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Abstract. Our research activity takes place within the research project GR 3297/4, funded by ‘Deutsche
Forschungsgemeinschaft’ (DFG), and aims at a robust simulation method for fiber-reinforced materials
in light-weight structures. One goal is to avoid looking-effects in the static and dynamic regime, which
occur due to nearly incompressible matrix materials and highly stiff fibers. Therefore, we extend the
mixed finite elment formulations, hown in References [1, 2, 3]. In the description of the material be-
havior, we also use polyconvex strain energy functions [4]. In case of the so-called CoFEM element in
Reference [2], the volumetric dilatation and the cofactor of the right Cauchy-Green tensor are approxi-
mated independently beside the displacement. In Reference [3], this formulation is extended so, that the
right Cauchy-Green tensor of the anisotropic strain energy function is also approximated independently.
In this presentation, we also approximate the cofactor and the volumetric dilatation of the anisotropic
right Cauchy-Green tensor independently. We analyse the spatial convergence of the new mixed finite
elements for hexahedral elements up to a cubic approximation in space. Thereby, we look especially at
the different possible combinations of polynomial degrees of the independent mixed variables and the
impact of this on the efficiency of the simulation (see Reference [5]). As numerical examples serve the
well-known cooks cantilever beam and an axisymmetric pipe. Hereby, the bodies have different materials
domains with different material parameters and fiber directions.

1 CONTINUUM MODEL

As continuum model, we consider an anisotropic material with nF fiber directions aaai
0 moving in the

Euclidean space Rndim with the constant ambient temperature Θ∞. The strain energy function of the
material with a thermo-viscoelastic matrix and thermoelastic fibers is given by

Ψ(CCC,CCCv,Θ) = ΨM(CCC,CCCv,Θ)+
nF

∑
i=1

ΨFi(CCC,Θ,MMMi), (1)

which is split into a single matrix part ΨM and multiple nF fiber parts ΨFi . Here, MMMi = aaai
0⊗ aaai

0 define
the structural tensor, CCC = FFFT FFF define the right Cauchy-Green tensor, CCCv define the viscous right Cauchy-
Green tensor and Θ define the absolute temperature. With the volume dilatation J(CCC) = det[FFF ] =

√
det[CCC],
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we assume the specific dependencies:

ΨM(CCC,cof[CCC],J,Θ,CCCv) = Ψ
iso
M (CCC,cof[CCC],J)+Ψ

vol
M (J)+Ψ

cap
M (Θ)+Ψ

coup
M (Θ,J)+Ψ

vis
M (ΛΛΛ) (2)

ΨFi(CCC,cof[CCC],J,Θ,MMMi) = Ψ
ela
Fi
(CCC,cof[CCC],J,MMMi)+Ψ

cap
Fi

(Θ)+Ψ
coup
Fi

(Θ,CCC,MMMi) (3)

The elastic part of the matrix function ΨM is split into an isochoric part Ψiso
M and a volumetric part Ψvol

M .
We subdivided the thermo-elastic free energy of the matrix into a heat capacity part Ψ

cap
M and the part of

the thermo-mechanical coupling effect Ψ
coup
M , where βM ist the coefficient of linear thermal expansion for

the matrix. The thermal part of the fiber free energy is separated in the same manner. We consider a heat
capacity function Ψ

cap
Fi

and the function of the thermo-mechanical coupling Ψ
coup
Fi

with the coefficients
of linear thermal expansion βFi and the fourth invariant Ii

4 = tr[CCCMMMi]. Both coupling parts are given by

Ψ
coup
M =−2ndimβM(Θ−Θ∞)J

∂Ψvol
M (J)
∂J

Ψ
coup
Fi

=−2βFi(Θ−Θ∞)
√

Ii
4

∂Ψela
Fi
(Ii

4, . . .)

∂Ii
4

(4)

The function Ψvis
M is the viscoelastic free energy function of the matrix material, with ΛΛΛ =CCCCCC−1

v .

2 FINITE ELEMENT FORMULATION

The finite element discretization follows from the mixed principle of virtual power (see Reference [8].
Here, we need the complete internal energy, which consists of the assumed temperature field Θ̃, the
entropy density field η as the corresponding Lagrange multiplier, the superimposed stress tensor S̃SS to
derive an energy–momentum scheme, an independent mixed field C̃CC and the corresponding Lagrangian
multiplier SSS. The internal energy functional of the standard displacement element is given by

Π
int = ΠHW +

∫
B0

1
2

SSS : (CCC(qqq)−C̃CC)dV +
∫

B0

S̃SS : C̃CCdV +
∫

B0

η (Θ− Θ̃)dV Π
D
HW =

∫
B0

Ψ(C̃CC)dV (5)

By introducing an independent volume dilatation J̃, we obtain the displacement-pressure element intro-
duced by Simo et al. [1]. Here, the Lagrange multiplier p plays the role of the hydrostatic pressure and
p̃ is the superimposed pressure to obtain an energy–momentum scheme. The functional reads

Π
DP
HW = Π

D
HW +

∫
B0

p (J(C̃CC)− J̃)dV +
∫

B0

p̃J̃dV (6)

with ΨM(C̃CC,cof[C̃CC], J̃,Θ,CCCv) and ΨFi(C̃CC,cof[C̃CC], J̃,Θ,MMMi). A third functional is shown in Reference [2].
Here an additional field for the cofactor of CCC and the corresponding superimposed stress tensor B̃BB is
introduced, such that we arrive at the functional

Π
CoFEM
HW = Π

DP
HW +

∫
B0

BBB : (cof[C̃CC]− H̃HH)dV +
∫

B0

B̃BB : H̃HHdV (7)

with ΨM(C̃CC, H̃HH, J̃,Θ,CCCv) and ΨFi(C̃CC, H̃HH, J̃,Θ,MMMi). Especially for anisotropic material formulations the
SKA element is presented in Reference [3], which introduces the field C̃CCA for the anisotropic part ΨFi .
The anisotropic part of the stress tensor is represented by the Lagrange multiplier SSSA and the superim-
posed stress tensor by S̃SSA. Here, we arrive at

Π
CoSKA
HW = Π

CoFEM
HW +

∫
B0

1
2

SSSA : (C̃CC−C̃CCA)dV +
∫

B0

S̃SSA : C̃CCAdV (8)
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Table 1: Dependencies of the different parts of the strain energy function for the CoCoA element formulation.

S̃SS Ψ̃ = Ψiso
M (C̃CC)+Ψ

cap
M (Θ)+Ψvis

M (ΛΛΛ)+∑
nF
i=1[Ψ

cap
Fi

(Θ)] B̃BB Ψ̃ = Ψiso
M (H̃HH)

p̃ Ψ̃ = Ψiso
M (J̃)+Ψvol

M (J̃)+Ψ
coup
M (Θ, J̃) B̃BBA Ψ̃ = ∑

nF
i=1[Ψ

ela
Fi
(H̃HHA,MMMi)]

S̃SSA Ψ̃ = ∑
nF
i=1[Ψ

ela
Fi
(C̃CCA,MMMi)+Ψ

coup
Fi

(Θ,C̃CCA,MMMi)] p̃A Ψ̃ = ∑
nF
i=1[Ψ

ela
Fi
(J̃A,MMMi)]

with ΨM(C̃CC, H̃HH, J̃,Θ,CCCv) and ΨFi(C̃CCA,cof[C̃CCA],
√

detC̃CCA,Θ,MMMi). Finally, we add the fields H̃HHA and J̃A, the
corresponding Lagrange multipliers BBBA and pA and the superimposed fields B̃BBA and p̃A. Thus, we obtain
the CoCoA element, as shown in Reference [5], by the means of the functional

Π
CoCoA
HW = Π

CoSKA
HW +

∫
B0

BBBA : (cof[C̃CC]− H̃HHA)dV+
∫

B0

B̃BBA : H̃HHAdV +
∫

B0

pA(J(C̃CC)− J̃A)dV+
∫

B0

p̃AJ̃AdV (9)

with ΨM(C̃CC, H̃HH, J̃,Θ,CCCv) and ΨFi(C̃CCA, H̃HHA, J̃A,Θ,MMMi). Considering the different dependencies of the dif-
ferent parts of the strain energy function (see Table 1), the superimposed fields can now be designed (see
Reference [8]). The superimposed fields of the CoCoA element read

S̃SS =
Ψ̃(1)− Ψ̃(0)− ∫

∂Ψ̃

∂C̃CC
: ˙̃CCC− ∫

∂Ψ̃

∂Θ
Θ̇− ∫

∂Ψ̃

∂CCCv
: ĊCCv

˙̃CCC : ˙̃CCC
˙̃CCC B̃BB =

Ψ̃(1)− Ψ̃(0)− ∫
∂Ψ̃

∂BBB : ˙̃BBB
˙̃BBB : ˙̃BBB

˙̃BBB

p̃ =
Ψ̃(1)− Ψ̃(0)− ∫

∂Ψ̃

∂J̃
˙̃J− ∫

∂Ψ̃

∂Θ
Θ̇

˙̃J ˙̃J
˙̃J S̃SSA =

Ψ̃(1)− Ψ̃(0)− ∫
∂Ψ̃

∂C̃CCA
: ˙̃CCCA−

∫
∂Ψ̃

∂Θ
Θ̇

˙̃CCCA : ˙̃CCCA

˙̃CCCA

B̃BBA =
Ψ̃(1)− Ψ̃(0)− ∫

∂Ψ̃

∂BBBA
: ˙̃BBBA

˙̃BBBA : ˙̃BBBA

˙̃BBBA p̃A =
Ψ̃(1)− Ψ̃(0)− ∫

∂Ψ̃

∂
˙̃JA

˙̃
AJ

˙̃JA
˙̃JA

˙̃JA

For the mixed principle of virtual power, we also need the kinetic power, given by

Ṫ =
∫

B0

(ρ0vvv− ppp) · v̇vvdV +
∫

B0

ṗpp · (q̇qq− vvv)dV +
∫

B0

ppp · q̈qqdV (10)

with the velocity vvv, the linear momentum ppp and the mass density ρ0. As external power, we assume

Π̇
ext =−

∫
∂B0

ttt · q̇qqdA−
∫

∂B0

λλλq · (q̇qq− q̇qqref)dA−
∫

∂B0

λλλΘ · (Θ̇− Θ̇
ref)dA+

∫
B0

∇

(
Θ̃

Θ

)
·QQQdV

+
∫

B0

Θ̃

Θ
DintdV +

∫
B0

ĊCCv : V(CCCv) : ĊCCvdV QQQ =−
[

nF

∑
i=1

J
kFi− kM

C̃CC : MMMi
MMMi + kJ(C̃CC)C̃CC

−1

]
∇Θ (11)

Here, QQQ denotes the Piola heat flux vector derived from Duhamel’s law (see Reference [8]), where kM and
kFi denotes the material conductivity coefficients for matrix and fibers. For the SKA and CoCoA element,
the dependence of the fiber part on QQQ changes from C̃CC to C̃CCA. Here, q̇qqref denotes the time evolution of
a prescribed boundary displacement with the Lagrange multiplier λλλq, and Θ̇ref the time evolution of a
prescribed boundary temperature with the Lagrange multiplier λλλΘ. The vector ttt denotes the traction load
on the Neumann boundary. The non-negative internal viscous dissipation Dint is given by

Dint = ĊCCv : V(CCCv) : ĊCCv V(CCCv) =
1
4

(
Vvol−

Vdev

ndim

)
CCC−1

v ⊗CCC−1
v +

Vdev

4
Is : CCC−1

v ⊗CCC−1
v , (12)
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with the fourth-order symmetric projection tensor Is and the viscosity constants Vdev and Vvol, respec-
tively. The total energy balance Ḣ thus reads

Ḣ = Ṫ (q̇qq, v̇vv, ṗpp)+ Π̇
ext(q̇qq,λλλq,λλλΘ,ĊCCv,Θ̃,Θ̇)

+ Π̇
int(q̇qq,Θ̃, η̇,ĊCCv,

˙̃CCC, ˙̃CCCA,
˙̃HHH, ˙̃HHHA,

˙̃J, ˙̃JA,SSS,SSSA,BBB,BBBA, p, pA) (13)

The superimposed fields (S̃SS,B̃BB, p̃,S̃SSA,B̃BBA, p̃A), the viscous dissipation Dint as well as the Piola heat flux
vector QQQ are defined as parameters not as arguments. By variation with respect to the variables in the
argument of Eqn. (13), that is

∫
T δ∗Ḣ dt ≡ ∫

T [δ∗Ṫ +δ∗Π̇ext +δ∗Π̇int]dt = 0, we obtain the weak forms∫
T

∫
B0

[Div[FFFSSS]− ṗpp] ·δq̇qqdV dt = 0
∫

T

∫
∂B0

[−ttt−λλλq] ·δq̇qqdAdt = 0
∫

T

∫
B0

[
1
ρ0

ppp− q̇qq
]
·δv̇vvdV dt = 0∫

T

∫
B0

[
η+

∂Ψ

∂Θ

]
δΘ̇dV dt = 0

∫
T

∫
∂B0

[−λλλΘ] ·δΘ̇dAdt = 0
∫

T

∫
B0

[
Div[QQQ]

Θ
+

Dint

Θ
+ η̇

]
δΘ̃dV dt = 0∫

T

∫
∂B0

[
˙̃qqq− q̇qqref(t)

]
·δλλλqdAdt = 0

∫
T

∫
∂B0

[
Θ̇− Θ̇

ref(t)
]
·δλλλΘdAdt = 0∫

T

∫
B0

1
2

[
˙̃CCC−ĊCC

]
: δSSSdV dt = 0

∫
T

∫
B0

[
Θ− Θ̃

]
δη̇dV dt = 0∫

T

∫
B0

[
1
2

SSS−
(

∂Ψ

∂C̃CC
+ S̃SS+SSS

)]
: δ

˙̃CCCdV dt = 0
∫

T

∫
B0

[
∂Ψ

∂CCCv
+ĊCCv : V(CCCv)

]
: δĊCCvdV dt = 0

For the CoCoA element the remaining weak forms are∫
T

∫
B0

[
˙̃HHH− ˙cof[CCC]

]
: δBBBdV dt = 0

∫
T

∫
B0

[
BBB−

[
∂Ψ

∂H̃HH
+ B̃BB
]]

: δ
˙̃HHHdV dt = 0∫

T

∫
B0

[
˙̃J− J̇

]
δpdV dt = 0

∫
T

∫
B0

[
p−
[

∂Ψ

∂J̃
+ p̃
]]

δ
˙̃JdV dt = 0∫

T

∫
B0

1
2

[
˙̃CCCA− ˙̃CCC

]
: δSSSAdV dt = 0

∫
T

∫
B0

[
1
2

SSSA−
[

∂Ψ

∂C̃CCA
+ S̃SSA

]]
: δ

˙̃CCCAdV dt = 0∫
T

∫
B0

[
ḢHHA− ˙cof[CCC]

]
: δBBBAdV dt = 0

∫
T

∫
B0

[
BBBA−

[
∂Ψ

∂H̃HHA
+ B̃BBA

]]
: δḢHHAdV dt = 0∫

T

∫
B0

[
˙̃JA− J̇

]
δpAdV dt = 0 = 0

∫
T

∫
B0

[
pA−

[
∂Ψ

∂J̃A
+ p̃A

]]
δ

˙̃JAdV dt = 0

with the additional stress tensor

SSS = BBB : P+
p

2J(C̃CC)
cof[C̃CC]+

1
2

SSSA +BBBA : P+
pA

2J(C̃CC)
cof[C̃CC] P=

∂cof[C̃CC]

∂C̃CC
(14)

In the last step, we transform the integrals to a reference element and discretize all quantities over the
element in space and time. For the shape functions in space N we use Lagrangian shape functions
(see Reference [6]). For the shape functions in time we use Lagrangian shape functions as well (see
Reference [8]).

Mi(α) =
k+1

∏
j=1
j 6=i

α−α j

αi−α j
, 1≤ i≤ k+1 M̃i(α) =

k

∏
j=1
j 6=i

α−α j

αi−α j
,1≤ i≤ k (15)
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The time rate variables and mixed fields (qqq,vvv,ppp,Θ̃,Θ,η,CCCv,C̃CC,C̃CCA,H̃HH,H̃HHA,J̃,J̃A) are approximated with

(•)e,h =
k+1

∑
I=1

nno

∑
A=1

MI(α)NA(ξξξ)(•)eA
I

(
˙(•)e,h

=
1
hn

k+1

∑
I=1

nno

∑
A=1

M′I(α)N
A(ξξξ)(•)eA

I

)
(16)

and Lagrangian multipliers and variation fields (λλλq,λλλΘ,SSS,SSSA,BBB,BBBA,p,pA,δ∗•) with

(•)e,h =
k

∑
I=1

nno

∑
A=1

M̃INA(•)eA
I (17)

Here, k is the polynomial degree in time and nno is the number of nodes of the spatial discretization. Each
integral that exist are solved with the corresponding Gaussian quadrature rule. The internal variable CCCv

is determined on the element using the Newton-Raphson method, but not at each spatial quadrature point
by using spatial finite element shape functions. After eliminating ppp and η, we condense out the resulting
formulation at the element level to a displacement and temperature formulation (see Reference [2]).
Therefore, all mixed fields except qqq and Θ are discontinuous at the boundaries of spatial elements. We
use our In-House Matlab code fEMcon based on the implementation and ideas shown in Reference [6].
To solve the linear systems of equations we use the Pardiso solver from Reference [9]. For the assembly
procedure we use the fast sparse routine shown in Reference [10].

y

x

z

0.44

0.10
0.48

0.44

0.16

A

B

p̂

ε1 = 0.1e6 Vdev = 0.1e3 kF1 = 0.1
ε2 = 0.1e6 Vvol = 0.2e3 βF1 = 1e−6
ε3 = 1.8e6 ε6 = 10e6 c0

F1
= 200

ε4 = 100e6 ε7 = 4 c1
F1
= 0.0002

ε5 = 4 ε8 = 4 kF2 = 10
εvis

1 = 0.1e4 ε9 = 1 βF2 = 1e−12
εvis

2 = 0.1e4 ε10 = 0.1e6 c0
F2
= 200

εvis
3 = 1.8e4 kM = 0.1 c1

F2
= 0.0002

εvis
4 = 100e4 βM = 1e−6 Θ∞ = 300

εvis
5 = 4 c0

M = 800 p̂ = 1.5e6
ρ0 = 1000 c1

M = 0.0008
hn = 0.0005 T = 1.0 TOL = 1e−2

Figure 1: Geometry, configuration, simulation parameters and fiber directions (a1
0)

T = [1 1 1] (blue) and (a2
0)

T =
[1 1 0] (green) of cooks cantilever beam for k = 1.

3 NUMERICAL EXAMPLES

As first numerical example serves Cook’s cantilever beam with a quadratic distribution of an in-plane
load on the Neumann boundary. The geometry, configuration and simulation parameters can be found in
Figure 1. The corresponding strain energy functions are

Ψ
iso
M =

ε1

2
(tr[CCC])2 +

ε2

2
(tr[cof[CCC]])2− ε3ln(J) Ψ

vol
M =

ε4

2
(Jε5 + J−ε5−2)

Ψ
ela
F1

= ε6

(
1

ε7 +1
(tr[CCCMMM1])

ε7+1 +
1

ε8 +1
(tr[cof[CCC]MMM1])

ε8+1 +
1
ε9

det[CCC]−ε9

)
Ψ

ela
F2

=
ε10

2
(tr[CCCMMM2]−1)2

Ψ
cap
X = c0

X(1−Θ∞c1
X)(Θ−Θ∞−Θ ln

Θ

Θ∞

)− 1
2

c0
X c1

X(Θ−Θ∞)
2
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x
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Figure 2: Convergence of the y-coordinate on point A and v. Mises equivalent stress σV M on point B for the
parameters shown in Figure 1 and k = 1.

The strain energy function of the matrix Ψiso
M and the first fiber Ψela

F1
can be found in Reference [2], of

the second fiber Ψela
F2

in [11] and for the capacitive part the function Ψ
cap
X in Reference [8] . Futhermore,

the strain energy function of the viscous matrix part is given by Ψvis
M = Ψiso

M (ΛΛΛ)+Ψvol
M (ΛΛΛ). We compare

the proposed mixed finite CoCoA-element and the non-standard mixed CoSKA-element and CoFEM-
element with the standard displacement element (D) and the displacement pressure element (DP) for
hexahedral elements up to cubic order. First we look at the convergence of the y-coordinate at point A
and the v. Mises equivalent stress at point B (see Figure 2). The digits in the element name represent
the polynomial degrees of the mixed variables in the order qqq, H̃HH, J̃, C̃CCA, H̃HHA and J̃A. The CoCoA ele-
ments (HCoCoA210000 and HCoCoA310000) with a low polynomial degree for the mixed fields of the
anisotropic part (C̃CCA, H̃HHA, J̃A) have the highest convergence rate, followed by the linear CoSKA-element
(HCoSKA1000). This is an interesting case, because this element has a very low computational effort
compared to the other higher order mixed elements within the same convergence range. However, here,
there are certain ozillations or jumps in the stress. After the linear CoSKA-element you will find most
of the other elements and with some distance the quadratic standard element. Futhermore, the same
problem with a constant approximation of C̃CCA for the higher order CoSKA-elements appears also in vi-
soelastic context (see Reference [5]). In Figure 3 the deformed configuration, the v. Mises equivalent
stress σV M and the temperature distribution Θ are shown. For the fine mesh we get a similar solution,
in deformation and stress, for both standard and mixed element. We see that the CoCoA element in the
coarse mesh represents the asymmetric bending caused by the fibers, very close to the converged solu-
tion. This is also valid for the typical stress distribution of a bending. However, differences between the
two meshes can still be seen in the temperature distribution caused by the thermo-mechanical coupling.
Next we look on the conservation properties as shown in Figure 4. All shown elements preserve the en-
ergy, only the standard element does this slightly worse. The angular momentum is perfectly preserved
for all elements, the same is valid for the linear momentum which is not shown. In the last step, we add
a second fiber, set the time step size to hn = 0.00025 and apply a temperature distribution as shown in
the first image of Figure 5. For the second fiber, we set the mechanical stiffness to a low value and the
conductivity to a high value. As shown in Figure 5, the second fiber ensures that the heat is conducted
much faster and in a specific direction. Moreover, we can see in this figure that also here in both cases
the energy is conserved and there is no difference between one and two fibers.
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Figure 3: Current configuration, v. Mises equivalent stress σV M and temperature distribution Θ for the parameters
shown in Figure 1, nF = 1 and k = 1.
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Figure 4: Error of energy E and angular momentum LLL for the parameters shown in Figure 1, nel = 32, nF = 1,
nel = 32 and k = 1.

Our second example is a hollow beam, which oscillates in the gravitational field (gravitational con-
stant g = 9.81) of the earth. The geometry, configuration and simulation parameters can be found in
Figure 6. For the matrix part we use an Neo-Hooken model with material parameters for rubber (see
Reference [13], ν = 0.499). The fiber part is taken from Reference [12] with the corrosponding material
paramters for a nylon fiber. The strain energy functions of the viscous matrix part and the capacitive part
are taken from the first example. All new strain energy parts are given by

Ψ
iso
M =

ε1

2
(tr[CCC]−3−2ln(J)) Ψ

vol
M =

ε2

2
ln(J)2

Ψ
ela
Fi

=
M f

∑
m=1

µ̃m

γm
(tr[CCCMMMi]

γm
2 −1)− µ̃mln(tr[CCCMMMi]

1
2 )

The fibers in each wall section are arranged as if they were wrapped around the beam at an angle of 18
degrees. The whole simulation parameters, the geometry and configuration can be found in Figure 6.
Since the material formulation has no cofactor, the corresponding elements are omitted here. First we
look at the convergence of the x-coordinate at point A and the v. Mises equivalent stress at point B
(see Figure 7 left). Here, the best convergence rate is achieved by the HCoSKA2001-element. This is
followed by the HDP20-element and then with a significant distance the standard H2-element. If we look
at Figure 7 right, we see that all the elements conserves the energy. The difference between the energy
errors can be interpreted by the fact that the standard H2-element is much stiffer and therefore a lower
viscous dissipation occurs In the next step, we look at the trajectory of point A for the H2-element and
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Figure 5: Initial configuration, temperature distribution Θ and error of energy E for the parameters shown in
Figure 1, nF = 2, nel = 32 and k = 1.
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Figure 6: Geometry, configuration, simulation parameters of hollow beam.

the HCoSKA2001 element for different discretization stages in Figure 8. Here we see very clearly the
influence of locking. In the case of the H2-element, each discretization level shows a different behavior,
since the stiffnesses differ greatly due to the locking. For the HCoSKA2001 element, we see almost no
differences, except for the coarsest discretization. In addition, the influence of the viscosity in which the
oscillation amplitude decreases can also be seen for this element. This is not possible for the standard
H2-element, since the high stiffness caused by the locking hardly leads to a viscous dissipation. If we
look at the convergence of the maximum stress at point B in Figure 9 (left), we see that the mixed
elements converge fast and the standard element does not. If we now look in Table 2 at the results for
higher polynomial degrees in time, we see that there is also a certain convergence in time. This is not as
large as in space, but the step from k = 1 to k = 2 is noticeable. If we now look at the calculation times
in table 2, we can see that due to the mixed elements a lower number of degrees of freedom is necessary
to obtain a good solution, and thus calculation time can be saved. This is especially relevant in context
of higher polynomial degrees in time. In the given case we can save one discretization step and thus save
6.5 times the computation time for k = 2. For the energy conservation in Figure 9 (right), no differences
can be seen between the different polynomial degrees in time.

Our last example is a rotating heatpipe (see Reference [7]) in which we use a carbon fiber reinforced
epoxy resin as shown in Reference [11]. Thus, the strain energy parts are given by

Ψ
iso
M =

ε1

2
(tr[CCC]−3−2ln(J)) Ψ

vol
M =

ε2

2
ln(J)2

Ψ
ela
Fi

=
ε3

2
(tr[CCCMMMi]−1)2

The geometry, configuration and simulation parameters can be found in Figure 10. The heatpipe rotation
is implemented with a transient mechanical Dirichlet boundary on both sides (Ω = 1 ft with ft = 1

T t)
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Figure 7: Convergence of the x-coordinate on point A and energy error E (nel = 288) for the parameters shown in
Figure 6 and k = 1.
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Figure 8: Trajectory of point A for the H2-element (top) and the HCoSKA2001-element (bottom) for k = 1 and
the parameters shown in Figure 6.

and the time step size is set to hn = 1e− 4. Additionally, as shown in Figure 10 an inner pressure ( p̂)
acts on the yellow zone of the heatpipe and the heatpipe is divided into two domains with different fiber
orientations. In the inner domain we have two circumferential fibers arranged in counter directions with
an angle of 45 degrees and in the outer domain we have one circumferential fiber. First, we look in
Figure 11 (left) at the convergence of the stress inside the heatpipe. Since the material formulation has
no cofactor, the corresponding elements are omitted here also. We can see that the best result shows
the CoSKA2011 element, followed by the quadratic displacement-pressure element and the quadratic
standard element. The remaining elements converge either very slowly or against another value. We
can also see, that here elements with a linear approximation for J̃ generally produce better results. This
may be, because the material used is not nearly incompressible. Next we look in Figure 12 at the stress
and temperature distribution for the CoSKA2011-element. As expected, the stress is increased due to
the inner pressure, especially where the wall thickness is less than under the ribs of the right side. Also
on both ribs, we see the temperature is increased in consequence of the viscous dissipation. In the last
step, we increase the rotational speed (Ω = 10 ft), set the time polynomial degree to k = 2, set the time
step size to hn = 1e−5 and apply a thermal Dirichlet boundary condition on the ribs on the left side. In
Figure 13 we can see, the thermal boundary condition increases the temperature of the ribs on the left
side. In addition, the energy is also conserved in this system (see Figure 11 (rigth)) The jumps can be
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Figure 9: Convergence of σxx on point B and energy error for k = 1,2,3 for the parameters shown in Figure 6.

Table 2: max
t∈T

[σB
xx(t)] for k = 1,2,3 and the parameters shown in Figure 6.

nel max
t∈T

[σB
xx(t)] (k = 1) max

t∈T
[σB

xx(t)] (k = 2) max
t∈T

[σB
xx(t)] (k = 3)

36 5.2570e3 5.1845e3 5.2002e3
288 2.0064e3 1.9711e3 1.9912e3
2304 8.1669e2 8.6423e2 8.5406e2
12348 6.9841e2 6.4615e2 6.6118e2

explained by the fact that at this point the newton method changes from one to two steps, because of the
linear increasing speed of rotation.

4 CONCLUSIONS

We can show the excellent performance of the mixed elements is still conserved in a thermo-viscoelastic
context and we have a huge computing time reduction, especially for the iterative calculation of the
internal viscous variable. Furthermore, all relevant effects, such as heat conduction, thermomechanical
coupling and viscous dissipation, are represented. And we can also show, the higher-order energy-
momentum time integrators conserve energy in all cases. In the next step we want to extend these
formulations to higher-order gradients to capture the fiber-bending stiffness.
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Table 3: tCPU for k = 1,2,3 and the parameters shown in Figure 6 on an Intel Core i9-10940X.

nDOF (k = 1,2,3) tCPU (k = 1) tCPU (k = 2) tCPU (k = 3)
1428,2856,4284 487 687 1201

7680,15360,23040 837 2741 5533
48480,96960,145440 7860 13985 38970

232260,464520,696780 20168 90227 261256
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Figure 11: Convergence of v. Mises equivalent stress σV M on point B for k = 1 and energy error E for the 2nd
case and k = 2 and the parameters shown in Figure 10 .
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