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a b s t r a c t

This paper presents an overview of constitutive modelling of unsaturated soils and the numerical algo-
rithms for solving the associated boundary value problems. It first discusses alternative stress and strain
variables that can be used in constitutive models for unsaturated soils. The paper then discusses the key
issues in unsaturated soil modelling and how these issues can be incorporated into an existing model for
saturated soils. These key issues include (1) volumetric behaviour associated with saturation or suction
changes; (2) strength behaviour associated with saturation and suction changes, and (3) hydraulic behav-
iour associated with saturation or suction changes. The paper also shows how hysteresis in soil–water
characteristics can be incorporated into the elasto-plastic framework, leading to coupled hydro-mechan-
ical models. Finally, the paper demonstrates the derivation of the incremental stress–strain relations for
unsaturated soils and discusses briefly the new challenges in implementing these relations into the finite
element method.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

All soils can be unsaturated with respect to water. In this regard,
unsaturated soils are nothing special. However, the first fifty years
of soil mechanics history have been primarily concerned with soils
saturated with water and most soil mechanics principles devel-
oped in that period apply to saturated soils only. This shortcoming
is actually one of the main driving forces for the emerging subject
of unsaturated soil mechanics. Another important driving force is
due to the distinct volume, strength and flow characteristics of cer-
tain soils when they become unsaturated with water. Some soils
can experience a significant volume change upon a change of the
degree of saturation. Soils that expand upon wetting are known
as expansive soils, whilst soils that compress upon wetting are
known as collapsible soils. Due to the very large volume changes
that they may undergo, both of these soil types can severely dam-
age foundations and the structures that they support. The shear
strength of a soil can also change significantly as its degree of sat-
uration changes, and a related engineering problem is slope failure
caused by rainfall. Unsaturated soils also have distinct hydraulic
properties which have significant implications in the performance
of soil cover systems in waste containment.

Therefore, the key issues in unsaturated soil mechanics are (1)
the volumetric behaviour associated with saturation or suction
changes; (2) the strength behaviour associated with saturation
All rights reserved.
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and suction changes, and (3) the hydraulic behaviour associated
with saturation or suction changes. In terms of constitutive model-
ling, the key question is how these issues can be incorporated into
a saturated soil model so that it can also be used for unsaturated
states as well. In the first part of this paper alternative methods
for addressing these key issues in unsaturated soil models are dis-
cussed. In particular, the focus is put on the comparison between a
recent model that the authors are associated with and the other
common models. As such, the coverage of the paper is inevitably
selective, and can not serve as a complete state-of-the-art review
of the subject of constitutive modelling of unsaturated soils. The
second part of the paper outlines the challenges and solutions for
implementing unsaturated soil models into the finite element
method.

2. Constitutive modelling: an overview

2.1. Stress and strain variables

Constitutive relations used to represent the mechanical behav-
iour of materials are usually described in a stress space. The choice
of the stress space is thus a fundamental issue in constitutive mod-
elling. Ideally the definition of stresses should be independent of
the behaviour or the states of the material, so that the stress space
does not change with the material state. There is little argument
that total stresses should be used for single phase materials such
as metals and dry sands. It is also widely accepted by the soil
mechanics community that effective stresses (the difference
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between the total stresses and pore water pressure) can be used for
saturated soils. The definitions of the total stresses for dry soils and
the effective stresses for saturated soils are naturally independent
of the soil behaviour or soil state. The stress spaces in these cases
are thus separated from the material state. We also note that the
so-called total stress in a dry sand is actually the difference be-
tween the absolute total stress and the atmospheric pore air
pressure.

For soils that are partially saturated with one pore fluid, the
choice of the stress space becomes more complicated and the
stress space may become dependent on the material state. In
1960s, great efforts were made to identify a single effective stress
that can be used to describe the deformation and strength charac-
teristics of unsaturated soils [1]. Bishop [8] suggested the following
effective stress concept
r0ij ¼ rij � uadij þ vðua � uwÞdij ¼ �rij þ vsdij ð1Þ

where rij is the total stress, r0ij is the Bishop effective stress, �rij is the
net stress, ua is the pore air pressure, uw is the pore water pressure, s
is the soil (matric) suction, and v is a parameter that may depend
on the degree of saturation or on the suction. The soil suction in this
paper refers to the matric suction which consists of the capillary
and adsorptive potentials. When the pore water exists as capillary
water at relatively high degrees of saturation, the capillary potential
(Wc) is dominant in the matric suction s ’Wc = ua � uw. When the
pore water exists as adsorbed water films in the soil, the adsorptive
potential (Wa) becomes dominant in the matric suction. In this case
the true water pressure is not well defined since it is not unique at
one material point and is dependent on the proximity to the particle
surface. An apparent water pressure can be introduced to quantify
the adsorptive potential: uw = ua �Wa, i.e. the apparent water pres-
sure represents the negative adsorptive potential measured in ex-
cess of air pressure. When the air pressure is atmospheric (zero),
the apparent water pressure is then the negative adsorptive poten-
tial. Such an apparent water pressure is then unique at one material
point. With such a definition of uw, the matric suction can be ex-
pressed as s = ua � uw and can be used continuously for a relatively
large range of saturation, from fully saturated to very dry states.

Even though the new definition of the effective stress in 1960s
has led to some success in describing the shear strength of unsat-
urated soils, it has not led to great success in modelling the gen-
eral mechanical behaviour of unsaturated soils, not at least until
the last decade or so. Some limitations of the single Bishop effec-
tive stress in explaining volume collapse during wetting of unsat-
urated soils were reported by Jennings and Burland [36]. More
importantly, because the parameter v usually depends material
states (e.g. the degree of saturation) and even on stress path
(e.g. the transition suction between saturated and unsaturated
states), the stress space defined by Eq. (1) depends on the mate-
rial behaviour and changes with material states. Therefore, the
constitutive behaviour of the material is embodied in both the
constitutive relation and the stress space where the constitutive
relation is defined. As pointed out by Morgenstern [53], we nor-
mally link equilibrium considerations to deformations through
constitutive behavior and should not introduce constitutive
behavior into the stress state.

In 1960s and 1970s, it was realised that it was possible to use
two independent sets of stress variables to model unsaturated soil
behaviour rather than combining them into one single effective
stress. For example, Coleman [14] suggested the use of the net axial
and radial stresses and the net pore water pressure to represent tri-
axial stress states. Bishop and Blight [9] used the concepts of inde-
pendent stress state variables when plotting volume changes in an
unsaturated soil. [51] used the independent stress variables (called
‘state parameters’) to describe the volumetric behaviour of unsat-
urated soils. Numerous other researchers have subsequently pre-
sented the volume change behaviour as surfaces defined by
independent stress state variables [2,18,5].

Fredlund and Morgenstern [19] further provided a theoretical
basis and justification for the use of two independent stress state
variables. The justification was based on the superposition of coin-
cident equilibrium stress fields for each of the phases of a multi-
phase system, within the context of continuum mechanics. Three
possible combinations of independent stress state variables were
shown to be justifiable from the theoretical continuum mechanics
analysis. However, it was the net stress and the matric suction
combination that proved to be the easiest to apply in engineering
practice:

rij � uadij

ua � uw

� �
¼

�rij

s

� �
ð2Þ

The net normal stress primarily accounts for the external applica-
tion and removal of total stress (e.g., by excavations, fills and ap-
plied loads). The matric suction primarily accounts for the impact
of the climatic environment above the ground surface. Fredlund
et al. [20] also presented a shear strength equation using the inde-
pendent stress variables.

In the context of constitutive modelling, Alonso et al. [4] were
the first to provide a complete elasto-plastic framework for model-
ling unsaturated soil behaviour. This model uses the net stress and
suction as the stress variables and became known as the Barcelona
Basic Model. A large number of other elasto-plastic models soon
followed (e.g., [58,27,42,52,88,15,10,6,49,78,13,64,62,56]. All these
models deal with stress–strain relations only. More recent models
have incorporated suction–saturation relationships with hysteresis
into stress–strain relationships ([86,16,82,87,24,69,77,79,76,
41,63,81]). Reviews of constitutive modeling of unsaturated soils
can be found in e.g. [26,86,37,29,30,65].

A common feature of these models is that the suction is consid-
ered as an additional stress variable, or at least as an additional
hardening parameter [10,49]. However, there is little consensus
on whether an independent stress (e.g. net stress or total stress)
or stress variable such as Bishop’s effective stress should be used.
A different argument was put forth by Houlsby [34] using the
work-conjugate variables in the work input for a soil element. In
terms of work input, it is possible to define a set of strain variables
that are work-conjugate to the chosen set of stress variables. For
example, the work-conjugate strain variables for the two sets of
independent stress variables, defined by the net stresses and the
suction, are the soil skeleton strains and the volumetric water
content:

rij � uadij

ua � uw

� �
()

eij

h

� �
ð3Þ

where eij is the soil skeleton strain and h is the volumetric water
content. We note that the definitions of the stress variables in
expression (3) are independent of each other and independent of
material state. However, their work-conjugate strain variables are
not independent, i.e. the soil skeleton strain and the volumetric
water content are dependent on each other. It is also noted that
the net stress becomes the total stress when the soil is fully satu-
rated and the pore air is under atmospheric pressure. When the
air pressure is kept at the atmospheric value (which is approxi-
mately true for most in situ conditions), the matric suction is equiv-
alent to the negative pore water pressure. Early models using the
net stress and suction thus suffer a major shortcoming in that they
are not continuous at the transition between saturated states and
unsaturated states, because the stress variables used for unsatu-
rated states (total stress) do not change to the stress variables for
saturated states (effective stress). However, it has recently been
demonstrated in the SFG model by Sheng et al. [66] that this set
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Fig. 1. Three dimensional yield surface of Barcelona basic model.

812 D. Sheng et al. / Computers and Geotechnics 35 (2008) 810–824
of stress variables can also lead to a continuous description of soil
behaviour. More discussion of the SFG model will be given in later
sections.

On the other hand, the work-conjugate stress variables to the
two sets of independent strain variables, defined by the soil skele-
ton strains (eij) and the degree of saturation (Sr), are the average
stresses and a modified suction (ns). These strain variables are con-
sidered to be independent because a change in one of them does
not necessarily result in a change in the other. The porosity n plays
a role in scaling the work input (due to a change in saturation) per
unit void volume to the work input per unit volume of the soil ma-
trix. Therefore, the second set of alternative stress variables takes
the following form [69]:

rij � uadij þ Srðua � uwÞdij

ðua � uwÞ

� �
()

eij

Sr

� �
ð4Þ

where Sr is the degree of saturation. The stress variables defined in
expression (4) are dependent on one another, as well as on the
material state (Sr). The stress (rij � uadij + Sr(ua � uw)dij) becomes
the Terzaghi effective stress (rij � uwdij) when the soil becomes sat-
urated. Therefore, the above stress variables can be used both for
saturated and unsaturated states. The stress (rij � uadij +
Sr(ua � uw)dij) is also called Bishop’s stress and has been found to
represent the average stress acting on the solid phase by Hassani-
zadeh and Gray [32] using the entropy inequality exploited via
the Colemann-Noll procedure, by Lewis and Schrefler [45] using
volume averaging, and by Hutter et al. [35] on the basis of mixture
theory. The set of stress variables given in expression (4) have been
used in recent unsaturated soil models such as those of Sheng et al.
[69], Sun et al. [76], and Santagiuliana and Schrefler [63]. More re-
cently Nuth and Laloui [54] and Laloui and Nuth [44] refer to this
set of stresses as the generalised stresses for unsaturated soils
and have provided further experimental evidence to endorse its use.

It should be noted that the stress or the strain variables in
expressions (3) and (4) may not have the same physical meanings.
For example, suction is a physically different quantity than stress,
and saturation is a physically different quantity than strain. They
are grouped together to form spaces for establishing constitutive
relations. This is very similar to choosing a coordinators system
(e.g. x, y, z, t) to describe a function. We also note that stress and
suction have the same unit, which is why the two variables can
sometimes be added together through dimensionless multiplies
(v, Sr or 1). In this context, the argument that suction is physically
not a stress variable [50] is not particularly pertinent.

It is also generally true that the complex stress variables de-
fined by expression (4) tend to lead to simpler constitutive equa-
tions, whereas the simpler stress variables defined by expression
(3) tend to lead to more complex constitutive equations. The
complex stress variables in expression (4) depend on material
states and are not easily controllable in laboratory testing. There-
fore, it is not possible to develop a completely new constitutive
relationship in terms of these variables, unless an existing frame-
work is used. However, it is possible to transform an existing
constitutive relationship formed in terms of the simpler stress
variables (expression (3)) to the complex stress space. Such a
transformation can often overcome the discontinuity problem
at the transition between saturated and unsaturated states, as
was done by Sheng et al. [70,72] for the Barcelona Basic Model,
or more recently by Kohler and Hofstetter [43] for the cap model.
In this regard, it is probably preferable to call the complex stress
in expression (4) the constitutive stress rather than the effective
stress, meaning that they are specific variables used for constitu-
tive modelling [69,29]. However, we have kept the terminology
‘Bishop’s effective stress’ in this paper for consistency with other
publications in the area. The choice of the stress variables also
has a significant influence on the yield and failure surfaces,
which is later discussed in this paper.

2.2. Constitutive models for unsaturated soils

The first complete elasto-plastic models designed explicitly for
unsaturated soils was presented in [4] (and in a more summary
form in [28]. This model was formulated in terms of net stresses
and suction. With some slight modifications, it came to be known
as the Barcelona Basic Model (BBM) and can perhaps be summa-
rised by Fig. 1, where a three dimensional yield surface in
�p� q� s space is depicted. Here, �p is the mean net stress and q is
the deviator stress. Under saturated conditions, the yield surface
corresponds to the Modified Cam Clay (MCC) ellipse [61] and the
size of the elastic domain increases as the suction increases. The
rate of increase, represented by the Loading–Collapse (LC) curve,
is one of the fundamental characteristics of the model.

One of the main objectives of the development of the BBM was
to try to insert unsaturated soil mechanics into the mainstream of
current and past developments in saturated soil mechanics. This
aim guided many of the choices adopted in the definition of the
model and explains the rough simplicity of many of its features.
It was intended that the model could be used to make qualitative
predictions by simple hand manipulation in the same way that
the conceptual critical state framework is often used. This implied
the adoption of net stresses as one of the basic stress variables. If
other stress variables are used, it is quite difficult to follow conven-
tional laboratory stress paths in an effective manner. Indeed, the
first use of the concepts underlying the BBM was presented in
[3], before the mathematical formulation was fully developed.
The need for a clear connection with saturated soil mechanics
led to the adoption of the MCC model as the reference model in
such a way that the BBM constitutive law becomes the classic
MCC model when s becomes zero (i.e. on reaching saturation). In
fact, many other elasto-plastic saturated models could have been
used, as the unsaturated formulation is quite general (see, for
example [58,42,52,10,13,64,62].

Further examples of the simplifying assumptions adopted in the
model are the use of straight lines for the void ratio – ln p relation-
ships (implying a continuous increase of the collapse strains upon
wetting) and the linear increase of apparent cohesion with suction.
A direct benefit of this simplicity is that only a limited number of
additional parameters are required. Moreover, in spite of its lack
of complexity, the model can describe a large number of typical
features of the mechanical behaviour of unsaturated soils in a nat-
ural unforced way [3,4]. Some examples are: the variation of wet-
ting-induced swelling or collapse strains depending on the
magnitude of applied stresses, the reversal of volumetric strains
observed sometimes during wetting-induced collapse, the increase
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of shear strength with suction, the stress path independency asso-
ciated with wetting paths and the opposite when the stress path
involves drying or the apparent increase of preconsolidation stress
with suction.

Following the introduction of the BBM, other models were
quickly developed that sought to limit some of its shortcomings,
while at the same time keeping the same core of basic assump-
tions. Thus [38] used non linear relationships for the variation of
void ratio with ln p so that the collapse strains did not increase
indefinitely but went through a maximum before reducing to zero
at high stresses. Gens and Alonso [27] and Sánchez et al. [64] ex-
tended the BBM for highly expansive soils by considering the inter-
action between macrostructures and microstructures and
generalised plasticity theory. Wheeler and Sivakumar [88] used
model functions more closely based on experimental results. Cui
et al. (1995) adopted a saturated yield function typical of aniso-
tropically consolidated soils. More recently, the mechanical parts
of the hydromechanical models of Vaunat et al. [82], Wheeler
et al. [87], Gallipoli et al. [24], Sheng et al. [69] and Sun et al.
[76] all follow a framework similar to the BBM, with the effects
of saturation being considered by incorporating soil–water charac-
teristic curves and hydraulic hysteresis.

Instead of going through the different features of various mod-
els in detail, we will discuss how key issues can be incorporated
into a saturated soil model so that it can also be used for unsatu-
rated states as well. These key issues include (1) the volumetric
behaviour associated with saturation or suction changes; (2) the
strength behaviour associated with saturation and suction
changes, and (3) the hydraulic behaviour associated with satura-
tion or suction changes. Our attention here is given to alternative
possibilities for considering these key issues in a constitutive mod-
el and their implications. In particular, we will focus on the com-
parison between a recent model that the authors are associated
with (namely the SFG model by Sheng et al. [66] and the other
common models such as the BBM).

3. Key ingredients in unsaturated soil models

3.1. Volumetric stress–strain models

Suction affects the volumetric behaviour, yield stress and
shear strength of an unsaturated soil. It generates capillary in-
ter-particle forces normal to contacts, while pore pressures gen-
erate isotropic stresses around soil particles. As such, it plays a
more complex role than the pressure or mean stress. As pointed
out by Li [46], some measure of soil fabric should be incorpo-
rated when considering the effects of suction. However, any such
measure is difficult to define and has not yet been used in con-
stitutive modelling. Instead, suction is usually treated as a similar
quantity to the mean stress. Under such a framework, the only
extra constitutive law that is required to extend a saturated soil
model to unsaturated soils is the volume-stress–suction relation-
ship. The effects of suction on the yield stress and shear strength
can be incorporated into the model based on the volume-stress–
suction relationship.

The change in the specific volume (v) of an unsaturated soil in
response to suction (s) or mean stress (p) change is typically mod-
elled in one of the following ways:

dv ¼ dNðsÞ
ds

ds� kvpðsÞ
d�p
�p
� ln �p

dkvpðsÞ
ds

ds ð5Þ

dv ¼ dNðsÞ
ds

ds� kvpðsÞ
dp0

p0
� ln p0

dkvpðsÞ
ds

ds ð6Þ

dv ¼ �kvp
d�p
�p
� kvs

ds
s

ð7Þ
where kvp is a material parameter representing the stress compress-
ibility under constant suction, �p is the net mean stress, p0 is Bishop’s
effective mean stress, kvs is a material parameter representing the
suction compressibility under constant mean stress, and N(s) is
the specific volume of the soil when the mean stress is 1 (unit of
stress). The parameters N and kvp in Eqs. (5) and (6) and the param-
eter kvs in Eq. (7) are usually considered as functions of suction.
Over a certain stress range, the parameter kvp is usually approxi-
mated by one or two constants, depending on the preconsolidation
pressure. Eqs. (5) and (6) are usually presented in the literature in
total forms. All these equations imply linear relationships in the
v� ln �p� ln s space. It is also common to assume linear relation-
ships in the ln v� ln �p� ln s space. In the later case, the differential
of the specific volume (dv) can be replaced by the negative differen-
tial of the volumetric strain (�dev).

Eq. (5) uses the net stress �p and is used in the Barcelona Basic
Model of Alonso et al. [4] and many other models. Eq. (6) uses
Bishop’s effective stress and is used in the formulations of Kohgo
et al. [42], Bolzon et al. [10] and Loret and Khalili [49]. Eq. (7) uses
the net stress �p [21] and separates the compressibility due to a
stress change (kvp) from that due to a suction change (kvs).

All these equations are of course based on Cam clay elasto-plas-
ticity for saturated soils:

dv ¼ �kvp
dp0

p0

¼ �kvp
dp

pþ ð�uwÞ
� kvp

dð�uwÞ
pþ ð�uwÞ

ðSaturated soilsÞ ð8Þ

Eqs. (5)–(8) are confusingly similar, but they bear different impli-
cations. For example, Eqs. (5) and (7) do not recover Eq. (8) for satu-
rated states. This can be verified simply by considering the case
where the pore air pressure (ua) remains atmospheric. Under this
condition, Eqs. (5) and (7) are valid only for zero pore water pressure
when the soil becomes saturated. If the transition suction between
saturated and unsaturated states is not zero, the stress-induced vol-
ume change is undefined at this suction in Eqs. (5) and (7). The reason
for this discontinuity is that the net stress does not cover the effec-
tive stress and that the zero suction does not sufficiently represent
all saturated states. Indeed, a confusing concept that is often cited
in the literature is to treat zero suction as the equivalent to saturated
states. This concept has two shortcomings. First, it does not consider
the different suction levels that correspond to full saturation (Sr = 1)
during drying and wetting respectively. Second, it does not provide a
continuous treatment between positive and negative pore water
pressures. When the pore air pressure remains constantly atmo-
spheric, a better alternative would be to treat the atmospheric air
pressure as zero and the suction as a negative pore water pressure
for all saturated states. In this case, the net stress simply becomes
the total stress and the suction becomes the negative pore water
pressure. Such an alternative will provide a continuous transition
between saturated and unsaturated states.

Eq. (6) fully recovers the standard model for saturated soils, but
contains Bishop’s effective stress parameter v. This parameter of-
ten depends on the material as well as the material state, leading
to the questionable outcome that the stress space where the mate-
rial is modelled changes with the material behaviour and even the
material state. Eq. (7) separates the compressibility due to a stress
change (kvp) from that due to a suction change (kvs). As such, the
parameter kvp is not necessarily a function of the suction, which
is an advantage over the other two equations.

A schematic view of the predictions according to Eqs. (5) and (6) is
shown in Fig. 2. These two models both have difficulty in explaining
the curvature of the normal compression lines at positive suctions
for soils dried from slurry. Let us consider the case where a slurry soil
is first dried to a specified suction and then isotropically compressed
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at this suction. The isotropic compression line for this soil is usually
curved in the e � lnp space, as shown by Jennings and Burland [36].
To approximate this response using Eqs. (5) and (6), we would have
to use the overconsolidation concept, so that the curve is approxi-
mated by two straight lines, an initial elastic line with a slope ofj fol-
lowed by an elasto-plastic line with a slope of k, as illustrated in
Fig. 2. However, the stress and the suction have never been de-
creased during the drying and loading processes and the slurry soil
has never been overconsolidated. It is thus very difficult to justify
where the overconsolidation effect comes from.

More recently, Sheng et al. [66] proposed the following model
for the volumetric behaviour of unsaturated soils:

dv ¼ �kvp
d�p

�pþ s
� kvsðsÞ

ds
�pþ s

ðNet stress; SFG modelÞ ð9Þ

where the slope kvp can be independent of suction, and the slope kvs

varies between kvp for saturated states and zero for suctions above
the residual suction (Fig. 3). This model

1. Recovers the equation for saturated states, i.e. Eq. (8).
2. Separates the compressibility due to stress and suction changes.
3. Can predict the smooth curvature of the normal compression

lines under constant suctions for soils dried from slurry, with-
out the use of the ‘overconsolidation’ concept (see Fig. 4).

Eq. (9) is very similar to Eq. (8), but with the negative pore
water pressure replaced by the suction and the total mean stress
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Fig. 3. Void ratio versus suction under zero net mean stress (ssa: suction correspond
replaced by the net mean stress. It is also reasonable to state that
a change in suction does not necessarily have the same effect as a
change in mean stress once the soil becomes unsaturated. Sheng
et al. [66] showed that Eq. (9) can capture a number of important
features in unsaturated soil behaviour and can represent experi-
mental data very well.

Another issue with all the above volumetric models concerns
the suction ranges and soil types where they can be applied. Firstly,
all these models apply only to a continuum and become invalid
once desiccation occurs. Secondly, for dry granular soils where
the water phase becomes discontinuous, the concept of suction is
less meaningful. Indeed, a dry sand behaves in a similar way to
the saturated sand under fully drained conditions. Such a phenom-
enon can not be predicted by the concept of suction. In addition,
the base model for saturated soils, i.e. Eq. (8), is known to be more
applicable to clays than to granular soils. Nevertheless, other con-
stitutive models used for saturated soils can be generalised to
unsaturated soils in a similar way. For example, Sheng et al. [73]
showed that the following equation predicts very well the volume
change behaviour of saturated or dry sands:

de
e
¼ �kvp

dp0

p0 þ pre
ðSaturated sandsÞ ð10Þ

where e is the void ratio, and pre is a shifting stress which depends
on the initial void ratio of the soil as well as kvp, and it can be inter-
preted as the stress level where significant particle crushing occurs.
Note that the parameter kvp in Eq. (10) is the slope in the double
e

water content

Shrinkage limit 
(sre)

00 100000

d (1962) 

n (9) and

a, 0p =

ing to full saturation, sre: residual suction, right: a classic shrinkage test result).
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logarithmic lne � ln(p0 + pre) space. If Eq. (10) is used for a saturated
sand, Eq. (9) can be modified as follows

de
e
¼

�kvp
d�p

�pþpreþs� kvsðsÞ ds
�pþpreþs s 6 sre

�kvp
d�p

�pþpreþsre
s > sre

8<
: ð11Þ

where sre is the residual suction (see Fig. 3). A threshold suction (sre)
is introduced in Eq. (11) and above this value suction has no effect
on the volume change. Because the residual suction for sands is rel-
atively small (<100 kPa) compared to pressure needed for particle
crushing (1–100 MPa), the effect of suction on the volume change
is relatively limited. Setting pre = 0 in Eq. (10) recovers Eq. (8).
Therefore, Eq. (11) can also be used for clays (with pre = 0).

3.2. Yield stress and yield surfaces

Because suction is an additional stress variable, it is necessary
to determine the variation of the yield stress with suction, or the
extension of the yield surface in the stress–suction space. The yield
surface for an isotropic hardening soil usually represents the con-
tours of the plastic volumetric strain (i.e. the hardening parame-
ter). As such, the variation of the yield stress with suction can be
derived from the volumetric model. For example, for the volumet-
ric model defined by Eq. (5), it is possible to show that the follow-
ing function represents the contours of plastic volumetric strain in
the �p� s space (see [66]):

�pc ¼
�pc0 � s s 6 ssa

�pr
�pc0�ssa

�pr

� � kvp�j
kvp0�j

s > ssa

8<
: ð12Þ

where �pc is the yield stress at the suction s, �pc0 is the yield stress at
zero suction, �pr is a reference mean stress and �pr ¼ 1 if the soil spe-
cific volume at �pr is given by parameter N(s), see Eq. (5), kvp0 is the
slope of the normal compression line for saturated states, kvp is the
slope of the normal compression line for unsaturated states (at suc-
tion s), and j is the slope of the unloading–reloading line for satu-
rated states. Eq. (12) is of course the so-called loading–collapse (LC)
yield surface in the BBM of Alonso et al. [4], though only a part of
the LC curve for s > 0 (with ssa = 0) was defined in Alonso et al. [4].

A schematic view of the loading collapse yield surface defined
by Eq. (12) is shown in Fig. 5a. A number of observations can be
made here. Firstly, this yield surface is usually shown in the liter-
ature for suctions above the saturation suction only. Because the
net stress becomes the total stress for saturated states, the yield
surface actually follows the 45� line for s < ssa. Secondly, the yield
stress �pc increases with increasing suction only if (1) kvp < kvp0

and �pc0 > �pr , or (2) kvp > kvp0 and �pc0 > �pr . These two alternative
conditions are a prerequisite to modelling wetting-induced col-
lapse. Thirdly, an additional yield stress, �p0, representing the
45o45o p
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Fig. 5. Schematic view of loading–collapse yield surface in mean stress–suction
space.
apparent tensile strength for s > 0, has to be defined (see Fig. 5a).
For the BBM, �p0 takes the form:

�p0 ¼
�s s < ssa

�as s P ssa

�
ð13Þ

On the other hand, if the volumetric model is based on Bishop’s
effective stress, i.e. Eq. (6), the corresponding yield stress becomes:

p0c ¼
p0c0 s 6 ssa

p0r
p0c0
p0r

� � kvp�j
kvp0�j

s > ssa

8<
: ð14Þ

p00 ¼ 0 ð15Þ

In Eq. (14), p0r is a reference mean stress and p0r ¼ 1 if the soil
specific volume at p0r is given by parameter N(s), see Eq. (6). The
yield surface p0c is shown schematically in Fig. 5b. Because of the
use of Bishop’s effective stress, it is usually assumed that an
apparent cohesion is zero. In addition, the loading–collapse yield
surface extends to the saturated zone following a vertical line.
Since the effective mean stress is not constant under constant
net mean stress but varying suction, there are certain constraints
on the effective stress definition which have not been well dis-
cussed in the literature. For example, the effective mean stress
must decrease slower than the yield stress as suction decreases
under constant net mean stress, in order to model wetting-in-
duced collapse. On the other hand, the effective mean stress must
increase faster than the yield stress as suction increases under
constant net mean, in order to simulate drying-induced yielding
of a slurry soil.

The loading–collapse yield surfaces in Fig. 5 cannot be used for a
soil dried from slurry. This is because drying a slurry soil is similar
to compressing the soil so that the stress state should always be on
the current yield surface, which is clearly not possible in Fig. 5a. In-
deed, Fig. 5a would predict a purely elastic response for drying a
slurry soil under constant stress. In Fig. 5b, the stress state could
be on the current yield surface only if the effective mean stress in-
creases at a faster rate than the yield stress as suction increases.

The SFG model provides a smooth transition between saturated
and unsaturated states. The yield stresses, �p0 and �pc, can be derived
from the volumetric model, i.e. Eqs. (9) and (11), provided that the
plastic volumetric strain is taken as the hardening parameter and
that an explicit function for the parameter kvs is given. For exam-
ple, the following yield stress was derived from Eq. (9) for a soil
consolidated from a slurry state:

�pc ¼
�pc0 � s
�pc0 � ssa � ðssa þ 1Þ ln sþ1

ssaþ1

s 6 ssa

s > ssa

(
ð16Þ

This yield stress decreases with increasing suction. Therefore,
drying a slurry soil will always cause the stress point on the cur-
rent yield surface (see Fig. 6). For a slurry soil that has never been
consolidated, �pc0 is zero. The yield stress then becomes

�p0 ¼
�s s < ssa

�ssa � ðssa þ 1Þ ln sþ1
ssaþ1 s P ssa

(
ð17Þ

The above yield stress �p0 also defines the apparent tensile
strength of the soil as a function of suction. For an unsaturated soil
that is compressed or compacted at a suction above the saturation
suction, the yield stress �pc then changes to [66]:

�pcn ¼
�pcn0 � s s < ssa

�pcn0
�pc0

�pc0 þ s� ssa � ðssa þ 1Þ ln sþ1
ssaþ1

� �
� s s P ssa

(
ð18Þ

where �pc0 is the initial preconsolidation pressure at zero suction,
�pcn0 is the new preconsolidation pressure at zero suction (see
Fig. 6).
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The yield stresses given by Eqs. (16)–(18) are illustrated in
Fig. 6. The curve �p0 represents the apparent tensile strength of
the soil caused by suction, while the curve �pc depicts the yield
stress if the soil is air-dried. For example, for a slurry soil that
was first consolidated to 300 kPa and then air-dried at zero mean
stress, the suction that causes plastic yielding is 730 kPa. If the
air-dried soil is compressed under constant suction, the new yield
stresses are then represented by the curve �pcn. Therefore, �pc repre-
sents the yield stress for an air-dried slurry soil and �pcn represents
the yield stress for a compacted soil. The yield stress increases with
increasing suction along the curve �pcn, not �pc. It can also be noted
that (1) the transition between saturated and unsaturated states
is continuous and smooth along all the three yield stresses; (2) like
the models in Fig. 5, the yield surfaces �pc and �pcn are non-convex in
the �p� s space; (3) the model is stress-path dependent and differ-
ent stress paths may result in different yield surfaces.

If the Modified Cam Clay (MCC) model is used as the base model
for the saturated soil, the elliptic yield surface can be extended to
the suction axis according to Eqs. (16)–(18):

f ¼ q2 �M2ð�p� �p0Þð�pc � �pÞ ¼ 0 ð19Þ

where f is the yield function, q is the deviator stress, and M is the
shear strength parameter that defines the slope of the critical state
line in q–p space. The yield surfaces according to Eq. (19) are shown
in Fig. 7 for two types of unsaturated soils.

3.3. Shear strength with suction

The shear strength of an unsaturated soil is usually a function of
suction. Fredlund et al. [20] proposed the following relationship
which conveniently separates the shear strength due to stress from
that due to suction:

s ¼ c0 þ ðrn � uaÞ tan /0� þ ½ðua � uwÞ tan /b
h i

¼ �c þ ðrn � uaÞ tan /0 ð20Þ
where s is the shear strength, c0 is the effective cohesion and is usu-
ally zero unless the soil is cemented, rn is the normal stress on the
failure plane, /0 is the effective friction angle of the soil, /b is the
frictional angle due to suction, and �c is the apparent cohesion which
includes the friction due to suction. Obviously, if /b is set to /0 in Eq.
(20), the effective stress principle for saturated soils is recovered.

This shear strength equation was originally published in a linear
form, but experimental results show that the second term is in fact
nonlinear (see, for example, [17]. The shear strength due to suction
starts to deviate from the effective angle of internal friction at a
suction which is approximately equal to the air entry value of
the soil. The soil suction versus shear strength relationship then
appears to have a gradual curvature until residual suction condi-
tions are reached. Once these conditions are reached the shear
strength remains approximately constant as the suctions are fur-
ther increased. However, it is also possible for the shear strength
to decrease for sands and increase for clays as the suctions are in-
creased beyond residual conditions.

There are a number of models available in the literature for
determining the friction angle /b [84,23,55,7]. In elasto-plastic
models, the shear strength of an unsaturated soil is usually embod-
ied in the apparent tensile strength function �p0. For example, the
apparent cohesion in the Barcelona Basic Model is given as

�c ¼ ��p0 tan /0 ¼
s tan /0

as tan /0
s < ssa; c0 ¼ 0
s P ssa; c0 ¼ 0

�
ð21Þ

where a is a material constant. The friction angle /b is then given by

tan /b ¼
�c
s
¼ tan /0

a tan /0
s < ssa

s P ssa

�
ð22Þ

In this case, the friction angle /b is independent of suction.
In the SFG model, the apparent cohesion due to suction is

�c ¼ ��p0 tan /0 ¼
s tan /0

tan /0 ssa þ ðssa þ 1Þ ln sþ1
ssaþ1

� � s < ssa; c0 ¼ 0
s P ssa; c0 ¼ 0

(

ð23Þ
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Therefore, the friction angle /b is given by:

tan /b ¼
tan /0

tan /0 ssa
s þ

ssaþ1
s ln sþ1

ssaþ1

� � s < ssa

s P ssa

(
ð24Þ

In this case, the friction angle /b is a function of suction as well
as the saturation suction. The predicted shear strength variation
with suction is shown in Fig. 8 and compared with experimental
data for Guadalix Red silty Clay in Fig. 9. The prediction of Eq.
(24) appears to be reasonable, at least qualitatively.

On the other hand, if Bishop’s effective stress is used, the shear
strength is usually assumed to be unique in the effective stress
space:

s ¼ c0 þ r0n tan /0 ¼ c0 þ ðrn � uaÞ tan /0 ¼ vðua � uwÞ tan /0 ð25Þ

The above equation also implies that tan /b = v tan/0. Recently
Nuth and Laloui [54] provided some experimental evidence for the
uniqueness of c0 and /0 in Bishop’s effective stress space with v = Sr.

3.4. Hysteresis of soil–water characteristics

Extensive research has been done on soil–water characteristic
curves for unsaturated soils, first in the field of soil physics and la-
ter within geotechnical engineering (see, e.g., [33]). The soil–water
characteristic curve (SWCC) is usually presented in the space of the
volumetric water content (h) versus soil suction or in the space of
the degree of saturation (Sr) versus suction. A number of empirical
h–s relations exist in the literature, and the ones that are com-
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monly used include those of Gardner [31], van Guenuchten [85]
and Fredland and Xing [22]. These relations are usually written
as continuous functions and do not explicitly consider the hyster-
etic behaviour during a drying–wetting loop. However, in an elas-
to-plastic modelling framework which must predict the responses
for all possible wetting and drying paths, an incremental form (be-
tween ds and dh or between ds and dSr) is preferred. Recently Li
[47] presented an incremental soil–water characteristic relation-
ship between ds and dSr. This incremental SWCC model includes
smooth hysteretic responses to arbitrary wetting/drying paths,
and can be incorporated into elasto-plastic models for unsaturated
soils. However, the model by Li [47] follows the bounding surface
framework which is somewhat different from the classical elasto-
plasticity framework discussed in this paper. Lins et al. [48] pre-
sented a model for hysteretic SWCC from which an incremental
form can also be established. More recently, Pedroso et al.
[6,59,60] have developed an incremental saturation–suction rela-
tionship that incorporates hysteretic behaviour. This model is for-
mulated in the same framework as elasto-plasticity and can be
conveniently incorporated into an elasto-plastic stress–strain rela-
tion. In this paper, a very simple model presented by Sheng et al.
[66] is described. This simple model does not consider the hyster-
etic behaviour within the main drying and main wetting curves
(see Fig. 10).

As a simple approximation, a piece-wise linear relationship be-
tween the degree of saturation Sr and logarithmic soil suction can
be assumed:

dSr ¼ �kws
ds
s

ð26Þ
Main wetting curve 

ln s

λws 

κws 

Main drying curve 

Scanning  curve 

Sr

κws 

aes swe ssa sre 

Fig. 10. Degree of saturation versus suction (dashed lines represent simplification).
where the slope kws may change with suction. For soil suctions be-
low the saturation suction, the soil is saturated and the degree of
saturation remains essentially constant. For soil suctions larger than
the residual suction, the water content gradually decreases to zero
at a suction of 106 kPa [21]. The slope is assumed to be constant be-
tween the air entry and the residual suction for a drying soil [87].
Therefore, we have, for increasing suction as shown in Fig. 10:

kws ¼

0
jws

kws

jws

s < ssa

ssa � s < ssa

sae � s < sre

s P sre

8>>><
>>>:

ð27Þ

where sae is the air entry value, and sre is the residual suction (see
Fig. 11). The above equation is only valid for the main drying curve.
For the main wetting curve and the scanning curve, the slope must
be adjusted accordingly (see Fig. 10). The soil suction versus water
content relationship is affected by the mean net stress primarily
through its influence on the air entry suction and the rate of desat-
uration (see, e.g., [83]), and is not considered here.

Hysteresis in soil–water characteristics is usually considered
to be too important to ignore. Therefore, a wetting curve must
be added to the drying curve. The wetting curve is characterised
by the water entry value swe and has a similar slope to the drying
curve, kws (see Fig. 10). A series of parallel lines having a slope
jws, are used to represent recoverable changes in Sr between
the drying (desorption) and the wetting (adsorption) curves.
These curves are called ‘‘scanning curves”. For the purpose of this
study, the slope of the scanning curve is assumed to be identical
to the slope of the drying curve for suctions below the air entry
value and for suctions above the residual value. The slope of
the wetting curve for suctions above the water entry value is also
assumed to be jws (see Fig. 10). The simplifications adopted here
are similar to those in the model by Wheeler et al. [87]. In the
simplified model, the maximum suction that corresponds to full
saturation is the saturation suction (ssa), not the air entry value
(sae).

Hysteresis of soil–water characteristics can also be explained
within the same framework of elasto-plasticity [69]. Under such
a framework, an unsaturated state always lies within the main
drying and wetting curves. Drying or wetting from within the
hysteresis loops will only cause recoverable water content
changes until the suction reaches the main drying or wetting
curve. Once the soil suction reaches the main drying or wetting
curve, further drying or wetting will cause irrecoverable water
content changes. Therefore, the drying and wetting curves define
the boundaries of recoverable water content change and are sim-
ilar to the normal compression line. The scanning curves define
the recoverable water content change and are similar to the
unloading–reloading line. On the �p� s plane, two additional
boundaries can be added, representing the main drying and wet-
ting curves, respectively (Fig. 11).

4. Finite element implementation

4.1. Incremental stress–strain relations

One of the ultimate goals of constitutive modeling is to develop
an incremental stress–strain relation so that it can be implemented
in a numerical method to solve boundary value problems. For
unsaturated soils, these incremental relations can either be written
as in [66]

d�r

ds

� �
¼ Dep Wep

R G

� �
de
dh

� �
ð28Þ

or as in [69]
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dr0

ds

� �
¼ Dep Wep

R G

� �
de
dSr

� �
ð29Þ

depending on the stress variables chosen. In the displacement fi-
nite element method, the pore pressures and displacements are
first solved from the equilibrium and continuity equations. There-
fore, the strain and suction increments are known, and the stress
and water content increments are to be found from the constitu-
tive equations. In such a context, Eqs. (28) and (29) have to be
reformulated so that all known increments are kept on the
right-hand side.

Here the SFG model is used to demonstrate the derivation of the
incremental stress–strain equation. The Modified Cam Clay model
is used as the base model for saturated soils. The yield function
then takes the form of

F ¼ q2 �M2ð�p� �p0Þð�pc � �pÞ ¼ 0 ð30Þ

The consistency condition becomes:

df ¼ of
o�r

� �T

d�rþ of
o�p0

o�p0

os
dsþ of

o�pc

o�pc

os
dsþ of

o�pc

o�pc

oep
v

dep
v ¼ 0 ð31Þ

The strain decomposition and the flow rule can be written as

de ¼ dee þ dep ¼ dee þ _K
og
o�r

ð32Þ

where g is the plastic potential function, and _K is the plastic multi-
plier to be solved from the consistency condition.

The elastic stress–suction–strain relation can be written as

dee ¼ ðDeÞ�1d�rþ ðWeÞ�1ds; or

d�r ¼ Dedee � DeðWeÞ�1ds ¼ De de� _K
og
or

� �
�Weds

ð33Þ

where De is the elastic stress–strain stiffness matrix, We is the elas-
tic suction–strain vector, and We ¼ DeðWeÞ�1.

The plastic multiplier can be found from Eq. (31):
_K ¼

of
o�r

� �T

Dedeþ of
o �p0

o �p0
os
þ of

o �pc

o �pc
os
� of

o�r

� �T

We

 !
ds

of
o�r

� �T

De og
o�r
� of

o �pc

o �pc

oep
v

og
o�p

ð34Þ

And the stress–strain relation is thus:

d�r¼ Dede

�
De og

o�r

of
o�r

� �T

DedeþDe og
o�r

of
o �p0

o �p0

os
þ of

o �pc

o �pc

os
� of

o�r

� �T

We

 !
ds

of
o�r

� �T

De og
o�r
� of

o �pc

o �pc

oep
v

og
o�p

ð35Þ

The suction-water content relation is given by

dh ¼ �nkws
ds
s
þ Srdev ¼ �kwsn

ds
s
þ SrmT � de ð36Þ

where mT = (1,1,1,0,0,0) and n is the porosity of the soil. Note that in
the equation above it is assumed that the volumetric strain of soil
skeleton is due to the change to void volume only (i.e. the liquid water
and solid particles are not compressible). The slope kws should be re-
placed by jws for suction changes along the scanning curve.

Therefore, using the following notations

Dep ¼ De �
De og

o�r

of
o�r

� �T

De

of
o�r

� �T

De og
o�r
� of

o �pc

o �pc

oep
v

og
o�p

H ¼ �kwsn=s or H ¼ �jwsn=s

Wep ¼
De og

o�r

of
o�p0

o�p0

os
þ of

o�pc

o�pc

os
� of

o�r

� �T

We

 !

of
o�r

� �T

De og
o�r
� of

o�pc

o�pc

oep
v

og
o�p

T ¼ Srm
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the final incremental stress–strain relationship can be written as

dr

dh

� �
¼ Dep Wep

T H

� �
de
ds

� �
ð37Þ

where Dep is a 6 � 6 matrix, T is a row vector of 6 elements, Wep is a
column vector of 6 elements, and H is a scalar. The of strain rate and
soil suction rate are both on the right-hand side, so the formulation
is consistent with the displacement finite element method where
pore pressures and displacements are first solved from equilibrium
and continuity equations. The incremental stress–strain relation-
ship defined by Eq. (37) can be implemented into the finite element
method to solve boundary value problems.

4.2. Global governing equations

Constitutive models have to be implemented into numerical
methods such as the finite element method to solve boundary va-
lue problems. The governing equations for unsaturated soils usu-
ally involve the equilibrium of momentum, the balance of mass
and the balance of energy [57,25,80,40,72]. Under certain condi-
tions, these equations can be simplified. For example, under iso-
thermal condition, the heat transfer and the temperature field
can be neglected. Moreover, under atmospheric air pressure, the
flow of pore air can be neglected. Therefore, in the simplest form,
the governing equations contain the equilibrium equation of
momentum and the continuity equation of water flow. The equilib-
rium equation can be written in a weak form asZ

Vt
ðoeTrtÞdV �

Z
St
ðouTttÞdS�

Z
Vt
ðouTbtÞdV ¼ 0 ð38Þ

where du is a virtual displacement field satisfying the displacement
boundary conditions, de denotes the variation of the strain tensor, r
is the stress tensor, b is the body force vector, t is the distributed
force acting on the boundary S of the volume V, and the superscript
t stands for quantities that are measured at time t.

The continuity equation follows from the mass conservation of
pore water and Darcy’s law:

div �k
g
ðruw � bwÞ

� �
þ o

ot
ðqwhÞ ¼ 0 ð39Þ

where div is the divergence operator, k is the permeability tensor, g
is the gravity acceleration, uw is the pore water pressure, bw is the
body force vector of pore water, and qw is the water density.

After appropriate spatial discretization the displacement and
pore pressure fields can be approximated as

u ¼ N U ð40Þ
Uw ¼ NwUw ð41Þ

where N is the displacement shape function, U is the nodal displace-
ment vector, Nw is the pore pressure shape function and Uw is the
nodal pore pressure vector. The stress is updated incrementally:

rt ¼ rt�ot þ or ð42Þ

where rt�ot is the stress at the last equilibrium state.
Now the constitutive equations must be incorporated into Eqs.

(38) and (39). The finite element formulation may vary slightly,
depending on the stress variables used in the constitutive equa-
tion. For example, if Eq. (37) is used, we have for zero air
pressure:

dr

dh

� �
¼ Dep Wep

T H

� �
de
�duw

� �
ð43Þ

Eq. (43) can then be substituted into Eqs. (38) and (39). Due to
the nonlinearity of the material behaviour, the governing equa-
tions are usually solved incrementally and the solution at time t
is sought with the known solution at time t � Dt. Therefore, the
discretised finite element equations are usually written in rate
form:

Kep _Uþ L _Uw ¼ _Fext ð44Þ
L0 _Uþ S _Uw þ _HUw ¼ _Q ext ð45Þ

where

Kep ¼
XZ

Ve
ðBT DepBÞdVe

L ¼ �
XZ

Ve
ðBT WepNwÞdVe

_Fext ¼
X Z

Ve
ðNT _bÞdVe þ

Z
Se
ðNT _tÞdSe

� �

L0 ¼
XZ

Ve
qwðN

T
wTBÞdVe

S ¼ �
XZ

Ve
qwðN

T
wHNwÞdVe

_H ¼
XZ

Ve
BT

w
k
g

Bw

� �
dVe

_Q ext ¼ �
XZ

Se
ðNT

wqtÞdSe �
XZ

Ve
BT

w
k
g

bw

� �
dVe

� �

If Bishop’s effective stress is used in the constitutive equations,
i.e. Eq. (28), the definitions of the above matrices and vectors will
change somewhat, but the governing equations will have the same
form as (44) and (45). The discretised governing equations can also
be written in a compact form of ordinary differential equations:

C _Xþ KX ¼ _W ð46Þ

where X contains the global unknown nodal displacements and
pore water pressures, C and K are coefficient matrices, W contains
the external force and flow vectors, and the superior dot stands
for the rate with respect to time.

Due to the material nonlinearity, Eq. (46) has to be solved
numerically and appropriate algorithms have to be used at both
the global and local levels. The global unknown X is usually solved
step by step using a time integration scheme. For elasto-plastic
consolidation problems it is usually recommended to use an impli-
cit time stepping scheme, where the coefficient matrices are esti-
mated at the time level where the unknown is sought and
iterations are needed. Automatic time stepping schemes can be de-
signed to control the integration error. More detailed discussion of
time stepping schemes for consolidation problems can be found in
[89,74,68]. Once the displacements and pore pressures are solved,
the strains and suctions can be computed at Gauss points. The
stresses and the volumetric water contents (or the degrees of sat-
urations) are then solved from the constitutive relations, again
numerically. A number of stress integration schemes are available
in the literature, e.g. those by Sheng et al. [71], Sloan et al. [75],
Sheng et al. [70] and Borja [11]. The following section discusses a
specific challenge associated with Gauss point stress integration
of unsaturated soil models, i.e. the problem of non-convex yield
surfaces.

4.3. Gauss point stress integration

One of the main challenges in implementing an unsaturated soil
model into finite element code arises from the non-convexity of
the yield surface around the transition between saturated and
unsaturated states. The non-convexity exists irrespective of the
stress variables used in the model and is demonstrated in Fig. 12.

For given strain and suction increments, the current stress state
and internal variables must be updated in accordance with Eq.
(28), (29). This update is generally carried out using numerical
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stress integration schemes. Both implicit and explicit schemes
have been used to integrate elasto-plastic models. Implicit
schemes, where all gradients are estimated at an advanced stress
state, cannot be used for elasto-plastic models with non-convex
yield surfaces, because the extrapolated gradients cannot be deter-
mined due to the uncertainty of whether an advanced position is
inside or outside the yield surface. On the other hand, explicit
schemes can proceed in an incremental fashion, but require the
intersection between the current yield surface and an elastic trial
stress path to be determined.

A key issue in integrating the incremental stress–strain rela-
tionships using an explicit method is thus to find the intersection
between the elastic trial stress path and the current yield surface.
The most complicated situation occurs when the yield surface is
crossed more than once. However, it is not possible to know a priori
how many times the yield surface is crossed, because the size of
the yield surface will change after the first intersection due to
hardening. Therefore, for non-convex yield surfaces, the key task
is to find the very first intersection for any possible path.

In order to determine whether the yield surface is crossed, a se-
cant trial stress increment is computed, based on an elastic stress–
suction–strain relationship. This elastic trial stress is given as
follows:

Drtr ¼ De : DeþWeDs ð47Þ

where the stress is either the net stress or Bishop’s effective stress
(depending on the model), De is the fourth order elastic stiffness
tensor (in tensor notation) and We is a second order tensor defined
according to a specific law for unsaturated soils. For saturated soil
models, the term W Ds depends on the stress variables used. If
Bishop’s effective stress is used, the term WeDs becomes zero and
can be disregarded. On the other hand, if the net stress is used,
the term WeDs becomes�mDuw, where m is the second order iden-
tity tensor and uw the pore water pressure.

In Eq. (47), De is the strain increment provided from the finite
element routines prior to the computation of the residuals be-
tween internal and external forces. For unsaturated soils, the incre-
ment of suction Ds is also input for the stress-update algorithm. If
the elastic modulus is linear, i.e. it is independent of the stresses,
suction and internal variables, it is trivial to compute the elastic
trial increment. Otherwise, for some non-linear relations, a secant
analytical modulus may be considered.

Finding the intersection between the elastic trial stress incre-
ment and the current yield surface can be cast as a problem of find-
ing the multiple roots of a nonlinear equation. fa(a) = 0. The roots
(a) must be computed inside the interval [0,1]. As this function in-
volves the evaluation of the yield function along the strain and suc-
tion paths, it is given as
faðaÞ ¼ f ðra; sa:zkÞ ð48Þ

where f (r, s, zk) is the yield function, zk indicates a set of internal
variables and the intermediate stress–suction states ra and sa are
calculated according to

ra ¼ rcurrent þ aDrtr and sa ¼ scurrent þ aDs ð49Þ

in which rcurrent and scurrent are the current stress and suction states.
Note that in Eq. (48) the internal variables zk are kept constant dur-
ing the solution for the intersection. These variables only change
during hardening/softening when a portion of the trial stress–suc-
tion path is located outside the yield surface.

The technique proposed here follows the Kronecker–Picard (KP)
formula for the determination of the number of roots of a nonlinear
equation [39]. This formula, given by

N ¼ �c
p

Z b

a

faðxÞhaðxÞ � gðxÞ2

faðxÞ2 þ c2gaðxÞ
2 dx

þ 1
p

arctan
cð½faðaÞgaðbÞ � faðbÞgaðaÞ�Þ
faðaÞfaðbÞ � c2gaðaÞgaðbÞ

� �
ð50Þ

requires that fa(a) must be continuously or piecewise differentiable
to the second order for values of a from a to b. In Eq. (50), ga and ha
represent the first and second derivatives of the function fa with re-
spect to a, respectively, and c is a small positive constant which
does not affect the results computed with the KP formula [39].
The first and second derivative of fa with respect to a can be directly
determined as follows:
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The number of roots estimated according to Eq. (50) is used to
divide the interval of a into subintervals until each subinterval
contains at most one root. First, N is computed for the interval
[a,b]. If N is larger than one, the interval [a,b] is divided into two
equal subintervals, [a, (a + b)/2] and [(a + b)/2,b]. The number of
roots for each subinterval is then computed and any subinterval
that contains more than one root is further divided into two equal
sub- subintervals. This process continues until each subinterval
contains at most one root. As shown by Kavvadias et al. [39], the
use of equal-size intervals (equiprobable parts) is not much worse
than an algorithm which would consider the statistical distribution
of the roots inside [a,b], such as the algorithm also presented in
[39].

Once the roots are bracketed, the solution of each root can be
found by using existing numerical methods such as the Newton–
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Raphson method. It should be noted that the Newton–Raphson
method, although fast, may not converge in some circumstances
because it does not constrain the solution to lie within specified
bounds. Therefore, more advanced methods can be used here. For
example, the Pegasus method used in [75] is very robust and com-
petitively fast. The method of Brent [12] provides another attrac-
tive alternative. Brent’s method does not use any derivatives,
does not require initial guesses and guarantees convergence as
long as the values of the function are computable within a given
region containing a root. These characteristics of the Brent method
follow from the fact that it is based on the bisection method, the
secant method and inverse quadratic interpolation. Therefore, it
has the reliability of the bisection method and the efficiency of
the less reliable secant method and inverse quadratic
interpolation.

The evaluation of the integral in Eq. (50) with the KP formula is
generally not trivial and so a numerical integration or quadrature
technique has to be used. For example, the Gauss–Legendre meth-
od can be used here. In addition, for highly non-linear yield func-
tions, an adaptive integration scheme may also have to be used.
Detailed information in this regard can be found in [59,60,65,66].
Fig. 13 demonstrates the stress integration along a stress path with
increasing or decreasing suction. The stress paths start and end in-
side the initial yield surfaces and cross the initial yield surfaces
twice. The explicit integration scheme is able to capture the inter-
section points correctly and to predict the evolution of the yield
surface.

5. Conclusions

A number of conclusions can be drawn from this study:

1. The use of Bishop’s effective stress for unsaturated soils can lead
to a smooth transition between saturated and unsaturated
states and simplified constitutive relations such as shear
strength. However, the key issue is that the effective stress is
usually not controllable in laboratory tests and its definition
can depend on material states and even on stress path. There-
fore, a constitutive relation established in such an effective
stress space is less meaningful, since the stress space is con-
stantly changing with the material state.
2. The use of net stresses for modelling unsaturated soils often
leads to discontinuous models at the transition between satu-
rated and unsaturated states. However, this problem can be
avoided if a continuous volumetric stress–strain model is
adopted.

3. A known constitutive model established in the net stress–suc-
tion space can be transformed to a Bishop-type effective
stress–suction space. Such a transformation may simplify the
mathematical expression of the constitutive relation and may
avoid the discontinuity problem at the transition of saturated
and unsaturated states.

4. Most elasto-plastic models have embodied shear strength crite-
ria. In the SFG model, the friction angle /b is a function of suc-
tion and the air entry value.

5. Hysteresis in the soil–water characteristic curves can be formu-
lated in the same framework of elasto-plasticity, which leads to
a consistent formulation of stress–strain and suction–satura-
tion relations.

6. Unsaturated soil models inevitably have non-convex yield sur-
faces at the transition between saturated and unsaturated
states. This non-convexity can significantly complicate the
implementation of these models into finite element codes. An
explicit stress integration scheme incorporating an efficient
root search algorithm can be used to integrate an unsaturated
soil model with a non-convex yield surface.
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