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International Center for Numerical Methods in Engineering (CIMNE),
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Abstract The extended Delaunay tessellation (EDT) is presented in this paper as the unique
partition of a node set into polyhedral regions defined by nodes lying on the nearby Voronoı̈
spheres. Until recently, all the FEM mesh generators were limited to the generation of tetrahedral
or hexahedral elements (or triangular and quadrangular in 2D problems). The reason for this
limitation was the lack of any acceptable shape function to be used in other kind of geometrical
elements. Nowadays, there are several acceptable shape functions for a very large class of
polyhedra. These new shape functions, together with the EDT, gives an optimal combination and a
powerful tool to solve a large variety of physical problems by numerical methods. The domain
partition into polyhedra presented here does not introduce any new node nor change any node
position. This makes this process suitable for Lagrangian problems and meshless methods in which
only the connectivity information is used and there is no need for any expensive smoothing process.

1. Introduction
Several numerical methods in computational mechanics, as well as other
volume integration methods need to subdivide the total domain into
sub-domains called “elements”. This is the case for the finite element method
(FEM) and the finite volume method (FVM).

Once defined the total domain by the boundary surfaces, two standard
algorithms may be used to perform the partition:

(1) divide the total domain into elements by an advancing front technique
(AFT) (George, 1991; Lohner, 1996), or
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(2) introduce a point distribution in the domain and then perform the
partition via a Delaunay tessellation (DT) (George, 1991).

Both methods give, as a first step, unacceptable partitions to be used in a
numerical method. For this reason, the first step needs an optimization of the
element shape (sometimes called smoothing or “cosmetic” process), which is an
iterative problem. For this reason, both methods are unbounded in computing
time: the number of operations to obtain an acceptable partition to be used in a
numerical solution may not be written as a function of the number of elements
or nodes.

Both methods have advantages and disadvantages, which may be
summarized as follows.

. In the AFT, the boundary surfaces are easily described, but the method is
very expensive compared with the DT. For this reason, it is unacceptable
to be used in problems with permanent partition update.

. The big advantage of the DT is that it is inexpensive and bounded in
computing time. Unfortunately, it needs a lot of “cosmetic” in order to be
used in a numerical method to solve a 3D physical problem. For this
reason, the computing time may become as large as in the AFT.

Why the problem of a domain partition is until now an open question? The
main reason is that in several physical problems, it is necessary to perform a
domain partition at each time step. This is for instance the case for transient
problems with moving boundaries or in Lagrangian formulations in fluid
mechanics. In these cases the use of a bounded method is mandatory, the
number of operations to achieve an acceptable partition must be fixed as a
function of the number of elements or nodes. Both the methods, AFT and DT,
need a process of cosmetics which increases without a fixed limit in the
computing time.

In this paper, a method based on the DT will be described. The problem will
be: given a node distribution, find an optimal partition, regarding computing
time and element shape, to be successfully used in a numerical method.

It must be noted that obtaining a node distribution in a domain is not a
difficult task and it is a bounded operation. The goal of this paper will be to
obtain from an arbitrary node distribution a partition of the total domain. This
partition will be optimal in order to be used in a numerical method as the FEM
and the number of operations to obtain this partition must be bounded with n b,
where n is the total number of nodes and b must be much less than 2.
Furthermore, the partition must be unique for a given node distribution.

2. The DT
In order to better understand the new procedure, classical definitions will be
introduced for three entities: Voronoı̈ diagrams, DT and Voronoı̈ spheres.

Let a set of distinct nodes be: N ¼ {n1; n2; n3; . . .; nn} in R3.
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(a) The Voronoı̈ diagram of the set N is a partition of R3 into regions Vi

(closed and convex, or unbounded), where each region Vi is associated
with a node ni, such that any point in Vi is closer to ni (nearest neighbor)
than to any other node nk. See Figure 1 for a 2D representation. There is a
single Voronoı̈ diagram for each set N.

(b) A Voronoı̈ sphere within the set N is any sphere, defined by four or more
nodes without any node inside. Such spheres are also known as empty
circumspheres.

(c) The DT within the set N is a partition of the convex hull V of all the nodes
into regions Vi such that V ¼ <Vi; where each Vi is the tetrahedron
defined by four nodes of the same Voronoı̈ sphere. DTs of a set N are not
unique, but each tessellation is dual to the single Voronoı̈ diagram of the
set.

The computing time required for the evaluation of all these three entities is of
the order n b, with b # 1:333: Using a very simple bin organization, the
computation time may be reduced to near n.

The DT of a set of nodes is non-unique. For the same node distribution,
different tetrahedrations are possible. Therefore, a partition based on the DT is
sensitive to geometric perturbations of the node positions. On the other hand,
its dual, the Voronoı̈ diagram, is unique. Thus, it makes more sense to define a
partition based on the unique Voronoı̈ diagram than on DT. In Figure 2, two
critical cases of Delaunay instabilities are represented. One is the case of four
nodes on the same circle and the other is the case of a node close to a boundary.
In both the cases, the Voronoı̈ diagram remains almost unchanged.

Furthermore, in 3D problems the DT may generate several tetrahedra of zero
or almost zero volume, which introduces large inaccuracies into the shape
function derivatives to be used in a numerical method. This is the reason why a
DT must be improved iteratively in order to obtain an acceptable partition to be
used in a numerical method. The time to obtain an acceptable partition via a
DT is then an unbounded operation, thus not satisfying the requirement
expressed in the introduction.

Figure 1.
Voronoı̈ diagram,

Voronoı̈ circle and
Delaunay triangulation

for a four node
distribution in 2D
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3. The extended DT
From the point of view of the application of a domain partition to the solution of
a numerical method, the best partition is which the elements have:

(1) all its nodes on the same empty sphere (this is the concept of optimal
distance between the nodes), and

(2) the polyhedral elements fill the sphere as much as possible (this is the
concept of optimal angle between faces).

The standard DT satisfies both previous statements only for 2D problems.
Unfortunately, the second statement is not necessarily satisfied in a 3D partition.

The drawbacks appear in the so-called “degenerated case”, which is the case
where more than four nodes (or more than three nodes in a 2D problem) are on
the same empty sphere. For instance, in 2D, when four nodes are on the same
circumference, two different triangulations satisfy the Delaunay criterion.
However, the most dangerous case appears only in 3D. For instance, when five
nodes are on the same sphere, five tetrahedra may be defined satisfying the
Delaunay criterion, but some of them may have zero or almost zero volumes,
called slivers (see Figure 3).

Figure 3.
Five nodes on the same
sphere and possible zero
or almost zero volume
tetrahedron (sliver) on
the right

Figure 2.
Instabilities on the DT.
(a) Four nodes on the
same circle; (b) node
close to a boundary
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In order to overcome the drawbacks referred, a generalization of the DT will be
defined:

Definition. The extended DT (EDT) within the set N is the unique partition
of the convex hull V of all the nodes into regions Vi such that V ¼ <Vi; where
each Vi is the polyhedron defined by all the nodes laying on the same Voronoı̈
sphere.The main difference between the traditional DT and the EDT is that, in
the latter, all the nodes belonging to the same Voronoı̈ sphere define a unique
polyhedron. With this definition, the domain V will be divided into tetrahedra
and other polyhedra, which are unique for a given node distribution, satisfying
one of the goals required in the Introduction.

Figure 4, for instance, is a 2D polygon partition with a triangle, a quadrangle
and a pentagon. Figure 5 is a polyhedron with all the nodes on the same sphere,
which may appear in a 3D problem.

In order to avoid numerical problems, which may hide polyhedra with more
than four nodes, the polyhedra are defined by all the nodes of the same sphere
and nearby spheres. The proximity of the spheres is governed by a parameter d
(see Appendix 1).

The parameter d avoids the possibility of having near zero volume
tetrahedra. When d is large, the number of polyhedra with more than four
nodes will increase, and the number of tetrahedra with near zero volume will
decrease, and vice versa.

Figure 4.
Two-dimensional

partition in polygons.
The triangle, the

quadrangle and the
pentagon, each are

inscribed on a circle

Figure 5.
Eight-node polyhedron.

All nodes are on the
same sphere
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Then, the idea of the EDT is to avoid the tetrahedral partition when more than
four nodes are in the same empty sphere (or near the same). When this is the
case, the best element to be used in a numerical method is the polyhedron
formed with all these nodes.

The EDT allows the existence of a domain partition which:

(1) is unique for a node distribution,

(2) is formed without polyhedra with near zero volume, and

(3) is obtained in a bounded time of order n.

Then, it satisfies all the goals stated earlier.
It must be noted that until quite recently, all the mesh generators were

limited to the generation of tetrahedral or hexahedral elements (or triangular
and quadrangular in 2D problems). The reason for this limitation was the lack
of any acceptable shape function to be used in other kind of geometrical
elements. Nowadays, several acceptable shape functions for any kind of
polyhedron are easily generated (Belikov and Semenov, 1998; Idelsohn et al.,
2002 or Appendix 2). These new shape functions, together with the EDT
presented in this paper, gives an optimal combination and a powerful tool to
solve a large variety of physical problems by numerical methods.

4. The boundary surface
One of the problems in mesh-generation is the correct definition of the
domain boundary. Sometimes, boundary nodes are explicitly defined as
special nodes, which are different from internal nodes. In other cases, the
total set of nodes is the only information available and the algorithm must
recognize the boundaries. Such is the case, for instance, for the Lagrangian
formulation in fluid mechanics problems in which, at each time step, a new
node distribution is obtained and the free-surface must be recognized from
the node positions.

The use of Voronoı̈ diagrams or Voronoı̈ spheres make it easier to recognize
boundary nodes. By considering that the node follows a variable distribution,
with h(x) as the minimum distance between two nodes, the following criterion
has been used.

All nodes defining an empty circumsphere with a radius r(x) larger than a
h(x), are considered as boundary nodes.

In this criterion, a is a parameter close to, but greater than one. Note that this
criterion is coincident with the Alpha Shape concept (Akkiraju et al., 1995;
Edelsbrunner and Mucke, 1994).

Once a decision has been made concerning which of the nodes are on the
boundaries, the boundary surface must be defined. It is well known that, in 3D
problems, the surface fitting a number of nodes is not unique. For instance, four
boundary nodes on the same sphere may define two different boundary
surfaces, one concave and the other convex.
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In order to avoid this undefined boundary, the boundary surfaces will be
defined with:

All the polyhedral surfaces having all their nodes on the boundary and
belonging to just one polyhedron are boundary surfaces.

The correct boundary surface may be important to define the correct normal
external to the surface. Furthermore, in weak forms, the boundary surface is
also important for a correct evaluation of the volume domain.

Nevertheless, it must be noted that in the criterion proposed earlier, the error
in the boundary surface definition is bounded and proportional to h. This is the
standard error of the boundary surface definition in a numerical method for a
given node distribution.

5. Element quality indicator
In order to evaluate the partition obtained with the EDT, compared with other
partition as, for instance, DT, a polyhedron quality indicator will be defined.

A wrong mesh is a mesh which is not acceptable to be used in a numerical
method. The main drawback of a Delaunay mesh is the presence of zero or
almost zero volume polyhedra. In fact, the problem of almost zero volume is the
existence of shape functions with infinite or almost infinite gradients. These
infinite gradients deteriorate the numerical solution.

Classical definition of mesh quality will not be used here. The reason is that
in this paper a node distribution is considered for which an optimal partition
must be found without moving or removing nodes. The presence of nodes very
close to each other in the node distribution is considered as a necessity of the
physical problem to represent correctly a gradient in the solution and not as a
wrong partition.

For instance, tetrahedra currently called spires and wedges (see Figure 6) will
be considered as elements of good quality because they are the best elements for a
node distribution with the nearest nodes along one direction and more separated
nodes in the other. These elements represent correctly the gradient “expected” in
each direction to solve a particular physical problem. On the other hand, slivers or
splinters as well as caps, will be considered as wrong elements because they
introduce shape functions with infinite or almost infinite gradients, which are not
in agreement with the gradients expected for this node distribution.

In order to obtain a parameter to define which is a good or a wrong element
to be used in a numerical method, but considering that the node distribution is
fixed and introduced for physical needs, the gradient ratio will be defined as:

g ¼
maximum gradient of the shape functions

maximum gradient expected
ð1Þ

The maximum gradient expected for the node distribution will be defined in
each polyhedron as 1/hmin, where hmin is the shortest distance between the two
nodes belonging to the polyhedron.
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The maximum gradient of the shape functions may be evaluated directly using
the largest gradient modulus from the shape functions of the polyhedron
j7Npjmax (see Appendix 2 for the definition of the shape functions Np).

The quality of a polyhedron is then numerically defined as:

g ¼
1

hminj7Npjmax
ð2Þ

It must be noted that in the EDT algorithm there is no smoothing process in
which the element qualities must be evaluated many times. The gradient ratio
g is only defined here in order to verify the quality of the resulting mesh.

The ideal element will therefore have a large gradient ratio. This will have
both: the required distribution on the Voronoı̈ sphere and an acceptable shape
function for numerical computations. On the other hand, bad elements have all
their nodes on the same empty sphere, but the small g value is indicating high
shape function gradients capable to destroy the numerical solution.

Taking into account that the computer precision nowadays is of order 10216,
and also the results from the numerical test performed in the next section, a
gradient ratio g . 1022 is recommended in order to accept a mesh for
numerical computations.

6. Numerical test
In order to check if a domain partition is acceptable or not to be used in a
numerical method, a physical problem must be solved using a defined partition.

A cube of unit side, with an internal exponential source, has been used to
validate the EDT.

The problem to be solved is the classical Poisson equation:

72u ¼ f ðx; y; zÞ ð3Þ

With the internal source:

Figure 6.
Perspective unfolding
and naming of some
bad-shaped tetrahedra
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f ðx; y; zÞ ¼ ð22kyzð1 2 yÞð1 2 zÞ þ ðkyzð1 2 yÞð1 2 zÞð1 2 2xÞ2Þ2

2 2kzxð1 2 zÞð1 2 xÞ þ ðkzxð1 2 zÞð1 2 xÞð1 2 2yÞ2Þ2

2 2kxyð1 2 xÞð1 2 yÞ þ ðkxyð1 2 xÞð1 2 yÞð1 2 2zÞ2Þ2Þ

� ð2ekxyzð12xÞð12yÞð12zÞ=ð1 2 ek=64ÞÞ ð4Þ

The boundary condition is the unknown function set u, equal to zero on all the
boundaries.

This problem has the following analytical solution:

uðx; y; zÞ ¼ ð1 2 ekxyzð12xÞð12yÞð12zÞÞ=ð1 2 ek=64Þ ð5Þ

Several node distributions have been tested with 125 (53), 729 (93), 4,913 (173),
and 35,937 (333) nodes, with structured and non-structured node distributions.
In all cases, the numerical solution was obtained using the linear finite element
shape functions for tetrahedral elements and polyhedral shape functions (as
defined in the Appendix 2) for polyhedral elements.

For the structured node distributions, the following procedure was used to
generate the nodes. Initially, all the nodes are in a regular cubic array with a
constant distance h between the neighbor nodes. Then, each internal node has
been randomly displaced at a distance rh (with r ! 1) in order to have an
arbitrary, but structured, node distribution. Surface and edge nodes are
perturbed, but remaining in the surface or the edge. Corner nodes were not
perturbed. In this paper, the parameter r was fixed to 1026.

The 3D non-structured node distribution was generated using the GID
pre/post-processing code (GID, 2002) with a constant h distribution. GID
generates the nodes using an AFT, which guarantees that the minimal distance
between the two nearby nodes lies between 0.707h and 1.414h.

6.1 EDT versus DT
It must be noted that in the 2D problems, both node distributions generated as
described before, structured and non-structured, will give a Delaunay partition
with near-constant area triangles, which is optimal for a numerical solution.
Nevertheless, this is not the case in the 3D problems in which, even for a
constant h node distribution, many zero or near-zero volume tetrahedra
(slivers) will be obtained on a standard Delaunay partition (Edelsbrunner and
Damrong, 2001). Figure 7 shows, for instance, the presence of slivers on a
structured eight-node distribution. Slivers may introduce large numerical
errors in the solution of the unknown functions and their derivatives, which
may completely destroy the solution.

In order to show this behavior and to show that the EDT eliminates this
problem, the following tests were performed: for a fixed-node partition (e.g. 173

nodes) the d parameter (introduced in Section 3 and in Appendix 1) was swept
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from 0 to 1021. With d ¼ 0 (i.e. Voronoı̈ spheres are never joined) the standard
DT is obtained. Larger values of d give the EDT.

Figure 8 shows the error in L2 norm for the derivative of the solution of the
3D problem stated in equations (1) and (2). This has been done both for
structured and non-structured distributions against the d parameter. It can be
shown that in both cases the errors are very large (,101) for d . 1026 and very
small (,1022) for d . 1025: Larger d do not change the results. Hereafter, the
EDT will be considered for d . 1024:

This example is very important because it is showing that, for a given node
distribution, a tetrahedration using the standard Delaunay concept do not
work. Mesh generators currently use edge-face swapping or another cosmetic
algorithms to overcome the presence of wrong elements. All those operations
are unbounded in computing time. The idea of joining similar spheres, even for
a very small d parameter, solves this problem in a very simple way. The wrong
tetrahedra are automatically joined to form polyhedra with optimal shapes.

The results of Figure 8 also show that d must be large compared with the
computer precision (e.g. ,1025 for a computer precision of order 10216) but
also means that d is not a parameter to be adjusted in each example as results
do not change by setting d larger than 1024. In fact, all our examples were
carried out with a fixed d ¼ 1022:

All the polyhedra obtained with that fixed value of d had qualities g . 1022;
thus acceptable gradients and low error.

6.2 Good and wrong elements
In order to show the performance of the EDT to generate good elements, the
gradient ratio of the node distribution of the previous example was evaluated.

In Figure 9, for a fixed d, the heights of the columns represent the number of
elements having the same gradient ratio.

The importance of Figure 9 is to show that, by joining similar spheres, the
best polyhedra are automatically built. For the standard DT (and also for small
d values), there are bad tetrahedra for both the structured and the

Figure 7.
Presence of slivers in a
Delaunay partition of a
perturbed cube.
Left: tetrahedra produced
by the Delaunay
partition. Right:
slivers isolated
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non-structured node distribution. Increasing d, the slivers disappear and, for
the structured case, all the elements become “automatically” hexahedra (cubes),
which is the optimal tessellation for this node distribution. For the
non-structured case, EDT insure a mesh without any sliver when d is set to
any value larger than 1026.

6.3 Convergence rate
Figure 10 shows the convergence of the above-defined example, when the
number of nodes is increased from 53 to 333. The upper plots show the error in
L 2-norm, both for the function and its derivatives. All the graphics shows

Figure 8.
Cube with exponential

source. Error of the
derivative in L2.

(a) Structured node
distribution;

(b) non-structured node
distribution
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an excellent convergence rate. It must be noted that for all the non-structured
node distributions tested (and also the structured ones for r ¼ 1026Þ; the FEM
with elements generated using a DT gave totally wrong results, and even at
times ill-conditioned matrices were frequently found during the stiffness
matrix evaluation.

Figure 9.
Number of polyhedra by
volume ratio for different
d. Top: structured
node distribution.
Bottom: non-structured
distribution made by GID
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Figure 10.
Cube with exponential
source. Convergence of
the numerical solution

and its gradient for
different partitions.
(a) Structured node

distribution;
(b) non-structured node

distribution;
(c) center-line solutions

obtained with structured
node distribution

(the same results were
obtained using the

non-structured node
distribution)
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6.4 Computing times
In order to validate that the number of operations in the evaluation of the EDT
partition is of order n, the computing time in a standard PC (Intel PIII 800 MHz)
was analyzed. Figure 11 shows the time in seconds for both the structured and
the non-structured cases.

A regression of the obtained results shows that the computing time is
approximately:

tðsÞ ¼ 0:000325 n1:08 for structured meshes; and

tðsÞ ¼ 0:000283 n1:10 for non-structured;

showing that the convergence exponent is even better than the 1.333 bound
expected in a DT.

6.5 Three-dimensional arbitrary geometry mesh
In order to show the performance of the method with an arbitrary 3D geometry,
a volume representing the vocal A was generated with distributions of n ø 103

and 105 nodes, using the GID node generator with a constant h. Figure 12 (left)
shows, for instance, the boundary node distribution for n ¼ 8;452 nodes.

Using the EDT algorithm described in Section 3 with the boundary surface
definition described in Section 4 and an alpha shape parameter a ¼ 1:3;
polyhedral partitions were found with external boundary surfaces represented
in Figure 12.

Figure 11.
Time versus number of
nodes in a standard PC
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The following are the main characteristics polyhedral mesh made for the larger
node set, compared with the tetrahedral mesh obtained via the standard DT
(Table I).

From a total of 106,947 nodes, the standard DT generates 599,934 tetrahedra,
but 349 of them are slivers. On the other hand, EDT generates 430,262
tetrahedra and 67,162 polyhedra with more than four nodes. None of them have
gradient ratio smaller than 1022. Another interesting conclusion to take out
from this example is that in the EDT mesh, 86.5 percent of the elements are
tetrahedral and then, in these elements the definition of the shape functions
(Appendix II) will be coincident with classical linear shape functions of the
FEMs.

Finally, Figure 13 shows the slivers distribution in the mesh. Elements
having a g parameter smaller than 1022 have been plotted in black. Zero bad
polyhedra have been found in the partition given by the EDT.

Figure 12.
Three-dimensional

arbitrary geometry. Left:
boundary nodes from
the point distribution

generated by GID with
constant h and 8,452

nodes. Center: boundary
surface for 8,452 nodes.

Right: boundary surface
for 106,947 nodes

EDT DT

Nodes 106,947 106,947
Polyhedra 497,424 599,934
Tetrahedra 430,262 599,934
Slivers 0 349
gmin 1.84e-2 2.34e-16 Table I.

Figure 13.
Wrong elements in the

106,947 nodes
tessellation. Left: 349 bad

tetrahedral (slivers) in
the DT. Right: zero
wrong polyhedra in

the EDT
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7. Conclusions
For a given set of nodes with arbitrary 3D distribution and non-structured and
variable distance between nodes, the method proposed gives a polyhedral mesh
and a boundary surface with the following characteristics.

(1) The solution is unique for a given set of parameters d and a. The
solution is not sensitive to small variation of those parameters.

(2) Each polyhedron has all its nodes on the same empty sphere (optimal
distance between nodes).

(3) Each polyhedron has an acceptable positive volume to be used in a
numerical method. (The maximum gradient of the shape functions is of
the same order of the expected gradient for a given node distribution.)

(4) The boundary surface obtained may be concaves or convexes, and the
correct definition depends on the local node distance between nodes h(x).

(5) The computing time to achieve the mesh is bounded and of order n.

(6) The large majority of the polyhedral elements generated are tetrahedra
(around 85 percent in an arbitrary node distribution). This allows the use
of standard lineal finite element shape functions in all of them.
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Appendix 1. Criterion to join polyhedra
Consider two Voronoı̈ spheres having nearby centers. See Figure A1 for a two-dimensional
reference.

As both Voronoı̈ spheres are empty, they must satisfy the following relationship:
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jr2 2 r1j # kc1 2 c2k ð6Þ

where r are the radii and c the centers of the spheres.

Thus, two spheres are similar when their centers satisfy:

kc1 2 c2k , drrms; ð7Þ

where d is a small non-dimensional value and rrms is the root mean square radius.

Two polyhedra will be joined if they belong to similar spheres.

The algorithm finds all the four-node empty spheres, and then the polyhedra are successively
joined using the above criterion. It must be noted that when all the nodes of a polyhedron belongs
to another polyhedron, only the last one is considered.

Appendix 2. Shape functions for arbitrary 3D polyhedra
For any point within a polyhedron P, there is a Voronoı̈ cell V(x) associated with the variable
point x in the Voronoı̈ tessellation of the set P < {x}:

Figure A2 shows that every node np 2P has a corresponding face Fp of V, which is normal to
the segment {x; np} by its midpoint. This is because V is the set of points closer to x than any
other point.

Defining the functions:

Figure A1.
Four nodes in

near-degenerate position
showing the empty

circumcircles, the
Voronoı̈ diagram and the

corresponding
discontinuous Delaunay

triangulation

Figure A2.
Elements defining 2D

and 3D shape functions
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fpðxÞ ¼ sp=knp 2 xk ¼ sp=hp; ð8Þ

as the quotient of the Lebesgue measure sp of Fp and the distance hp between the point x and the
node np. The shape functions are:

Np ¼ fp

.
q

X
fq; ð9Þ

These functions automatically satisfy the partition of unity property:

p

X
Np ¼ 1: ð10Þ
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