatically adjusted by 
monitoring the sum of the distances travelled by the 
nodes since the last complete analysis.) The second and 
third steps are repeated as necessary. 

If the actual boundary value problem is non-linear 
or time-dependent, it is expected that optimized grids 
can be reused through many incremental solution 
cycles as long as solution patterns remain sensibly 
constant over the pertinent substructures. 

Some algorithmic similarities between the energy- 
balancing node-distribution process and structural 
optimization techniques based on strain energy 
distribution” are worth mentioning. 

Automated grid wjinement 

Finite element grids optimized by node distribution 
retain the number of degrees of freedom and the 
topological configuration of the initial grid. It often 
happens that the analyst, after looking at the results of 
the discrete analysis, wishes to refine the grid by the 
insertion of new nodes. For example, the analyst may 
decide that the four quadrilateral elements adjacent to 
the crack tips in Figure 9 ought to be further 
subdivided so as to capture the stress singularity 
better. This type of ‘node injection’ may be amenable 
to automatic treatment according to the following 
element-splitting technique: 
1 The user specifies an energy-density gradient 

threshold (variation of internal energy density over 
an element span) that will trigger node injection 
over a given substructure region. 

2 The program examines each finite element which 
pertains to the last optimized grid. If the 
energy-density threshold is exceeded over an 
element, that element is subdivided into an 
appropriate number of subelements (e.g., a 
quadrilateral is partitioned into four quadrilaterals, 
a hexahedron into eight hexahedra, etc.), and 
nodes placed at the new corner positions. The 
partition is carried out in such a way that the total 
energy of the original element is approximately 

3 The node-augmented grid may be resubmitted to 
the grid optimizer for a few improvement cycles if 
so desired. 

Conclusions 

Numerical experiments indicate that node distribution 
by direct minimization of the total potential energy is 
a technically feasible procedure for optimizing energy- 
bounding finite element grids. The chief advantage of 
this technique is that estimates of the local 
discretization error are not required. The main 
disadvantage of the realization as a non-linear 
programming problem is the significant amount of 
computational effort involved, which can be expected 
to grow as the third to fourth power of the number of 
degrees of freedom of the discrete model. This rapid 
growth restricts the practical application range of 
direct total-energy minimization to one-dimensional 
and coarse two-dimensional grids. 

The principal factors to be considered in subsequent 
developments of dynamic grid optimization are: the 
implementation and assessment of fast node 
distribution schemes based on local energy-balancing, 
and the integration of grid-optimization software with 
model partitioning (substructuring) processors designed 
to operate in an interactive mode. 
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