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Abstract: Shared spaces are gaining presence in cities, where a variety of players and mobility
types (pedestrians, bicycles, motorcycles, and cars) move without specifically delimited areas. This
makes the traffic they comprise challenging for automated systems. The information traditionally
considered (e.g., streets, and obstacle positions and speeds) is not enough to build suitable models of
the environment. The required explanatory and anticipation capabilities need additional information
to improve them. Social aspects (e.g., goal of the displacement, companion, or available time) should be
considered, as they have a strong influence on how people move and interact with the environment.
This paper presents the Social-Aware Driver Assistance System (SADAS) approach to integrate this
information into traffic systems. It relies on a domain-specific modelling language for social contexts
and their changes. Specifications compliant with it describe social and system information, their links,
and how to process them. Traffic social properties are the formalization within the language of relevant
knowledge extracted from literature to interpret information. A multi-agent system architecture
manages these specifications and additional processing resources. A SADAS can be connected to other
parts of traffic systems by means of subscription-notification mechanisms. The case study to illustrate
the approach applies social knowledge to predict people’s movements. It considers a distributed
system for obstacle detection and tracking, and the intelligent management of traffic signals.

Keywords: shared space; multi-modal traffic; people displacement; traffic social property; social
knowledge; Social-Aware Driver Assistance System; Multi-Agent System

1. Introduction

City traffic is changing worldwide. Policies are designed to reduce the number of conventional fuel
vehicles in city centers, to reduce pollution levels and give more space to other traffic participants [1].
This should make it possible to improve public transport services so that people use them more.
In addition, it is creating opportunities for the use of less contaminating means of transport
(e.g., bicycles, scooters, and electric cars). These can better satisfy users’ requirements regarding
the environment, health, and costs, while circumventing policies to restrict access to some city areas.
Frequently, they also offer mobility which is more tailored to individual needs, with vehicles smaller
than cars or motorbikes. These vehicles are appearing in large numbers in cities, often as part of
vehicle-sharing services [2,3].

With these trends, we are seeing a rise in the number of areas with shared spaces [4]. These are
characterized by the blurring of barriers to segregate different types of traffic, for instance, areas with
shared paths or painted lanes. This produces multi-modal traffic flows where interactions among
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participants become more complex [5], as there is a greater variety of perceptions to evaluate regarding
traffic and the environment, the capabilities of vehicles, people’ characteristics, and situations.

These shared environments make it necessary to reconsider the design of Driver Assistance
Systems (DASs) [6] and Intelligent Transportation Systems (ITSs) [7]. These aim to enhance different
aspects of traffic and travelling, such as active and integrated safety, fuel and energy consumption, and
vehicle flows. For this purpose, they use different types of information, e.g., type and location of traffic
signals, lanes, and the position and speed of obstacles. However, this “traditional” information does
not seem to be enough in shared spaces, where methods of movement are heterogeneous, distances
between participants are short, and trajectories can suddenly change. Here, the systems need more
detailed information to provide their services.

One of the potential new types of information are the social aspects considered in this work.
These include factors that affect people’s behaviors and depend on their personal characteristics
(e.g., gender, age, and capabilities), the surrounding people (e.g., type of companion or crowd),
the resources they use (e.g., type of vehicle and mobile phones), and the context (e.g., activity and
meaning of the environment). The literature already acknowledges the influence of these aspects
on traffic (e.g., pedestrians in groups [8], bicycles [9], or passengers [10]).However, there are few
studies that focus on how to incorporate them into traffic systems, and most of them adopt ad-hoc
approaches [6,7]. This makes it difficult to integrate systems or different information types to provide
more sophisticated services.

The current study develops a framework for Social-Aware DASs (SADASs). These are intended to
facilitate the inclusion of the previous social aspects in traffic systems. This is achieved through
mechanisms for flexible management of that information, which can be adapted to different
requirements and integrated with other information and components. This social information allows
traffic systems to better understand their context and how different actors and elements can behave
accordingly, thus improving their decision-making.

The SADAS framework has two components. The first one is a Modelling Language (ML) to
specify social information and its transformation. The second one is the architecture that implements
that processing and determines the interfaces to interact with the other elements in traffic systems.

The ML for SADAS (i.e., the SADAS-ML) is based on two previous studies. First, a general
framework with an ML (i.e., the ITSML) to model and simulate ITSs [11]. Its concepts include among
others sensor and actuator, agent and person, vehicle, and information and method. Second, a framework to
model social systems in engineering contexts based on the concept of social activity [12].

The SADAS-ML extends the ITSML with new concepts to model social information and its changes.
For instance, the types for low-level sensor data and social information, physical objects and their
characteristics, and processes such as social activities and information transformations. The language also
introduces reliability attributes to indicate different degrees of certainty about information.

In this context, reusable knowledge is characterized as traffic social properties. This follows the
studies on social properties [12] as patterns on social information for software engineering. In SADASs,
the properties describe prototypical information applicable in a wide range of traffic situations.
For instance, that near a hospital there could be people with reduced mobility. This knowledge
is usually extracted from literature, reports, and statistics. The properties are specified following the
template for the original social properties [12], though using concepts and diagrams that conform to the
SADAS-ML. Here, the discussion uses only the diagrams in these templates.

The framework also defines an architecture to work with the social information. It corresponds to
a Multi-Agent System (MAS) [13] with several specific social components. These include: sensing agents
to transform low-level data from sensors into information; reasoner agents to derive new information
from that available; observer agents that send the information to the rest of the traffic system and support
external queries. These agents use specific resources to support their functionality, such as a social
engine to derive information using processes. This kind of architecture follows common practices in
information fusion [14].
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The processing of this social information uses a pattern-matching algorithm. It looks for instances
of the query specifications among available information. When it is successful, it applies the processes
linked to the query. For example, this allows it to be checked that current information meets some
property, or to derive new information.

The case study that illustrates the application of the framework integrates two studies and extends
them with a SADAS to improve their services. The first study is an ITS [15] for the adaptive control of
traffic signals using a hierarchical control strategy. It includes sensors such as cameras and inductive
loops. The second one is a DAS [16] that supports the distributed detection of pedestrians from
cars with cameras. The use of cameras in both systems allows characteristics to be extracted from
the environment and participants in traffic [17,18]. The SADAS uses this information to derive new
information on people’s potential behaviors given their activities. This allows traffic signals and vehicle
warnings to be adjusted for safer and more fluid traffic than in the original studies. This example is
complemented with an additional discussion on other case studies.

The rest of the paper is organized as follows. Section 2 introduces the background on the
ITS framework [11] and social properties [12]. Section 3 describes the components of the SADAS
framework. The experimentation in Section 4 illustrates the use of the approach with the case study
and contains an extended discussion. Section 5 compares the framework with related work. Finally,
Section 6 discusses some conclusions and future work.

2. Background

The SADAS framework appears in the context of traffic systems and the management of social
information. Its components and the information models relating to traffic are described using
extensions of the concepts in the general modelling framework for ITSs in [11] (see Section 2.1).
The description of social aspects extends the work on social properties [12] (see Section 2.2).

2.1. ITS Modelling and Simulation Framework

This framework aims to facilitate the Model-Driven Engineering (MDE) of simulations of ITSs [11].
In MDE approaches [19], development artefacts (e.g., code, documentation, and tests) are mostly
generated from system specifications (i.e., models) using semi-automated transformations. In the case
of this framework, such specifications are compliant with the ITSML. Its conceptual framework is
based on the Driver-Vehicle-Environment (DVE) approach [20].

The base concept of the ITSML is the component, which represents a general element of an ITS or
the environment. It has an internal state defined as attributes, and interfaces characterized as methods
(e.g., consult, modify and act). Control and information flows among components use those methods.
A component can also have other components as parts.

Attributes, and the parameters and results of methods, are defined as pieces of information. They
have a name, a type, and sometimes a value. Types can be primitive ones (e.g., string, Boolean and
integer) or a reference to an already defined type of information.

An ITS consists of multiple containers and communication channels connecting them. Containers
are computational nodes for sensors, actuators, utilities, and their controller managers. Sensors perceive
events from the environment and use their methods to generate notifications to other components.
These notifications can trigger the execution of methods, which in turn can generate new notifications.
The triggered methods can belong to other sensors, actuators that act on the environment, or utilities
that are pure software components working inside an ITS. Managers are agents that use the available
information to check their goals and decide what tasks to attempt. The execution of these tasks can
invoke methods.

Outside the ITS, there is an external environment that comprehends things (e.g., roads and signals).
Persons actuate in this environment. Some of them can be in vehicles, either as drivers or passengers.
All these elements are subclasses of a general place class and can interact with the others through their
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interfaces. A place contains multiple spots. These are both elements that can be observed and where
containers can be located.

Following MDE practices, the ITSML is specified with a metamodel that includes the previous
concepts. Metamodels define the abstract syntax of graph-based MLs, i.e., their primitives and
constraints [19]. Meta-MLs (MMLs) to define these metamodels usually have as primitives nodes,
relationships, and roles (i.e., the ends of relationships that connect them with nodes). Properties are
attributes or adornments of these elements. Some examples are names, visibility, or cardinality
indications for roles.

There are also some standard relationships included in many MDE MLs, which correspond
to similar ones existing at the level of their MMLs [21]. Examples of them are inheritance and
composition relationships, which the ITSML also includes. These relationships are introduced to
facilitate making specifications with the MLs. Following usual conventions in the area [22], in diagrams
below, relationships with triangles represent inheritance, and with diamonds represent aggregation,
using filled diamonds for composition and hollow diamonds for plain aggregation.

Elements in these MLSs can be in packages, and their fully qualified name includes the package
name. For instance, the package “ITS” for the ITSML, and the fully qualified name of “component” as
“ITS::component”.

At the level of the ITSML, the language also includes mechanisms to instantiate classes. In the
metamodel, for a name meta-type, there is another Iname to represent its instances. The instanceOf
meta-relationship links both meta-types. This allows linking instances to their actual types in models.
For instance, the ISensor meta-type is linked by the instanceOf meta-relationship to the Sensor meta-type.
With this, a model could have a sensor type named “Temperature sensor” (i.e., Sensor stereotype) with
an actual instance named “Sensor1” (i.e., ISensor stereotype).

2.2. Social Properties

The work on social properties [12] seeks to provide effective ways to apply the knowledge from
Social Sciences in Software Engineering. This entails having guidelines for its application supported by
software tools. Its theoretical background comes from the Activity Theory (AT) [23], which is focused
on the description and analysis of social activities and their contexts. It establishes a conceptual
framework and the rules that govern the evolution of activities.

The core concept of the AT is the activity. It represents a transformation act that is both intentional
and social. The intentionality appears because all the participants endeavor to satisfy some high-level
needs through the activity. The social dimension is due to the fact that every activity happens in a
society/group, i.e., a subject (or group) carries it out using artefacts created by a society. Activities can
mix both mental (e.g., learning and planning) and physical (e.g., driving or lifting a weight) aspects.

An activity is performed by subjects pursuing their objectives, which represent their needs. These
objectives are satisfied by the activity’s outcome. The transformation of objects using tools produces
those outcomes. The community represents the group where the activity takes place. In a wide sense,
it represents the set of subjects that share an environment and meanings both now and historically.
Two artefacts mediate the relationship between the activity and its community. The division of labor
specifies how the community is organized for the execution of the activity. The rules are cultural
artefacts that influence the activity, e.g., norms and tales. The ensemble of all the previous elements
constitute the activity system of an activity.

There are two additional types of transformations. Activities are decomposed into actions. These
are conscious intentional acts, but their goals do not correspond to high-level needs. Actions are in
turn decomposed as operations, which are to a large extent non-conscious and only depend on the
environment conditions.

Specifications of social contexts take the form of networks of activity systems linked by shared
elements. These elements can play different roles in those activity systems, e.g., the object of an activity
system can be a rule in another.
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These networks evolve over time. Their elements change (e.g., they suffer damage or acquire
new capabilities), and they appear and are destroyed. These changes produce competing goals
and inadequacies between purposes and characteristics of elements. The AT names these conflicts
contradictions [24]. Contradictions make activities somehow unsuitable to satisfy the subjects’ needs.
For this reason, subjects try to remove or mitigate them by changing the activity systems. For instance,
they can change some elements or introduce alternative activities. These changes are usually the origin
of new tensions that produce further evolution.

The UML-AT ML [12] formalizes this theoretical framework with a Unified-Modelling Language
(UML) profile [22]. It uses stereotypes to represent these concepts and their relationships. It also
includes additional elements to facilitate the specifying tasks. For instance, the type artefact represents
any type in an activity system, and the relationship change of role that a given concept adopts different
types. It also includes some usual primitives in MDE MLs [21] such as relationships to represent
aggregation and inheritance, and cardinality adornments.

In this context, social properties represent knowledge about social activities applicable in different
contexts and extracted from literature in Social Sciences. Their specification uses a template that
combines UML-AT diagrams and text.

A pattern-matching algorithm uses those diagrams to check properties. It looks in available
information for instances of the query specifications. The appearance of an instance of a property is
used to explain the meaning of the information located, and its absence that those specifications do not
satisfy the property.

This approach has been used in a variety of domains [12]. Some examples are social analysis,
cooperative work, and e-learning.

3. The SADAS Framework

The SADAS framework seeks to extend traffic systems with social information. To do so, it must
interpret the available raw information to derive social information. For instance, from the observed
position of a vehicle and a map indicating a nearby park, that there could be children, and thus speed
must be reduced. This derived information includes characteristics of the people and their movements,
activities, companion, and environment. From it, a SADAS can infer potential interactions with those
elements in the near future and provide information based on that to the rest of the traffic system.

To achieve this functionality, the framework provides an ML to specify social information and its
transformations (see Section 3.1). Traffic social properties are ready-to-use specifications that represent
knowledge of recurrent situations or changes (see Section 3.2). A MAS architecture is used to process
all these specifications (see Section 3.3).

3.1. SADAS-ML

The SADAS-ML is a specific language for managing social information. It defines primitives
to represent that information (see Section 3.1.1) and its processing (see Section 3.1.2). For the
information, it extends elements from the ITSML and UML-AT MLs (see Section 2) following the
guidelines in [21,25]. For the processing, it mainly adopts the AT concept of activity [23] (which is
already present in the UML-AT, see Section 2.2), and the new one of transformation. The language also
supports some general features regarding type instantiation and the use of variables (see Section 3.1.3).

3.1.1. Social Information

The specification of social information relies on a conceptual hierarchy whose base element is the
component meta-type. Figure 1 summarizes the base primitives related to it. They are the more abstract
types of the SADAS-ML.
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Figure 1. Partial SADAS-ML specification with its base primitives for social information. All the
elements belong to the metamodel.

The component meta-type extends the ITSML component (see Section 2.1) and represents any
concept in the problem domain. Its only attribute is the id, which must be unique among all instances
of a specification. It can also have an arbitrary set of string tags to describe it in a tailored way.
For instance, to depict a point as a school or a museum. It can define arbitrary associations with other
component meta-types.

The component sub-types in the metamodel are the element and the process. The former represents
concepts, and the latter functionality.

The element extends the component meta-type and the UML-AT concept of artefact (see Section 2.2).
It adds a timestamp attribute and may have methods (which extend the SADAS-ML process meta-type).
The timestamp corresponds to the moment of its creation or update. It also includes reliability attributes
to characterize the confidence in their information. These are the following. Certainty indicates how
probable the information is to be true using a value in category. For instance, a sensor working in an
environment with high-levels of noise probably perceives data of low certainty. Generation classifies
information between observed and derived. For instance, the maximum speed of a vehicle is observed
when asserted according to sensor data, while derived when deduced from observations on its previous
speeds. In the case of observed information, the source identifies its generator (e.g., specifications,
sensor, or software). Scheduling distinguishes between past, actual, foreseen, and stale information. Past
information was applicable, actual is at the current moment, foreseen is expected to be in the future,
and stale was foreseen but no longer and it did not become actual. For instance, when pedestrians
are arriving at a crosswalk, it is foreseen that they will continue and cross; when they disappear from
images, the expectation that their position is close to the last one will become stale after some time
without them reappearing. These attributes are used to prioritize decisions based on information.

The element sub-types in the metamodel are data and information. The former is used to represent
sensor observations as opposed to the latter for abstracted social information.

Information has as its sub-type object, which represents elements from the traffic system or the
external environment. Figure 2 shows it with its immediate sub-types.
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Figure 2. Partial SADAS-ML specification with the sub-types of the object meta-type.

The object for location meta-type distinguishes objects according to whether they have an associated
location. They can be physical (e.g., a person, vehicle, or sensor), intangible (e.g., a group, norm or
interaction), and mixed (e.g., an activity or a museum with physical facilities and an intangible website).
Physical objects have a track to describe their movement. This has two attributes for its general
characterization. Maneuverability indicates the observed ability to change direction sharply, and fastness
describes the potential fastest speed. Both attributes take values in category (see Figure 1) to give a
qualitative approximation to those characteristics. The track path is described as a sequence of points
over time. The near relationship indicates that two points are in close positions.

The agent sub-type of object represents an intentional and social entity in the vein of the AT subject
(see Section 2.2). The ML introduces it at this level to solve the dichotomy between its two sub-types:
software agents in traffic systems, which are mixed objects; and persons, which are physical objects.

Figure 3 shows the hierarchy of concepts starting in the physical object meta-type. There are several
sub-types: area, traffic signals, person and vehicle.

Figure 3. Partial SADAS-ML specification with the sub-types of the physical object meta-type.

Areas represent terrain extensions whose perimeter is delimited by the points in their track. They
are used to specify delimited spaces, such as buildings or neighborhoods.

Traffic signals describe any sign or signal related to traffic. Examples of these are signals of speed
limits or marks delimiting lanes. Its intelligent traffic signal sub-type is a mixed object. It includes
as physical components traffic lights (with red, green, and yellow lights), a display, a speaker, and
cameras to perceive surrounding traffic of both pedestrians and vehicles. It also includes the software
controllers for these elements, which are intangible objects. With these features, this intelligent signal
can represent most devices of this type in literature.

The person sub-type represents people in traffic. Its attributes describe their physical state (e.g., age
and gender) or their socio-economic characteristics.

People can travel in vehicles represented by the vehicle meta-type. It has several sub-types not
shown in the figure, such as car, motorbike, bicycle and scooter. Their characteristics are described
with specific values for the attributes inherited from their super-classes (e.g., the fastness from
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physical object), or additional attributes. Persons can be their drivers or passengers, as in the
ITSML (see Section 2.1).

People can also move together in groups (see Figure 4). These are intangible objects, as they only
represent the association among their participants. A group has a proximity attribute to represent how
close those ties are. For instance, a family group usually has a high value of proximity.

Figure 4. Partial SADAS-ML specification with the group and related meta-types.

3.1.2. Processing

As introduced before, the process meta-type represents functionality (see Figure 1). This functionality
for a type is described as transformations of component types (see Figure 5). Its semantics is that, when
instances of all its input types are available, it produces instances of all its output types, meeting the
constraints specified in its definition. Outputs can also be marked as delete to indicate that an instance
and all its dependents (i.e., targets of aggregation relationships) will be removed. Processes can have
“snippets” to further specify these changes. Such snippets are described with arbitrary languages,
e.g., plain text, code, or logics.

Figure 5. Partial SADAS-ML specification with the sub-types of the process meta-type.

There are three sub-types of process (see Figure 5). Transformations represent automated
derivations whose execution only depends on their information context. That is, when available
information meets their input constraints, they always generate their output. Methods are attached
to the element of which they represent a capability. Activities have an intentional and social meaning
for their participants according to the AT [23]. They indicate specific roles of inputs and outputs
(e.g., subject, rules, or tool), and always have at least one agent acting as the subject that executes them.

Inputs and outputs can have adornments. Existence adornments specify conditions on the
availability of instances of a given input type: “NOT” for the absence of instances; “ANY” for the
presence of at least one instance; “ALL” for every available instance of the input type. Both inputs
and outputs can use cardinality adornments: * to indicate any number of instances equal to or greater
than 0, a number for that exact number of instances, or a range N..M for several instances equal to or
greater than N and equal to or less than M.

3.1.3. General Characteristics

Social information is specified using these meta-types (e.g., person or vehicle) in models. As in
the ITSML, for every name meta-type, there is an Iname meta-type for its instances, and an instanceOf
meta-relationship to link them. This allows distinctions to be made in models between types (with
the stereotype name) and instances of these types (with the stereotype Iname). For instance, Person
is the stereotype of instances of the meta-type Person in models, which are types (e.g., Young driver);
the instances of these types use the stereotype IPerson (e.g., Person1 who is a young driver). The actual
type of a model instance can be indicated with the instanceOf relationship. In the following diagrams,
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when the type of an Iname instance is omitted (no specific instanceOf relationship), it is considered to
belong to any type of the indicated name meta-type.

Attributes of both types and instances can have values or not. Values introduce constraints over
attributes. For instance, a person type without a value for age represents instances of any age, but with a
value, only instances of that specific age. If the attribute has a value, this can be a constant or a variable.
Constants are represented with their literal (e.g., 5, true or “museum”). Variables are represented with
a name starting with an underscore (e.g., _AGE). Variables act as placeholders for the actual value
of the related attributes. All the appearances of a variable in the same diagram take the same value.
For example, this can be used to indicate that several instances of person are the same age.

A SADAS uses observations from sensors as inputs to describe its environment using the previous
concepts. It categorizes surrounding objects and assigns attribute values to them. For instance, a person
walking alone with a speed below the average (i.e., fastness low) may suggest an elderly person (i.e., age
elderly) or somebody with mobility impairments [26]. The latter information is not actually observed,
but derived using social knowledge

3.2. Traffic Social Properties

Traffic social properties describe prototypical social contexts or processes over them. For instance,
on the behavior of pedestrians in groups [8], passengers in vehicles [10], or AT contradictions (see
Section 2.2). They follow the template for general social properties [12] but using the SADAS-ML.

Figure 6 shows an example of property. It considers that people moving together for a certain
time probably belong to some kind of group [27]. The diagram uses type instances to consider actual
data available in the SADAS.

Figure 6. Property to derive information about social bonds from position information.

The diagram shows two instances of person (i.e., the person1 and person2) that are the input of the
proximity group1 transformation. These instances have tracks with several positions. The diagram uses
variables to indicate which positions are simultaneous. For instance, position1a and position2a happen
at the same time, as they have the same value for the attribute timestamp (the shared variable _TIME1).
The near relationship indicates that the linked positions are close in the space. The fact that _TIME1
and _TIME2 must be different but close in time cannot be graphically indicated. The snippet of the
transformation can be used to specify it.

When the available information meets the previous constraints, the transformation creates an
instance of the group1 group type that includes as participants the two instances of person. The instance
of the bond type tag type highlights that the group is derived from the observation of the proximity in
movements. This also leads to a low value for the certainty attribute of group1.
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3.3. Architecture

The SADAS architecture includes components to manage social information as specifications
compliant with the SADAS-ML (see Section 3.2), and to integrate those components with others of
traffic systems. The information processing follows an agent-based architecture for knowledge-based
systems using external resources called MASSA [28]. It decouples the pipeline to preprocess
information from the knowledge-oriented components. To facilitate reasoning, a SADAS uses a shared
representation of the context in a social engine. Agents can consult and modify it using resources that
implement the observer pattern. This follows common practices in context-aware systems, particularly
the FAERIE component architecture [14].

Figure 7 shows the main components of the architecture. It uses concepts of the ITSML such as
agent, utility, or sensor (see Section 2.1). The components ASensor and AComponent represent elements
from the traffic system where the SADAS is integrated. The other components are specific to this study
and work internally with SADAS-ML specifications.

Figure 7. Components in the SADAS architecture. Concepts belong to the ITSML [11]. Components
from package “ITS” correspond to standard traffic systems outside a SADAS. Only the key relationships
are depicted.

There are three types of agent. Sensing managers get observations from the traffic system
external to the SADAS. Reasoner managers manipulate the SADAS-ML information. Observer managers
communicate the relevant information to the external system. These agents use several support utilities
in these tasks.

The utility converter of sensing managers acts as an observer for the external components. These
external components can be, for instance, sensors and other SADASs. The perceive method captures the
events produced by those components and notifies them to the relevant components.

The social engine utility of reasoner managers implements a rule-based engine. Its Knowledge
Base (KB) contains facts and traffic social properties. The engine provides two methods. The assert
method allows new facts to be introduced in its KB. The consult method supports queries to the KB.

The notifier utility of observer managers supports the communication of social information to
external components. It implements the notify method to be reported on changes in the KB. This utility
also implements the observed element of the observer pattern. In this way, external components can
use it to be notified on changes in the KB. The consult method supports external queries to the KB.

The workflow is as follows considering only utilities. When there is an external event, the converter
is notified about it. It translates that external event into facts as SADAS-ML data instances and inserts
them into the KB. When it has finished inserting new information, it triggers the engine reasoning to
derive information and check properties. When this process ends, the engine notifies that to the utility
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notifier. The notifier uses the engine method consult to read the KB and gets the relevant information as
SADAS-ML facts. It translates these facts into suitable formats for the rest of the traffic system. Then,
the notifier changes its state, and the external components (e.g., actuators and other SADASs) acting as
observers get notified on it.

When the previous process requires complex reasoning (e.g., translations using ontologies or
requests among agents with speech acts), manager agents are introduced in the workflow. In that case,
communications between utilities are mediated by their managers, so these can perform their tasks.

This design enables flexible management of social information. It isolates knowledge-related
components in the SADAS, while components that participate in observer patterns (i.e., converters and
notifiers) provide the interface with the rest of the traffic system. These same components and their
managers carry out the translations among the external information and SADAS-ML specifications.
The translation-related components can be reused among different SADASs, as they are tailored to
specific targets (e.g., certain types of sensors). Inside the SADAS, the rule-based approach of the social
engine and the reasoner manager facilitates modifying the used knowledge just changing the included
traffic social properties.

4. Experimentation

This section illustrates the application of the previous framework (see Section 3). It includes a
case study (see Section 4.1), and the discussion on it and additional experimentation (see Section 4.2).

4.1. Case Study: Intelligent Traffic Signals with Social-Awareness

The case study considers a commercial area with shared spaces. There, several systems act
together to make traffic flows safe and fluid using different signaling systems. The introduction of
a SADAS is intended to use social information in this context. It will help to better describe the
environment and profile people according to their characteristics, means of transport, and activities.
In turn, this will be used to adjust traffic signal behavior and send tailored warnings to cars.

The traffic systems in the area are two presented in literature. First, there is an adaptive
control of traffic signals [15]. It is a hierarchical system that makes decisions at several levels:
the area, intersections, and specific crosswalks. This control relies on several sensors to monitor
the surrounding traffic, including cameras and inductive loops. The second system is a distributed
DAS for the detection and tracking of pedestrians using car cameras in Vehicle Ad-hoc NETworks
(VANETs) [16]. The system supports cars to exchange information about their detections to reduce
problems such as pedestrian occlusion. In both cases, the analysis of images from cameras enables
extracting of different characteristics of traffic and their participants, e.g., pedestrian location, type
of vehicle, obstacle speed, person age and gender [17,18]. The reliability of this information varies
according to capture conditions.

The next sections discuss the previous aspects. Section 4.1.1 focuses on properties to characterize
people and the environment in this problem, and Section 4.1.2 on properties that use the social
information to make decisions on traffic control. Section 4.1.3 discusses some specific aspects of the
architecture of this SADAS. Finally, Section 4.1.4 provides some examples of how the SADAS uses the
previous elements.

4.1.1. Context Characterization

The SADAS works here with social information about four main groups of elements: the area,
which is a commercial one; the used vehicles; people’ characteristics and activities; and companion.
These groups of information are considered mutually interacting rather than isolated. Next, some
examples of traffic social properties for these groups are introduced.

The type of area and its facilities are known to change some people’ attitudes (see for
instance [29,30]). For example, people walking in a leisure area (e.g., a park, cultural facilities, or
commercial area) are more likely to wander slowly around. There are also areas where vehicle drivers
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must be particularly aware of vulnerable pedestrians, such as children near a park or school, people
with limitations close to a hospital, or distracted people in leisure areas. Figure 8 considers this with a
traffic social property that identifies some of these areas of particular concern.

Figure 8. Property to identify warning areas of special attention from their activity.

The warning area from activity transformation looks for areas tagged with instances of the activity
tag type. These indicate specific uses, in this case “commercial”. When one is found, an instance of
information of the warning area type is created and attached to the area. This instance could contain
information to operate in that area, e.g., maximum speed or types of vehicle allowed. The use of the
variable _ID indicates that the two instances of area are the same, as they have the same identifier. This
allows modifications of instances to be specified.

The type of vehicle used also implies differences in traffic behavior (e.g., for pedestrians [8],
cars [10], bicycles [9] and scooters [31]). Vehicles have different characteristics (e.g., maneuverability,
maximum speed, applicable norms, and allowed lanes). They are also used in different ways
(e.g., scooters driven by children or adults), frequently depending on the purpose (e.g., a leisure
walk or last-mile travel). One way to draw some expectations about this purpose is using the area
activity. For instance, in leisure places (e.g., cultural and commercial areas), people using personal
mobility solutions (e.g., bicycles and scooters) are more likely to be taking a leisurely walk than moving
in transit to some place. For this last purpose, these areas are not the best option, as they are usually
crowded. Figure 9 depicts a traffic social property that considers this knowledge.

Figure 9. Property about movement characteristics from the area activity and the type of vehicle.

The transformation personal mobility solutions in area considers scooters, which are a sub-type of
vehicle. When they are moving in a leisure area (here a commercial one), the purpose of their drivers
is drawn as leisure. The current position of the scooter is extracted from its track (i.e., the ATrack).
The variable _now is a special one in the SADAS-ML that means the actual moment. The commercial
area is characterized using tags (as in Figure 8). The presence of the scooter in it is represented using
the near relationship. The pleasant goal of the travel activity affects the way of moving described
in the resulting ATrack for the scooter. It has a low fastness related to its wandering nature, though
keeping a high maneuverability (i.e., the probability of sharp changes in direction) related to the inherent
characteristics of the type of vehicle. This last characteristic is part of the definition of the scooter type.
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The previous transformation derives information for the track. It indicates that with the value
derived in the generation attribute. The certainty about this derivation is medium.

People’s individual characteristics and activities also affect their behaviors in relation to traffic.
For instance, young drivers are more prone to risky behavior and elderly ones with limited capabilities
to suffer accidents [31], and the gender and the moment of the week establish different preferred places
to go [30]. This knowledge can be used to extract information on expected behaviors, characteristics,
or state. Figure 10 illustrates this possibility with a traffic social property that makes a guess on the
kind of activity a pedestrian is engaged in from her/his observed movement.

Figure 10. Property about pedestrian’s activity from movement characteristics.

The transformation shopping identification considers a pedestrian APerson moving slowly in a
commercial area. From this information, it derives that the subject is probably performing an activity
of type shopping with the only objective of wandering. Certainty attributes are omitted in the figure.

The last group of social information considered is related to social bonds among participants.
Companion affects perception and behavior in traffic. For instance, passengers usually reduce accident
risk, but less so for young drivers [10]. This kind of traffic social property can also be considered.
Figure 11 shows that the movement of a person can be changed by the companion, here that of children
by the presence of adults, and Figure 12 that companion can alter the attention level to traffic.

Figure 11. Property about child movement with an adult.

Figure 12. Property about attention level in groups of young people.
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The transformation family movement takes as input an already identified group with a child and the
parent (i.e., really an accompanying adult). This can be the result of a previous property (see Figure 6)
and feature extraction from images. In this situation, children usually have quieter movements than
when they are alone, as there are adults surveying them. This is represented by modifying the child
track with a low value for the attributes fastness and maneuverability.

The transformation distracted young group considers that groups of young people involved in
a leisure activity (here shopping) probably pay reduced attention to the surrounding traffic. This
awareness is characterized with the specific tag for this aspect attached to the group.

The previous traffic social properties are used to derive information about the environment and
the expected behavior of participants. The SADAS uses this to assist users and get a safer and more
fluid traffic.

4.1.2. Traffic Decisions

The characteristics of people and the environment influence how traffic systems act, and social
information contributes to this characterization. The SADAS helps here to consider it in the original
systems. The next properties illustrate this point.

Social information can be used to choose when to activate the safety measures in the car detection
system of [16]. Some of the previous properties are related to the attention level of pedestrians
(see Figure 12). Moreover, the growing presence of silent vehicles (e.g., bicycles and electric cars and
scooters) increases the probability of their reaching pedestrians’ positions unnoticed [32]. Figure 13
considers this kind of situation.

Figure 13. Property about triggering sound alerts in the vicinity of distracted groups.

The raise sound alert transformation looks for vehicles (i.e., the AVehicle instance) close to pedestrian
groups with potentially low levels of attention (i.e., the AGroup instance). This level of attention is
characterized with the tag of type awareness (as in Figure 12). The fact that the vehicle and the group
are close is described using the near relationship with the current positions of the vehicle and some
group participant. The suggestion of activating the sound alert is characterized as another tag of type
sound warning linked to the vehicle.

The social information can also be used in the ITS that controls traffic lights [15]. For instance,
to accommodate the duration of those lights to the presence of pedestrian groups. A group involved in
a wandering activity (e.g., shopping or visiting a place) is likely to become dispersed. When such a
group arrives at the traffic lights, some of their members may cross while others wait. This situation
frequently causes some pedestrians to walk when their light is red. This danger can be reduced if all
the group members remain on the same side of the road. To do that, the duration of the red light can
be increased to force regrouping. Figure 14 works on this situation.
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Figure 14. Property about traffic lights to reorganize groups. The transformation type is omitted in
the figure.

It considers a group (i.e., the AGroup instance) performing a wandering activity (i.e., the AnActivty
instance) with an objective wandering (as in Figure 10). This group could also be characterized using a
tag awareness (as in Figure 12). The fact that this group is dispersed is described from the positions of its
members (i.e., the APerson1 and APerson2 instances). At least two members have positions separated
by a distance over a certain threshold. This condition is part of the snippet of the transformation wait
group1. Simultaneously, some members of the group (here APerson2) have reached the position of
the traffic lights (i.e., the ASignal instance). This is characterized with the near relationship. When
available information meets these conditions, the transformation increases the time for the red light
(i.e., the attribute time_red).

4.1.3. Architecture

The architecture of this SADAS is very close to the generic one (see Section 3.3). There are
two groups of components: those from the original systems [15,16]; and those of the SADAS. As in
Section 3.3, the component types of the architecture come from the ITSML (see Section 2.1).

The original components are represented by sensors, actuators and utilities. Managers are not
included, as agents are more complex components and they are not required in these traffic systems.
The only common requirement for the considered components is that they offer a public interface
with consult methods. If they produce notifications, they must implement the observed component
of the observer pattern. Components whose behavior the SADAS changes must also provide modify
methods. In most cases, information for the SADAS comes from utilities that perform some processing
of the raw data, such as feature extraction from images.

The car detection system [16] can provide information on obstacle detection on elements such
as cars and pedestrians, and thus about their positions over time. The control system for traffic
signals [15] includes cameras that contribute to this tracking. It also provides the position of its signals
and crosswalks. Information about areas can be extracted from publicly available sources, such as
open data initiatives from city governments.

The SADAS just includes the original components of its architecture (see Figure 7). Agents are not
required here, as there are not complex processes beyond the utilities. Specific converters and notifiers
are required to communicate with the original components (those for the systems in [15,16]). The rest
of the SADAS components are the general ones and do not need to be modified. Only the contents in
the KB of the social engine change to be adapted to the current context. Nevertheless, parts of these
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contents can be reused from other systems (e.g., some properties, facts, and information types), as they
are independent of specific external devices and utilities, and applicable to multiple social contexts.

The previous information allows more precise expectations on people’s behavior and movements
to be derived than in the original systems. For instance, considering the probable influence of
companion or the characteristics of people and vehicles. Attributes such as the expected maneuverability
and fastness of an obstacle can help to determine a safety area around it with the potential next
positions. It can also help to identify the most suitable warning mechanisms in a situation from
people’s awareness and capabilities. The social information can also be an aspect to consider adjusting
traffic flows. For instance, the times of traffic lights can be dynamically adapted to the presence of
groups or people with mobility issues.

4.1.4. Functioning

An example of typical workflow of this SADA might be the adaptation of traffic lights and alarms
to a group of friends doing shopping. It starts with information from the original DAS [15] and ITS [16],
goes to the SADAS that derives new information, and sends part of this back to the actuators in the
original systems.

Initially, some ITS utilities can consult (or be initialized with) information about the area. SADAS
notifiers receive this information and assert it as area instances with the activity tag with value
“commercial” (as in Figure 8).

When the traffic systems are working, their cameras detect persons and vehicles, and start tracking
them. Notifiers again receive this information. They respectively assert it as person and vehicle instances
with their related track instances (as in Figure 6). This tracking continues over time, adding to those
tracks new locations as point instances.

For the group of friends, the previous points are close over a period. When the reasoning cycle of
the social engine starts with this information, the property about social bonds (see Figure 6) becomes
executable. The pattern-matching algorithm finds that the inputs of the transformations are available
and meet the constraints. Thus, the engine triggers the proximity group transformation and generates
the group instance among the previous person instances.

The information about the area and the people’s tracks also allows the property about activities to
be triggered (see Figure 10). The track instances of friends indicate a slow movement, i.e., with low
fastness. At the same time, their locations are close to the area (in fact inside). This is asserted by a
transformation that compares positions in its snippet. From this information, the property derives
that these person instances are engaged in a shopping activity with a wandering objective. In turn,
this information with a group of youngsters would cause the property about the attention level
(see Figure 12) to derive that the group of friends is probably moving in a distracted way. This last
information corresponds to an instance of the awareness tag type.

When the positions of one of these friends and a vehicle become close, the DAS should trigger a
suitable alarm. The property on sound alarms does it (see Figure 13). The reasoning on positions is
similar to the one for the previous group property. The group of the person also has an instance of the
awareness tag with the distracted value attached. Thus, the inputs of the property transformation are
available, and it generates the outputs. Here, the output is a tag of the sound warning type attached to
the vehicle. This information is sent to a SADAS converter that is observed by external components.
Thus, its state change triggers the sound alarm of an external observing actuator in the DAS.

The previous information can also change the duration of traffic lights in the ITS. In this case,
the property (see Figure 14) requires that the positions of some group members are not close, and
some of them are close to the crosswalk with the lights. The information on people’ positions could
come from the cameras in the ITS or the DAS. In this last case, integration could be achieved through
the direct exchange of information between the SADAS in both systems, as far as suitable converters
and notifiers were configured for it. The previous information makes the property executable, and its
triggering modifies the lights’ duration.
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4.2. Discussion

The SADAS framework has been tested in several experiments. These considered different
problem domains and research studies. Regarding the ML, they assessed its suitability to describe
different types of participants, vehicles, and traffic systems, as well as transformations of this
information. To evaluate the impact of using this information in traffic systems, experiments carried
out simulations using the framework for ITS (see Section 2.1) as basis. This enabled it to be validated
that SADASs could be included in those traffic systems, and that social information changed their
behavior and actually improved traffic. This section discusses the main findings of these experiments.

Regarding the modelling of participants, experiments have focused on profiles according to literature.
These included differences regarding age [26,33,34], gender [26,34], culture [35], and socio-cultural level [36].
In general, these studies offer statistical analyses of the relation between some profile characteristics and
behaviors in traffic activities. These can be translated to the SADAS-ML using sub-types of the person
meta-type that include the required new attributes and their values. Their effect is modelled through
processes, which use those characteristics as inputs to affect the values of other information.

In the case of studies that involve the actual decision-making of participants (e.g., [29,37,38]),
the SADAS-ML has some limitations. It allows modelling when an agent chooses an activity because
it achieves some of its objectives. However, it does not include primitives to reason about those
objectives (e.g., preferences, decomposition, suitability, or hard and soft goals). That kind of primitives
has already been addressed in other studies. For instance, literature in the agent paradigm has paid
attention to goal and means-ends modelling and analysis [13]. Some of these primitives appear in the
base languages of the SADAS-ML, i.e., the UML-AT and the ITSML (see Section 2). However, these
only address goal decomposition and positive and negative contributions to goals. Such primitives are
not currently part of the SADAS-ML.

Different types of vehicle [9,31,32,39] can be modelled as sub-types with specific characteristics of
the vehicle meta-type. These vehicles can embark systems and people.

The main limitation found regarding the modelling of physical objects (e.g., people and other
elements in the environment) has to do with their borders and movements. This is relevant for instance
when dealing with collision detection. An approach similar to that for areas (i.e., defining their
perimeter with points), could partially solve the problem of borders. Nevertheless, reasoning with
physical models is not the goal of SADASs. The relevant information should be provided by external
components related to those aspects. Regarding movement, the description of tracks as sequences of
points causes a quick growth of data. A solution to reduce it may be by adding new points only when
the trajectory changes its direction or speed.

The modelling of traffic systems has been studied with smart roads [40], DASs [41], and traffic
control [18,42]. In most cases, SADASs only need to know the information these systems provide or
use through standardized interfaces (i.e., implementations of the observer pattern). When there is a
need to detail the components of these traffic systems, they can be included through sub-typing of the
object meta-type. The intelligent traffic signal is an example (see Figure 3), with attributes and methods
for sensors (e.g., camera) and actuators (e.g., lights). This supports a high-level perspective of traffic
systems, which is well-suited for SADASs as they focus on social information.

Describing the evolution of systems over time also requires specific primitives. This aspect is
currently addressed with the attributes timestamp and scheduling in the element meta-type (see Figure 1),
and indirectly through the relationships produce-consume (i.e., output-input) of information in the
process meta-type (see Figure 5). This makes frequent using the snippets to reason about this dimension
with conditions on the timestamp attributes. Additional primitives for qualitative reasoning on time
could help to alleviate this issue.

As happens in the case study (see Section 4.1) and with time, numerical relationships among
elements cannot be graphically represented in the SADAS-ML. Their specification resorts to snippets
in arbitrary languages, where experts can use for instance their usual equations. Depending on their
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language, these snippets can be processed automatically (e.g., code). Even when this is not possible
(e.g., free textual descriptions), these snippets are still useful to specify the system.

The experiments also enabled us to obtain an initial assessment of the impact of SADASs in traffic.
They allowed information to be gathered on social aspects, and this changed the behavior of systems
and participants in simulations. The results were similar to those reported in the case study. Regarding
the impact of these changes in traffic flows, results were mixed. The considered social properties
made systems very cautious with potential traffic problems (e.g., changes in obstacle trajectories).
This was expected, as those properties were focused on safety issues. Though this reduced potential
collisions, it also caused congestions in some flows and too many warnings on systems. Introducing
some properties targeted to make flows more fluid and considering only collisions of high and medium
probability could help to address these issues. The main conclusion is that the set of social properties
must be carefully designed to get the desired balance between the different traffic aspects.

The final question raised from the experiments has to do with the need for guidelines to model and
manage information. Beyond their description, there are no indications on how to choose when several
concepts or relationships are possible (e.g., a mixed object as opposed to a physical object connected
to intangible objects). It could also be difficult to design inheritance hierarchies for new needs, as
choices entail tradeoffs that have impact on further extensions and the specification of traffic social
properties. For instance, introducing new relationships to reason about time and decision-making.
Choosing the right social properties for a SADAS is also challenging. Designers must consider the
system requirements and problem tradeoffs. Experiments need to be crystallized in guidelines that
help to understand the key aspects for decisions.

5. Qualitative Comparative Analysis

The SADAS approach is related to several fields of research. First, studies on characteristics of
people and the environment that affect traffic (see Section 5.1). Second, research on the representation
and management of the previous information to get new information (see Section 5.2). Third, the use
of this information in traffic systems such as ITSs and DASs (see Section 5.3).

5.1. Characteristics of People and the Environment

Traffic is a complex phenomenon, with a variety of aspects that affect it. Literature usually groups
them as related to individual persons, the companion in the movement, their means of transport, and
the physical environment [20].

Individual characteristics are those depending only on the person and her/his state. It is common
to disaggregate studies on traffic behavior regarding age [26,33], gender [26], and socio-economic
level [36]. The actual state of the person can also have an impact on their traffic behavior, for instance
regarding drowsiness [43] and stress [44]. These characteristics affect aspects such as risk perception
and risk taking [26,33], response time [43,45], moving speed as pedestrians [38] and attitudes towards
traffic regulations [34].

Usually, there are multiple participants in traffic. The previous individual characteristics can have
distinctive effects on people’s movement and attitudes when considering them at the level of groups.
For instance, age and gender in groups related to attitudes towards risk [33]. There are also specific
characteristics linked to moving in groups. For instance, the level of space occupancy, which can affect
the arrangement of groups travelling together in that space [27].

Vehicles have a direct impact on some movement characteristics such as maximum speed and
maneuverability. They also affect people’s behavior, for instance in terms of risk assessment and
speeding [36,39]. Their characteristics have also been used as clues on some traits of their drivers and
passengers. For instance, the work in [36] about the choice of means of transport and socio-economic
level, and the analyses of the perception of shared spaces in [5] and decision-making in [37].

The physical environment has also proved to have an impact on traffic aspects. It includes the
physical space (e.g., lanes, road surface, street trees, and signals) [38], its conditions (e.g., weather,
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light, and road condition) [46], and type of space (e.g., shared, urban segregated or highway, and type
of space activity) [4,30]. Again, this affects some movement characteristics (e.g., aqua-planning and
visibility) and people’s attitudes [46].

The SADAS-ML supports the graphical modelling of most of these characteristics. For some of
them, there are specific primitives that can be used without further changes (e.g., the relationship
type between a vehicle and its driver). Others can be modelled using instances of general concepts
such as the information or tag types with specific values in their attributes. In both cases, the ML
can be extended through sub-typing, as done in the case study (see Section 4.1). For example, by
creating a new sub-type of vehicle to represent roller skates. The manipulation of this information
depends on the specific processes considered. Nevertheless, and as mentioned in the discussion of the
experimentation (see Section 4.2), some elements and processes considered in these studies cannot be
graphically modelled in the SADAS-ML. Examples of them are decision-making and reasoning on
time aspects. These need to be addressed in the snippets of processes.

5.2. Management of Social Information

Traffic studies are undertaken in a wide range of disciplines, including Social Sciences
(e.g., Urbanism, Sociology and Anthropology), Life Sciences (e.g., Health, Cognitive Psychology
and Ecology), and Engineering (e.g., car and DAS development). Each of them has different methods
of study and therefore of using information. In most cases, the management of this information is
the task of human experts, who rely on natural language and analytical tools. When engineering
automated systems, that information must be formally specified, so systems can use it properly.

Mathematical models have been used extensively in the area. They are particularly well-suited
to model participants’ flows and motion [47], and when the focus is on specific calculations and
algorithms, as in computational vision [17]. They are not so frequent when considering social
information, as management here is usually more qualitative. In this case, available studies mainly
focus on the development of models of participants’ behaviors at a low level of abstraction. For instance,
inferring the response time according to physiological characteristics and processes [48].

Logics have also been considered regarding the modelling of social aspects. In particular, fuzzy
approaches have shown their utility in dealing with qualitative reasoning on them. For instance, on
modelling the crossing behavior of pedestrians from their critical gap [49] or of cyclists from their social
force [50]. Nevertheless, and as with many mathematical models, these approaches have focused on
specific decisions that depend on functions and thresholds over certain inputs. This makes it difficult
to scale them up to the qualitative management of information, where decision-making is only the
final step of several linked steps of reasoning, as shown in the case study.

Other general-purpose representations of information have also been used. For instance, rules
to adjust image processing [51] or control traffic signals [42], and key-value tuples for context-aware
systems [14]. These offer high flexibility to represent heterogeneous information, but lack mechanisms
to represent complex information and specific methods for its management. Thus, these must be
developed according to problem needs, which may require significant expertise and effort.

Looking for reasoning at a higher level of abstraction, some research has introduced the use
of ontologies. These are formal and explicit conceptualizations of shared knowledge. Description
logics facilitate reasoning over them. They have been used to derive new information and understand
traffic situations [52,53]. Though ontologies offer the desired reasoning capabilities for SADASs, their
usability by non-experts presents some problems [54]. Their support to create tailored modelling and
examination tools is more limited than for other approaches. Moreover, adding assertions through
logics requires a good understanding of the formalism and the underlying structure of the ontology.

Graphical MLs have also been applied, mainly related to simulations. The level of abstraction
and scope vary among studies. There are developments of languages for specific aspects. For instance,
ref. [55] allows specifying maps and vehicle speeds and paths, and [56] maps and participants in
Smart Cities. Other studies adopt a wider scope regarding traffic aspects. For instance, the ITSML [11]
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endeavors to cover the specification of ITSs and their environment for different problems. It has
been used in case studies using simulations of infrastructures such as smart roads [57], and in the
context of MDE for integration with other types of systems [25]. Extension mechanisms for the MLs
are considered in some studies, for instance in [25,56] through metamodel modification.

The SADAS approach is aligned with this latter group of works in the use of MLs defined through
metamodels to specify information. Nevertheless, the SADAS-ML has several distinctive features.

Regarding its focus, the SADAS-ML is linked to general social aspects in traffic. This is something
not considered in those previous studies or only for some specific aspects (e.g., age and existence of
companion in [25]). The base of the ML in the AT [23] provides a suitable theoretical framework for this
modelling. The SADAS-ML already includes elements to describe activity systems, but there are still
AT concepts it does not include. Examples of these are the different decomposition levels of objectives
and activities (see Section 2.2). When compared to the other AT-based language, the UML-AT [12],
there are some shared concepts (e.g., the activity system, though modelled with different primitives).
Others only appear in one language. Some from the UML-AT, such as contribution relationships, could
be added to the SADAS-ML to address some of its shortcomings (see Section 4.2).

The SADAS-ML also differs from previous studies in that it incorporates the means to manipulate
its information through the process meta-type and its related types. These not only address changes
in information but also have a meaning grounded in the AT. This facilitates the specification of
transformations extracted from social knowledge.

5.3. Traffic Systems

All the previously reviewed aspects about traffic participants and their environment exert an
influence on this phenomenon. However, traffic systems such as ITSs and DASs only make limited use
of them [6,7]. Some reasons are the difficulties in integrating heterogeneous information, dealing with
uncertainty, and avoiding participants’ cognitive overload [41].

Available systems mostly use information about the driving area (e.g., type of road and lanes),
environmental conditions (e.g., rain and light), and surrounding obstacles (i.e., their position, speed,
and contour). Social aspects appear in some studies that can be grouped into two main domains.
On the one hand, when considering problems affecting traffic in wider areas. Examples of these are
incident detection, traffic forecasting, and demand estimation from timetables and area activities [58].
On the other hand, studies on users’ individual performance. The studies on drowsiness [43] and
stress [44] detection using sensors belong to this group.

That information comes from low-level sensor processing in the case of nearby elements. For
instance, multiple vision and radar techniques to track obstacles [17], or physiological sensors to detect
stress [44]. For information on more distant elements or a wider perspective, systems resort to external
sources. For instance, web services for maps and traffic in the area. There are studies on the abstraction
and fusion of information to support a more complex management [58]. Nevertheless, abstraction is
limited, for instance, characterizing participants as bounding boxes with certain speed as in [16].

The use of this information usually happens at a low level of abstraction. For instance, to track
lanes or warn about potential collisions. It is highly dependent on the specific algorithms considered.
For instance, systems based on artificial vision use raw images [17]. The development of integrated
multi-purpose models is still an ongoing issue. Integration happens usually at the component level,
for instance through notify-observe patterns [11], and less frequently with shared representations [59].

Being focused on social aspects, a SADAS uses the information provided by other components
in traffic systems. Its converters and notifiers isolate the inner components from the external level of
abstraction. They are responsible for representing that information as suitable SADAS-ML facts. In the
reasoning layer, specific social properties can perform the required transformations on information,
e.g., to abstract, integrate, interpret, or ground it. The case study (see Section 4.1) includes examples
of these. This allows most of the types of transformation that appear in the studies reviewed to be
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made, though within the scope of social information as described here. Manipulations that require
calculations must be specified in the snippets.

6. Conclusions

This paper has presented the SADAS framework for developing traffic systems (i.e., ITSs and
DASs) that use social information. This information is related to characteristics of participants
linked to their environment, activities and bonds, and their mutual influence. Considering this
information allows extended models of traffic settings to be built, which results in better-informed
decisions. Current traffic systems only partially consider this information, either at the macroscopic
(e.g., to anticipate road load or conflicting points) or microscopic level (e.g., to measure response times
or detect obstacles).

The paper includes an ML, an information management process, and an architecture. It is built on
proven research in the areas of social information management [12] and ITS development [11].

The SADAS-ML offers an integrated conceptual basis to specify social information on traffic.
It includes primitives to describe contexts and activities based on the AT [23,24] from Social Sciences.
It can also specify traffic aspects including persons, vehicles, and their environment. The link between
them allows traffic activities located in time, space, and social context to be described. The language
also supports describing changes in information through processes (i.e., activities, transformations,
and methods). These are specified with graphical primitives and snippets in arbitrary languages.

The language also provides extension mechanisms to tailor it. Among them are inheritance and
instantiation of types in models.

This ML is used to describe the actual information of a system and prototypical knowledge applicable
to it. The latter is specified as traffic social properties, following the template for social properties [12] but using
the SADAS-ML. This knowledge is the basis for reasoning about social information. Its modularization
as independent properties enables its flexible management, as modifications only require changing the
properties considered.

The architecture that supports the processing of social information is based on the principles of
modularity and flexibility. The overall design follows the MAS organization in [28]. It considers a
pipeline of external tools. These provide information and methods for acting on the environment to
the knowledge-based components. The interfaces with components outside a SADAS are isolated
inside the converter and notifier components and follow an observer pattern [59]. These components
also perform the translations between the SADAS-ML and the formats of the external components.
Agents are introduced to manage these components and reason on their information.

The knowledge management is implemented with a rule-based social engine. Properties play the
role of rules to check and derive information. The engine implements a pattern-matching algorithm
that looks for instances of a query (i.e., a SADAS-ML specifications) among the available information.

The SADAS framework has been tested in several experiments. The case study (see Section 4.1)
uses it to integrate two existing systems, an ITS to control the traffic lights in an area [15] and an
obstacle detection system for VANs [16]. The proposed SADAS abstracts their information and uses its
derivations to improve the planning of lights and the anticipation of potential movements of obstacles.
The models allow most of its knowledge to be specified graphically, with only some conditions
in process snippets. As stated before, modifications of this behavior mainly require changing the
considered traffic social properties. Only when changes affect input data (e.g., from sensors) or acting
outside the SADAS are new or modified interface components needed. Nevertheless, these interface
components can be reused in projects. Similar findings appear in the other experiments reported,
which consider other settings such as smart roads [40] and people’s driving behavior [37].

The approach still has several open issues, including some that already appeared in the paper.
First, the SADAS-ML needs to include additional primitives. The experiments already required the
introduction of new types (e.g., the information type wandering) and tagging (e.g., type of area). When
these needs are recurrent, they point to potential new primitives. Another issue is the representation of
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decision-making. Currently, it appears as a produce-consume process on information, but there are no
graphical ways to represent steps or preferences. For more complex processes, the specification must
rely on snippets, which are less user-friendly for non-experts. Second, the use of the framework requires
the development of guidelines for new users. Aspects such as choosing between alternative ways
of modelling, or reviewing the knowledge basis, require training. Third, and following the previous
points, additional tool support is required, in particular, to check the consistency of knowledge.
This can be achieved with the available mechanisms through the introduction of meta-properties for
validation. Finally, further experimentation is required. The framework has been tested with several
existing studies, but there are still multiple traffic problems to check, such as rule breaking, incidents,
autonomous vehicles, and highways. Moreover, some decisions already taken need further validation.
For instance, the choice of enumeration types for some attributes and the possibilities of qualitative
reasoning with them.
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