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A finite deformation continuum theory is derived from interatomic potentials for the analysis of the mechan-
ics of carbon nanotubes. This nonlinear elastic theory is based on an extension of the Cauchy-Born rule called
the exponential Cauchy-Born rule. The continuum object replacing the graphene sheet is a surface without
thickness. The method systematically addresses both the characterization of the small strain elasticity of
nanotubes and the simulation at large strains. Elastic moduli are explicitly expressed in terms of the functional
form of the interatomic potential. The expression for the flexural stiffness of graphene sheets, which cannot be
obtained from standard crystal elasticity, is derived. We also show that simulations with the continuum model
combined with the finite element method agree very well with zero temperature atomistic calculations involv-

ing severe deformations.

L. INTRODUCTION

Despite the brittle fracture observed in experiments' and
simulations > and the development of plasticity predicted by
calculations,*> carbon nanotubes can sustain very large elas-
tic deformations without developing lattice defects, and ato-
mistic calculations have shown that indeed the nonlinear me-
chanical response of these nanostructures very closely
resembles that of macroscopic buckled elastic shells.® Re-
cently, continuum mechanics concepts have often been ap-
plied to study the mechanics of carbon nanotubes. The resil-
ience of carbon nanotubes to severe mechanical deformation
has been experimentally demonstrated,” > which suggests
that elastic models are applicable over a large range of de-
formations. However, consistent finite deformation con-
tinuum theories for nanotubes have only recently been
investigated.13

The characterization of the small strain response of car-
bon nanotubes through elastic moduli such as Young’s modu-
lus, Poisson’s ratio, or the flexural rigidity is now ubiquitous
in the literature.!*"'® The extraction of the elastic moduli
from an atomistic model, such as analytical potentials,m'21
tight-binding models,22 or ab initio calculations,m’17 is com-
monly performed by post-processing data from numerical
computations through approximate fits to polynomials or fi-
nite difference approximations of derivatives.!”?> This pro-
cedure has some limitations. For instance, the error in ab
initio elastic properties calculated from the second derivative
of the strain energy with respect to the axial strain can be as
high as 10% due to the numerical approximation of the
derivatives.!® Furthermore, these approaches do not provide
detailed information about the relation between the moduli
and the atomistic potential.

Continuum theories have also been applied to the analysis
of various aspects of the mechanics of carbon nanotubes
(CNTs) such as the vibrational properties,12 the energetics of
the transverse deformation®”* and the buckling behavior by
linearized stability analysis.s’25 The most common approach
is to idealize carbon nanotubes as cylindrical linearly elastic
thin shells, thereby ignoring all nonlinearities. The definition
of a wall thickness is required for such a model. This thick-

ness has often been assumed to be the graphite interlayer
distance 71=0.34 nm. Given a thickness, and a value for
Young’s modulus and Poisson’s ratio, thin shell theory pro-
vides a formula for the bending modulus of the wall. It was
noticed® that the predictions of this theory with r7=0.34 nm
lead to elastic moduli inconsistent with the actual properties
of CNTs, extracted for instance from atomistic calculations.
This problem has been formally overcome either by selecting
the precise thickness for which the thin shell formulas are
consistent (around 7=0.066 nm).® or by defining the effec-
tive thickness in bending as an independent elastic
parameter.18 Both ad hoc approaches manifest the inad-
equacy of thin shell theory, which is aimed at bulk materials
forming structures very thin in one dimension, for an intrin-
sically two-dimensional material such as the graphene mono-
layer. In particular, the mechanism that endows graphene
sheets with bending stiffness does not result from a thickness
across which part of the material is in tension and part in
compression, as will become clear later. It has been noted by
some authors” that the two-dimensional (2D) nature of
graphene sheets, which are crystalline films one atom thick,
renders the notion of a wall thickness rather awkward from a
purely mechanistic point of view. Following this idea, it is
now common to express Young's modulus in units of surface
tension.!”2¢

In this paper, the method for bridging the atomistic de-
scription of curved single layer crystalline films and con-
tinuum mechanics theories put forward in Ref. 13 is com-
bined with bond-order potentials.>’~> This continuum theory
is based on an extension of the Cauchy-Born rule called the
exponential Cauchy-Born rule, which accounts for the cur-
vature of the film. Analytical results on the elastic in-plane
and bending properties of graphene as well as numerical
simulations of carbon nanotubes are presented. Unlike con-
ventional linear elastic thin shell analysis, the present non-
linear theory acknowledges the two-dimensional nature of
graphene (the continuum object replacing the crystalline
monolayer is a 2D surface without thickness), and is rigor-
ously derived from an underlying atomistic potential.

Section IT outlines the limitations of existing crystal elas-
ticity theories for carbon nanotubes, as well as the theoretical



M. ARROYO AND T. BELYTSCHKO

foundation of the present theory. Section Ill describes thellustrated, and the extended theory briefly outlined.
formulation of the continuum constitutive response in terms Space-filling continuum bodies can be mathematically
of the interatomic potential. The precise definitions of therepresented by subsets of the ambient Euclidean space. Con-
infinitesimal elastic moduli of carbon nanotubes, and theirsider the finite deformation of this body. Lét be the defor-
explicit expression in terms of the functional form of the mation that maps the undeformed badyCR3, into R3. If
interatomic potential, are provided in Sec. IV. It is shown X denotes a point in the undeformed body, its image after
that these analytically derived moduli coincide with thosedeformation is x=®(X). The deformed body is)
extracted from atomistic calculations. In Sec. V, the simula-=® (), and is also a subset 6. The deformation gra-
tion method developed by combining the continuum me<ient is thederivative of @, F=D® = gd/dX e R3*3. At
chanics surface model and the finite element method igach pointX, the deformation gradient is a linear transforma-
shown to accurately mimic the energetics, the large deformation from R® into R®, which locally characterizes the defor-
tion morphologies, and the structural instabilities of the parmation, and maps “infinitesimal” material vectors from the
ent atomistic model in the fully nonlinear regime. In a com-undeformed into the deformed bodjx=FdX.*°
panion papef’ the mechanics of thick multiwalled carbon  The central hypothesis behind molecular theories of elas-
nanotubes containing millions of atoms are explored. ticity at finite strains is that, at the scale of the atomic spac-
ing, the deformation of the crystal is homogeneous. Conse-
quently, as the crystalline solid deforms, lattice vectors

Il. FINITE CRYSTAL ELASTICITY FOR CURVED undergo a linear transformatidA®3“6This approach is often

MONOLAYERS abstracted through the Cauchy-Born rtfié”
The relation between the elastic moduli of bulk crystalline
materials and the interatomic interactions is well established a=FA, (1)

in modern molecular theories of elasticity. There are two
equivalent approaches for extracting the elastic moduli fronyvhere A denotes an undeformed lattice vector amdhe
the atomistic descriptiof;®? namely themethod of the ho- same vector in the deformed crystal. This rule links the ato-
mogeneous deformatiofi$° also called the Cauchy-Born Mistic and the continuum deformations. Complex lattices,
hypothesis® and the method of the long waves within that is lattices with more than one atom in the unit cell,
lattice-dynamical theorie¥. For examples of the application require a special treatment as detailed in the following sec-
of these classical methods to the in-plane response dfon. The Cauchy-Born rule is restricted to regions where the
graphene, see Refs. 37 and 38, respectively. The methddystal is free of defects, slips, and other inhomogeneities or
based on the Cauchy-Born rule is purely static but, unlike th&pecial crystallographic phenomena. Its validity and range of
asymptotic long wave limit of lattice dynamics, describes theapplicability has recently been rigorously studied by methods
mechanics of crystals at finite strains. This method gives ris€f nonlinear analysis!
to continuum constitutive models systematically derived Now consider a crystalline monolayer such as a graphene
from the atomistic model in hand. Furthermore, the derivecsheet deforming arbitrarily in three dimensions. It is natural
constitutive models inherit the symmetries of the underlyingin this case to treat the continuum solid as a surface, a curved
lattice. Finite crystal elasticity has been used, for instance, t§vo-dimensional body without thickness. Indeed, the two-
obtain elastic moduli and study the stability of straineddimensional nature of the lattice does not suggest any mean-
crystals®3—353%40Recently, these ideas have been cast in angful thickness; owing to the Born-Oppenheimer approxi-
computational framework to solve general boundary valugnation, the binding energy depends exclusively on the
problems with complex geometries or loading, in what ispositions of this two-dimensional arrangement of atoms. It is
called the quasicontinuum meth8tdThis method can handle Postulated that the atoms lie on the surface, and therétfere
defects and fracture, by adaptively refining the continuuniattice vectors are chords of the surfate.
description down to the atomic level where required. A sim- The appropriate framework to describe two-dimensional
pler version, the so-called local quasicontinuum methodcontinua deforming in three dimensional Euclidean space is
combines the finite element method and finite crystal elasti€ontinuum mechanics on manifol&The undeformed body
constitutive relations; successful applications include thdo, which represents the planar ground configuration of
simulation of nanoindentation in silicon based on an analytigraphene, is now a subset Bf. It is mapped by the defor-
cal potential and the tight binding meth®f3and an analy- mation into the deformed bod§, a surface ink®. In this
sis of the polarization switching of ferroelectric single crys-context, the deformation gradieftis called the tangent of
tals based on aab initio Hamiltonian** the configuratioim®, and it maps infinitesimal material vec-
Given the crystalline nature of carbon nanotubes, and thtors of the undeformed bod§, into vectors which are tan-
large elastic(reversible) deformations they exhibit, finite gent to the surfacé€) (see Fig. 1).
crystal elasticity appears to be appropriate for their mechani- The standard Cauchy-Born hypothesissFA produces
cal analysis. As recently suggestéadhe standard theories tangent vectors instead of chords, i.EAe T,Q), where
aimed at space-filling crystals do not capture the effects of,{) denotes the tangent linear space to the surfacat x,
the curvature of crystalline monolayers deforming in threeand therefore does not capture the effect of curvature. A gen-
dimensions such as nanotubes. The general idea behind staalized kinematic hypothesis based on the differential ge-
dard finite crystal elasticity in the case of space-filling crys-ometry concept of the exponential map has been proposed in
tals is sketched below, its limitations for carbon nanotubedRef. 13. The fundamental idea is to compose the standard



FIG. 1. lllustration of the surface kinematics and the exponential
Cauchy-Born rule. The exponential map transforms the vewtor FIG. 2. Graphene honeycomb multilattice and illustration of the
=FA tangent to the surface into a chord of the surface inner displacements: the two simple Bravais lattices, depicted in
black and white, are relatively shifted by also affecting the bond

Cauchy-Born rule with the exponential mﬁ’pwhich natu-  Vectors which are transformed frofy; into A;. The unit cell of
rally maps the tangent space onto the curved surface. This f’geaslo' thﬁ Bravais basis vectoBy andB,, and the shift vectoP
accomplished by the so-called exponential Cauchy-Born ryl8"e &S0 shown.

a=expeFA, (2) of a lattice vectoA after deformation is explicitly written as
a=f(C,IC;A). Similarly, a continuous variable representing
where exp denotes the exponential map(bfat the point the angle between two lattice vectoksand B in the de-
from which a emanates. The exponential map “brings” the formed configuration can be written a&=g(C,/C;A,B).
tangent vectow=FA to the curved surface, thereby produc- Thesederivedstrain measures are adequate to formulate con-
ing a chord(see Fig. 1 for an illustration). More physical tinuum constitutive functions in terms of bond-order poten-
insight on this extended hypothesis can be gained by analyzials, which only depend on bond lengths and angles. Similar
ing the simplest case of an atomic chain deforming in twoexpressions can be derived for other geometric quantities
dimensions? such as dihedral angles.
The evaluation of the exponential map requires the
knowledge of the geodesic curves of the surface, which in
general entails the integration of a system of two differential Ill. CONSTITUTIVE LAW FOR GRAPHENE
equations in which the Christoffel symbols are the coeffi-
cients. Thus the map described by Ef) is nonlocal and

difficult to evaluate exactly. For this reason, the exponent|a=1,2,3_ These bond vectors form three inequivalent angles,

map is approximated. This results in a local, simple modelIabeled such that, is the angle between borjdand bonck
in which the deformed geometry of the lattice vectors is ex- nd{i,j,k} is an elven permutation ¢f,2,3. At the groun'd

pressed in terms of the local deformation of the surface, thaStalte of graphene, the length of each of these bond vectors is
is the first and the second fundamental fofthdlote the '

analogy with standard differential geometry of surfaces, bydenoted byAo, and ¢;=2/3, 1=1,2,3. When dealing with

; _“graphene, special attention must be paid to the fact that it is
vr;/gt(;lr:: tg:aggdzfnodrr?ﬁ:l c?;‘gsr&n? z;t?cl)(ﬁs rTgSi Srczlﬁeoga;trhaem%?rri? a Bravais multilattice; it can be viewed as two woven simple
zation of the,surfaceﬂ The first and second fundamental lattices(see Fig. 2). The standard crystal elasticity treatment

forms can be “pulled back® by ® to the undeformed body, of multilattices is to assume that the homogeneous deforma-

g ._tion affects each of the simple lattices. Additional kinematic
thereby defining the stan_dard Ie_ft Cauchy-Green dEfOrm""t'OOariabIes describing the relative shifts of the simple lattices
tensorC, and a Lagrangiafiextrinsic) curvature tensofC.

= ; . ) must be introduced to properly describe the configurations of
Slmll_arly, in the context of differential geometry of Suncac(.es’uniformly strained multilattices. These relative shifts are
the first and the second fundamental forms are Sometimes, | inner displacement®-354246The optical modes are
expres;ed in the referenﬂa} coordlr?aftéay_formulatmg the the analog of the inner displacements in lattice dynamical
theory in terms of Lagrangiafmaterial)strain measures, the

inciple of material-frame indiff is automatically sat- "€ eS”
!Osrflig(zjlp € of material-frame indifierence 1s automatically sat- ) o 7 denote the inner displacements field, which follow-

The final result of the extended theory is that a new set o g Ref. 42, s defined in the undeformed body, previous to

. . . he “macroscopic” deformationb. Thus, the lattice vectors
continuum strain measures which represent the deformed ge-

ometry of the atomic bonds can be defined in terms of the
local deformation of the surfade, i.e., in terms ofC and/C
(see Appendix A). For instance, the deformed bond leiagth Ai=Ay+n 1=123. 3)

One can distinguish three inequivalent bond vectors in the
Pnit cell of the honeycomb lattice of grapherfe, i



For some materials, the inner displacements may describ&/hile a closed-form expression for the hyperelastic potential
homogeneous phase transformatitn¥' W in terms of the atomistic potential is availalleee Eq.
Since the configuration of the undeformed lattice depends7)], the evaluation of\/(C,KC) requires the solution of a
on x [see Eq(3)], the deformed geometry of the bond vec- pivariate minimization problem. If the graphene sheet is pla-
tors does as well; for instance, the lengths of the deformegar, j.e.,5C=0, this theory results exactly in standard finite

bond vectors can be written as crystal elasticity. The total internal energy functional for the
_ ) continuum surface is obtained from the surface integral of
a;=f(C,IC,pA¢), =123, 4)  the hyperelastic strain energy density over the undeformed

and the three angles these inequivalent bonds form after d&@°9Y:
formation as

0,:=9(C.IC, A0 A, =123, (5) Him[q’]:L)O\N[C(‘I)).’C(‘b)]dﬂo- (10)
where{i,j,k} is an even permutation é1,2,3}. The explicit
expressions fo?andgfo”ow from Appendix A and Eq(3). Stress measures work conjugate to the strain measures for

This finite elasticity theory for curved crystalline mono- the surface can be derived from the hyperelastic potential
layers can in principle be combined with any atomistic

model. We assume in the following potentials that fall within oW 9w oW aW
the bond-order formalisif!, and consider the bond-order 8:2—C=2—C , m:_IC:_IC . (1
potentials for hydrocarbons developed by BreRfherhich J IC ] I IK|,_;

have been widely applied to study the mechanics of carbon

nanotube%'®52 including the nucleation of defectd® In It is possible to replace the derivatives of the effective po-
these potentials, the energy is expressed in terms of bon@ntial W by derivatives of the analytically available poten-
lengths and angles as a sum over the bonds: tial W as long as the inner displacements are in internal equi-
librium, as argued in Refs. 42 and 13. The first of these stress
E— Ve(r)—BVa(ri)], 6 measures is an in-plane stress, aqd corresponds t.o the second
Ei ,Z’. [Ve(ry) Alfij)] ® Piola-Kirchhoff stres§® It has units of force divided by

_ length (surface tension), while the second is a momentlike
where the bond-ordeé8 models the many-body coupling be- stress that has units of force. These unusual units for stress
tween bondj and its local environment. It depends on the tensors follow from the fact that the continuum surface has
lengths of the bonds and angles adjacent tdjthébond. By  no thickness.
considering a unit cell, which contains one of each inequiva-
lent bond, and has an undeformed surface areaSgpf

=(3/3/2)A3 (see Fig. 2), and using Eq&) and (5), the IV. ELASTIC MODULI
stored strain energy densitienergy per unit undeformed  Effective (i.e., at the relaxed inner displaceméntsa-
area)of the continuum surface can be written as grangian elasticity tensors can be obtained by taking second
1 derivatives of the elastic potential with respect to the strain
W(C,IC,n) = gEce”(al,az,as,01,92,93) measures:
LS B C —462\7\/ C _az\iv C.=2 il (12)
=5 2 [VR(@)=B(a;.ac. 07, 00Va(a)] 4 G o2

()
) . ) The first of these elasticity tensors is a measure of the in-
This hyperelastic potential depends on the left Cauchy-Greeaane stiffness of the surface and is measured in units of

deformation tenso€ and Lagrangian curvature tenskir of  force divided by length. It corresponds to the second elastic-
the surface, and on the inner displacement figldThe de- iy tensor®® The second represents the bending stiffness and
pendence of the energy on the undeformed lattice vectors hgge third is an in-plane/bending coupling stifiness. Again, the

been omitted. o unusual surface tension units for the in-plane elastic modulus
The inner displacements can be eliminated at the constiyre a consequence of the two-dimensional nature of a
tutive level*“? At each point, given the local deformation, graphene sheet.

the strain energy density can be minimized with respeefto | the calculation of these elastic moduli, even when the
- . inner displacements are in internal equilibrium we cannot
C,KK)=ard minW(C,IC,n)]. 8 A . . .
" ) d 7 ( ] ® replaceW by W, as in Eq. (1L extra terms arise with
After this inner relaxation, the effective strain energy densitycrossed derivatives dV with respect to the strain measures

can be written as a function & and /C only: and the inner displacemerfts.The evaluation of these
. R moduli at an arbitrary deformation requirggC,*C), which
W(C,IC)=W[C,IC,n(C,K)]. (9)  in general must be obtained numerically.



A. In-plane moduli 1 (C, +C )2
_ rr 00

We now develop closed-form expressions for infinitesimal = m[ Cr=Crp— Cﬁe_m} (16)
elastic moduli in the analytically tractable situation of planar _
graphene in its ground state, for which the inner displace- d
ments vanish. Although considering the small strain elastic-
ity of planar graphene as representative of that of nanotubes
may seem a crude approximation, these moduli are available (Cry+Cyp)?
in a closed form, and are found to provide good estimates. A= a3 CotCortConte 1. =Con (17)

Indeed,ab initio calculations show that the elastic moduli

of nanotubes differ only slightly from those of planar are the Lamecoefficients. The underlined terms correspond

graphene?*" he effect of the inner displ ie. th d
The in-plane moduli of graphene can be treated foIIowingto the effect of the Inner displacements, 1.e. the second term
on the right hand side of Eq13).

standard methods of crystal elasticity; other results have The tensor of infinitesimal moduli in Eq15) has the

been recently reporte?d. Here, the PreciSe eXpressions N ;eneral form of a fourth order isotropic tensor. Unlike for
terms of the functional form of the potential are provided, a , . ; : . . .
ulk materials, this tensor is defined in a two-dimensional

well as a discussion of how to interpret them. The pmposespace[the indices in Eq(15) run from 1 to 2]. Thus, the

g];ocrﬁnegfeief#égfhesteﬁgé Ss:,g;sd fgfz ttrf:: gloe:cljj_rgrl dsetr'f;gfrisrﬂfinitesimal elasticity tensor is isotropic, a well known fact
P bout honeycomb lattices. This does not imply that graphene

ISm are CO”S'deFEd’ althoygh eXp“.C't expressions can be Ol?é isotropic for finite deformations, i.e. its invariance group
tained for other interatomic potentials.

By methods analogous to those in Ref. 42, the in-plan does not coincide with the group of proper finite rotations

second elasticity tensor in E¢L2) can be computed at the eSO(Z) Fln_|te|def%rm?t|pnsd|n$roducg amsotrpp;{;m thelllat
relaxed inner displacements as tice; in particular the finite deformation required to roll a

graphene sheet into a nanotube induces anisotropy observ-

PW  2W [ 2AW\ Y 2w able in the slight variations of the elastic moduli with radius
C,= _ . ) . . (13) and chirality®
gc?  ICIn | gqp IniC The conventional expressions relating the Lacoeffi-

ients with Young's modulu¥ and Poisson'’s ratio for bulk

This tensor, evaluated at the ground state of graphene, coft S X .
otropic linearly elastic materials are

responds with the usual small deformation tensor of elasti&®

moduli.
For moderate deformations, the bond-order funcBoaf _ p(3N+2p) . (18)
bondij in Brenner’s potential depends only on the angles N+ 20N+ )’

adjacent to this bontf:?® In the following, all expressions

are evaluated at the equilibrium configuration of grapheneYoung's modulus and Poisson’s ratio are defined from the
characterized by equal bond angles/2, and equilibrium  thought experiment of applying uniaxial tensien, to a
bond lengthA,. Let us denote byg and V} the first and  prismatic homogeneous isotropic linear elastic body, and
second derivatives of g with respect to their only argument, measuring the strains in each direction. Thém=oq1/e;

and similarly forV,. LetB’ denote the first derivative of the andv:=—=zz/e1,=—€33/e1;. One may be tempted to use
bond orderB with respect to any of its argumentashen the expressions in E_oj18) for graphene. However, it Is im-
evaluated for graphene at equilibrium, the choice of arguportant to bear in mind that they are defined for bulk mate-

d hile B” d h 4 deri rials, and the present theory regards graphene sheets as genu-
ment does not matterwhile B denotes the second deriva- ey two-dimensional objects, for which the standard

tive of B with respect to one of its arguments. B/'we “plane-strain” or “plane-stress” conditions do not make
denote the second derivative Bfwith respect to the first and sense. If one subjects a rectangular planar slab of graphene to

the second arguments. Let us define uniaxial tensioroq;, measures the straimsg; ande,, (e33is
not defined), and adopts the natural definitidis=o41/e11
= A= =1 andvg:=—eg,,/e41, the resulting expressions in terms of the
Cii=VR=BVa, Cyp= A2 (2B"-B "), Lame coefficients in Eq(15) are
0
23 CApu(Ntp) A
C”’:A_OVAB : (14) Ys= Nt 2u and VSN T 2u’ (19)

Lengthy but otherwise straightforward calculations lead tQynhere the subscripts emphasize the fact that they refer to a
the following expression for the Euclidean components Ofgrface continuum. As usuals is nondimensional. In this
the in-plane infinitesimal elasticity tensor of graphene: 456 v_ has units of surface tension, agreeing with the point
of view of other authoré® The in-plane shear modul(@
=18 8+ 8 S ) FN S 1 . IThors ; s
Ciita = 1Oy 0 ) + X 83y b (15 s also expressed in units of surface tension, and coincides
where with w.



B. Bending modulus TABLE |. Elastic properties of graphene froab initio calcula-

We consider an initially planar graphene sheet. We therlilons’ and from Brenner’s potentidl$ from Kudin et al. (2001)].
calculate the second derivative of the strain energy density

i ; . o Yo(J/n? Cp, (eV A?%/at
with respect to the curvature in a given direction. We are s(/m) Us (€ atom)
interested in the scalar modulus Brenner(1990) 236 0.412 2.2

oo Brenner(2002) 243 0.397 1.8
W Ab initio* 345 0.149 3.9
Co="7>" (20)
JK
where is the only nonvanishing principal curvature of the C,=2.177 eV R/atom. (24)

monolayer. Appendix B describes the derivation of this
modulus in terms of the functional form of the interatomic
potential. Several intermediate results deserve special atte
tion.

A’_he result for Young’s modulus perfectly matches that ob-
tained in Ref. 37 for the same potential. To compare with
On the one hand, the fact that the second term of(E4) valges of the Youngs modulus prowdgd in units of pressure

‘which assume a thickness 0.34 nm, simply operate as fol-

vanishes reveals that, unlike the in-plane moduli, the infiniI ) ~, IR i how th
tesimal bending modulus is insensitive to the inner displace!oWs: 694 MPa=236 J/nt/0.34 nm. To illustrate how these

ments. On the other hand. it follows from the derivation 0fmoduli represent the behavior of nanotubes of finite radius,

Appendix B that for any two-dimensional honeycomb latticer @ (10,10) nanotube we obtais=234 It and v,

whose interatomic potential depends only on bond lengths 0.41 ) i ) i
and anglesand not on dihedral angles for instajcéhe To extract Young’s modulus and Poisson’s ratio of planar

infinitesimal bending modulus around the planar state can b@raPhene from atomistic calculations, a planar slab of
graphene is subject to a small uniaxial deformati®:02%).

written as ) L ) .
The energy of the structure is then minimized while allowing
3 2, 3 2, for lateral deformation. Appropriate periodic boundary con-
IW 97, IW 976 " ) .
Cp=2, — —+ > — — (21) ditions are used. The axial force and the lateral deformation
=108i gk?  [=100; gk are measured from the calculations to compute the elastic

Remarkably, this modulus does not depend on second derivg]Odu"' These calculations perfectly matfb four signifi-

tives of the atomistic potential function. This means that ifCant digits)the analytical values fo¥s and vs in Eq. (24).

we naively adopt a quadratic two-body/three-body expansiorC1 ar-lrhbeeS;%(r;r:)izgcﬁyogxitiiEgetrhgiSsp;igir;(atg;\girr?r:g:sright
f th f h i . ) " .

of the energy of graphene around its ground state hand side of Eq(13), that is omitting the underlined terms of

1 Egs. (16) and (17). In this casey(°™*=337.8 J/m and

Ske(6—2m3)%, (22)  pMoimeg 1580, Atomistic calculations in which the struc-

angles2 s . . . . .
ture is stretched without relaxation of the inner displace-

it follows thatdW/da;=0 anddW/36,=0 at the equilibrium ments also give these values of elastic moduli. These values
configuration. Therefore such a lattice has zero bending stiffdiffer substantially from those in E¢24), so the effect of the
ness, which is not realistic for graphene. inner displacements is very significant. It can be observed

As expected, the infinitesimal bending stiffness of planatthat the effect of the inner displacements is very important.
graphene does not depend on the direction in which the sheéithough these elastic moduli agree more closely with accu-
is bent, i.e., planar graphene is isotropic with respect tdate ab initio data(see Table 1), they do not represent the
bending. For bond-order potentials, the bending modulugctual behavior of atomistic systems described by Brenner’s
adopts the particularly simple form potential.

To validate the expression for the bending modulus, Eq.
1 — (23), we compute the strain energigslative to the ground
Cp=5Va(Ag)B' (27/3,2m/3). (23)  state of planar graphenef fully relaxed nanotubes of vary-
ing radii. We plot the strain energy of these nanotubes versus
the inverse of their equilibrium radius, and compare with the
simple quadratic expression in the curvature C/21/R)?,

The explicit expressions for Young’s modulus, Poisson’swhere Cy, is not fitted, but obtained from Ed23), andR
ratio, the shear modulus, and the bending modulus derived idenotes the radius of the nanotube. One would expect this
the previous sections are here checked against atomistic capproximation to be valid for very small curvatures, that is
culations. The second parameter set of the potential proposegry large nanotubes. However, a quadratic approximation to
by Brennef® has been adopted in the comparisons, but théhe bending energy has been shown to accurately desatsibe
methodology is in principle applicable to any analytical in- initio results for a wide range of radif:*’ Figure 3 shows
teratomic potential. According to Eg€l4), (16), (17),(19), that the agreement between the atomistic calculations and the

1
E= 2 Sky(ai—Ag)+

bonds

C. Comparison to atomistic calculations

and (23): quadratic approximation of the energy is excellent. For small
nanotubegright side of the plotsome deviations are notice-
Y =235.8 JM, vs=0.4123, G,=83.47 J/m, able. Nevertheless, for nanotubes of diameter larger than 1



0.2 through the curvature tensor, a sufficiently smooth finite el-

6 Atomistc arm—chair i ement approximation is requi_red; here, subinisiqn finitg el-
o Atomistic zig-zag ’ ements are used.An alternative coarse grained simulation
0.15

— Linear elasticity method for carbon nanotubes based on constrained atomistic

7 calculations in combination with meshfree methods, in the
spirit of the nonlocal quasicontinuum method, has been pro-
posed recently’

The continuum/FE approach is validated by comparing
the finite element calculations with zero temperature atomis-
tic calculations. The second parameter set of the Brenner
potentiaf® is used for the bonded interactions. Since the
Brenner potential does not include nonbonded interactions,
N 4 these are incorporated by a separate potetitialLennard-

1/R (nm™") Jones potential is adopted for the nonbonded interactions,
) ) which corresponds to the graphene-graphene parameter set in
FIG. 3. Strain energy relative to planar graphene for fully re-pet 59 This potential for the nonbonded interactions has

laxed nanotubes of varying radius plotted vs a quadratic approxigeen used for instance to analyze the mechanics;gh®I-
cules inside carbon nanotuf8sSince we want to model

mation of the bending energy with the bending modulus predicte
intratube van der Waals interactions, in the simulations a

by the continuum theory.
given atom can interaatia the nonbonded potential with all
other atoms in the system, except the set of atoms close to it

Strain energy (eV/atom)
§ =

nm, the bending modulus provided by the continuum analy

sis very accurately characterizes the elasticity of atomisti% the lattice(within the cutoff radius of the nonbonded po-

mo_l(_jftl)feor Pe%%?zlsjtiﬁ: values of the elastic moduli of planartential in the undeformed configuration). The main disadvan-
grapheneY, . »,, andC, derived from Eqs(14), (16), (17), tage of such a partitioning approach, namely that it hinders

; the reactive capability of the bond-order potential, is irrel-
(19), and(23) for the second parameter set of Brenner's PO evant for our purposes. A continuum version of the non-

te.ntial..The pre_dic.ted equilibrium bond length for grapheng, ;e interactions can also be formulatédnd is imple-
with this potentlal is 0.145 nm. The recently developed SeCiyonieq in the FE simulations. This continuum nonbonded
ond gener_atlon bond_—order pot_erﬁ?ais also a_nalyzed, and energy, together with the internal energy in E4§0), define
the _z_ass_omated eIaSt'C. properties reporte_d In Table I. Th e total energy of the continuum system. In both atomistic
ethbnum length predicted by this potential is cIo_ser to the nd continuum simulations, the total energy is minimized
widely ac;ce_pted value of 0.142 nm. Th(.a overestimation Of i, the BFGS quasi-Newton method, which only requires
the eqU|I|br|um bqnd length W'th. the or|g|.nal potential by radients of the energy. The inner relaxation of E8). is
Brenner slightly p|ases _the ela_st_u_: propertes. E?lese_ modu erformed numerically by Newton’s method at each quadra-
are compared with availableb initio calculations,” which ture point of the finite element model. These bivariate mini-

agree very well with other pUbI'ShPTd déﬁilt. can pe .O.b' mization problems typically converge to machine precision
served that the bond-order potentials deviate significantly two iterations

frotm tthel a? |rr11;|t|o'data. TheYseco,nd gec?elrann dbc;nd—ordc,ar Figure 4 shows the comparisons for a twisted (10,10)
potential SIghtly Improves Youngs modulus and FOISSONSy 4, qatyhe 25 nm long. In this example, the atomistic system

ratio, bUt. provides a worse bendlng st_lffne_ss. . has 12000 degrees of freedom, while the finite element
Equation(23) p_rowdes_valuable insight into the _relat|on model around 10 000. This example is not intended to dem-
hetween the glastlc bendmg modulug and the .funct|onal forrT(antrate the computational savings that the continuum/finite
of the potential. Consider the following exercise. Let us re-clement approach can deliver: its purpose is to illustrate the
scale the bond-order potential, leaviB{2/3,27/3) un-  accuracy of the continuum theory in an example involving
changed but changin®’ (27/3,27/3) to fit the ab initio  severe deformations and structural instabilities.
value forC,,. Note that this does not alter the ground energy The twisting angle, defined as the total relative rotation of
of graphene, nor the equilibrium bond length. By doing this,one end with respect to the other, is incrementally increased,
we obtain a value for Young’s modulus of 336 Fmvery  and the total energy is minimized at each step. Three repre-
close to theab initio value. Poisson’s ratio also dramatically sentative snapshots of the deformation process are shown in
improves to a value of 0.16. This exercise illustrates how thé~ig. 4(a), where the deformed configurations of the atomistic
expressions provided in the previous sections facilitate fittingand the continuum simulations are presented together. These
an analytical potential. snapshots demonstrate that the morphological agreement be-
tween the continuum and atomistic simulations is excellent,
and the deformed continuum surface nearly coincides with
the positions of the nuclei provided by the atomistic calcula-
The finite deformation continuum theory for a surfacetion despite the severe deformations.
without thickness described in Sec. lll is now combined with  The evolution of the binding energy is presented for the
the finite elementFE) method. Since the continuum energy two models in Fig. 4(b). This example exhibits two structural
depends on second derivatives of the deformation mapstabilities. In the first one, a nonuniform deformation mode

V. FINITE ELEMENT SIMULATIONS
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FIG. 5. Twisted 25.1-nm-lon@L0,10)nanotube: Comparison of
the nonbonded energy as a function of the twisting angle for atom-
istic calculation(—), and continuum/FE calculatior®).

well with the energy of the atomistic system before buckling
36 - . - . — occurs aty=5.3%.
] 100 200 300 400) 500 GON . .

(b) Twisting angle (deg) Figure 5 shows the evolution of the nonbonded energy,

and compares the atomistic and the finite element calcula-

FIG. 4. Twisted 25.1-nm-long10,10) nanotube:(a) Superim-  tions. The change of nonbonded energy is less than 2% of the

posed deformed configurations at three twisting angles for atomistitotal energy change. Nevertheless, the nonbonded interac-
calculation(black spheresand continuum finite element calculation tions determine the morphology of the deformation, and in-
(gray surface)(b) Comparison of the strain energy as a function of terpenetration of the wall of the two nanotubes will occur in

the twisting angle for atomistic calculatid¢a-), and continuum/FE  their absence. Before the first buckle, the nonbonded energy
calculation @), and quadratic approximation with the shear modu-js zero. After the first instability, the system gains van der

lus obtained from the continuum analysis- -). Waals energy due to the adhesion of the wall that comes into
contact with itself. As deformation proceeds, the van der

develops for a twisting angle of about 100°. The onset of thigVaals interactions become increasingly repulsive, particu-
instability is evident in the first snapshot of the deformation,larly after the second instability. In this regime, the discrep-

and can be identified in the strain energy evolution as théncies of the finite element prediction for the nonbonded
kink that ends the nearly quadratic regime. As loading pro_|nteract|0ns become noticeable. However, this discrepancy in

ceeds, the wall of the tube comes into van der Waals contadf® Nonbonded interactions at 600° is less than 0.1% of the
with itself. Then, the van der Waals interactions slightly ©0t&! energy change.

stiffen the twisting response of the tube. In their absence, the

energy growth after the first instability is roughly linear. The VI. SUMMARY AND DISCUSSION

second kink in the strain energy evolution, near 460°, indi? The exponential Cauchy-Bomn rule has been applied to
cates the development of a secondary structure. After thig,ron nanotubes in combination with realistic bond-order

point, the flattened twisted r.ibbon folds onto ?tself. Figure potentials.A priori, the application of continuum mechanics
4(b) shows that the energetics of the atomistic system arg, such small systems appears questionable to say the least.
well predicted by the continuum simulations. In the quadraticqowever, the presented nonstandard continuum surface
regime both methods provide indistinguishable energies. Betheory has been shown to accurately describe both the linear
fore the secondary structure develops, at 460°, the discrepnd the nonlinear mechanical response of atomistic systems.
ancy relative to the total energy change is below 0.4%, an@&xpressions have been developed for the elastic moduli of
in the final configuration, it is around 3%. This discrepancyplanar graphene in terms of the atomistic potential. The ex-
is reduced by refining the finite element mé&sh. pression of the bending modulus developed here cannot be
Figure 4(b)also shows a quadratic approximation of theobtained from conventional theories. Comparisons with
energy of the twisted nanotube based on linear theory, witlnoduli extracted from atomistic calculations show that the
the shear modulus analytically derived in H46). For a  analytical expressions very accurately describe the elastic
homogeneously twisted nanotube, the shear strain of the waliroperties of atomistic systems. Comparisons \aithinitio
can be written ag=®R/L where® is the twisting angleR  elastic moduli suggest that the transferability of commonly
the nanotube radius, andits length. It can be observed that used bond-order potentials for hydrocarbons is limited with
the quadratic approximation 1sy® agrees remarkably regards to the elasticity of graphene, and illustrate how these




explicit expressions can aid the parametrization of analytical ky(wy)? o kawy Ko(Wy)? o[ koW
potentials. 2 = =

The application of the theory at finite strains has been  5_— 2 2 2
presented, and it has been shown that, when combined with w1 Q(kywy)
the finite element method, it very accurately mimics the non- WoQ(KoW,)
linear mechanics of atomistic calculations. An exhaustive set (A2)

of validation tests is presented in Ref. 61. This reference also

illustrates that for nanotubes of large diameters, major comThe length of a deformed bond is ther |af and the angle
putational savings can be achieved by the continuum calcusetween two deformed bondsandb can be computed as
lations. In Ref. 30, thanks to the computational efficiency ofé=arcco$a-b/(ab)]. Thus, the bond lengths and angles
the proposed approach, rippling deformations occurring ihave been expressed in terms of the continuum strain mea-
thick multiwalled nanotubes containing millions of atoms aresuresC and IC.

investigated.
The prgsented contmu_um quel cannot describe frapture APPENDIX B: DERIVATION OF THE BENDING
or plasticity; its construction relies on a defect-free lattice. MODULUS
Note however that in the numerical example presented
above, these processes can in principle take place in the ato- 1. Kinematic preliminaries

mistic model, but do not. This illustrates the severe deforma- 14 cajculate the scalar bending modulus defined in Eg.
tions that CNTs can sustain elastically. Nevertheless, therg) we consider an initially planar graphene sheet bent
are situations in which failure cannot be ruled out of theapoyt one axis. Thus, E¢A2) can be simplified to

analysis, but still the computational savings afforded by the

continuum/FE approach are neededy., the full simulation K(Ws)2 KW
of experiments of nanotube fractdyeln these cases, the 2 2 —2)
continuum model can be coupled with atomistic modéls. _ 2 2 B1
The continuum model can assess the onset the lattice insta- a= Wy ' (B1)
bility, and thus provide a criterion to switch locally from the

W2 Q(KkW5)

continuum to the atomistic model.

where k is the nonvanishing principal curvature. Variables
ACKNOWLEDGMENT evaluated at the ground planar configuration of graphene are
denoted byl,,. Note thata|y,=(0w;,w,) is parallel to the
plane of graphene. In this section, derivatives of lattice geo-
metric quantities with respect te are computed. These de-
rivatives are evaluated at the planar ground configuration,
since the goal is to obtain the infinitesimal bending modulus.
The first derivative of a deformed bond length with re-
APPENDIX A FORMULA FOR THE EXTENDED spect to k follows daldk=(1l/a)a-daldx. Note that
KINEMATIC RULE aa/&K|gr=(—(w2)2/2,0,O) is perpendicular to the plane of

The precise definition of the extended kinematic rule isgraphene. ConsequentBa/ d«|q=0. _
provided operationally in this appendix. See Ref. 13 for a Analogous arguments lead t(cos6)/dxly=0. Since
derivation. Letk; andk, denote the principal curvatures of 76/dx=(1/sin6)d(cos6)/dx, and for graphene no pair of
the deformed surfac€). These can be obtained from the bonds form an angle of in the ground state, it follows that
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NASA University Research, Engineering and Technology In-
stitute on Bio Inspired MaterialBIMat) under Award No.
NCC-1-02037.

generalized eigenvalue problem 00/&K|gr=O. One can check that this is not the case for
dihedral angles, but we do not consider them here.
K-V=k C-V, (A1) A second derivative o& with respect tox and the inner

. ) ~displacements is also needed. It can be computed for each
whereC and IC are the Lagrangian expressions of the firstcomponent of the inner displacemerts 1,2 as

and the second fundamental forms of the surface. The asso-

ciated principal directions pulled-pack to the undeformed 7a 1 Pa da  9a  da da
body, vV, andV,, are normalized with respect ©, so that — - —
V;-C-V;=4;. The conventional principal directions are ~ 9K9%a @\ IKINs — INa OK  IK Iy
tangent to the surface, and can be obtained; as$-V,;. We 1w ler L g

define a local orthonormal basis attached to each point of the

surface defined by the unit normal to the surface and the (B2)

principal directions/; andv, (normalized). The components

of w=FA in this basis are (0,yyw,), with w;=V,-C-A. The underbraces indicate whether the vectors are parallel or
By defining Q(x) = sinx/x, the final expression of the lattice perpendicular to the graphene plane when evaluated at the
vector A after deformation in the above defined local basisground state. Therefore, recalling thm/ﬁfdgr:o, we con-
according to the local approximation of the exponentialclude that aza/akanlgr=0. Analogous calculations show
Cauchy-Born rule is that 326/ Ik 4=0.



Finally, from Eg.(B1) and the honeycomb geometry of = We can check that the second term on the right hand side

graphene, it follows that of Eq. (B4) also vanishes by expanding
3 2 2
J°q; -3 96, -9 2 6 6 2 Can. 2
S | =mhA 2 =7A§. (B3) IW s |5 W pidp W TR g
= Ay, = 0y BN Inox =1 |51 dpidp; 9n Ik Ip; dmdx
2. Bending modulus and recalling the results of Appendix B 1. Thus, the infini-

] tesimal bending modulus around the planar state can be writ-
Analogous to Eq(13), the modulus in Eq(20) can be ten as

computed in terms oW when the inner displacements are
relaxed as 2

C —2 M_{? Pi
§2W>_1 W T ap gk

: (B4)
I andk
At the ground state of graphene and for a bond-order poten-
For compactness, the bonds lengths and angles are denotigal, we have

by the arrayp=[a;,a,,as,01,60,,03], andp; denotes the
ith entry of this array. By the chain rule, the first term on the

B7
PW  PW B7)
Cb:

o2 dkdm

ight hand side of Eq(B4) can be writt W_ 1 oo W__2BVa

ri nd si n be written — = —(VL— = —_—=—

ght hand side of Eq can be en as 7a So( R 2)=0, 70 s (B8)
2 6 6 2 ) ) 24
IW_s |5 IW dpidp; WP Lo Recalling the identities in EB3), it follows that the infini-
gk? =1 [[=19Pidp; Ik Ik IP; g2 tesimal bending stiffness of planar graphene is

From the derivations of Appendix B 1, one concludes that
the first term on the right hand side of the equation above

1
vanishes at the planar ground configuration. 2

5 V,B'. (B9)
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